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Human activity recognition 
of children with wearable devices 
using LightGBM machine learning
Gábor Csizmadia1*, Krisztina Liszkai‑Peres1,3,4, Bence Ferdinandy2, Ádám Miklósi1,2 & 
Veronika Konok1

Human activity recognition (HAR) using machine learning (ML) methods has been a continuously 
developed method for collecting and analyzing large amounts of human behavioral data using 
special wearable sensors in the past decade. Our main goal was to find a reliable method that could 
automatically detect various playful and daily routine activities in children. We defined 40 activities 
for ML recognition, and we collected activity motion data by means of wearable smartwatches with a 
special SensKid software. We analyzed the data of 34 children (19 girls, 15 boys; age range: 6.59–8.38; 
median age = 7.47). All children were typically developing first graders from three elementary schools. 
The activity recognition was a binary classification task which was evaluated with a Light Gradient 
Boosted Machine (LGBM) learning algorithm, a decision tree based method with a threefold cross 
validation. We used the sliding window technique during the signal processing, and we aimed at 
finding the best window size for the analysis of each behavior element to achieve the most effective 
settings. Seventeen activities out of 40 were successfully recognized with AUC values above 0.8. The 
window size had no significant effect. In summary, the LGBM is a very promising solution for HAR. In 
line with previous findings, our results provide a firm basis for a more precise and effective recognition 
system that can make human behavioral analysis faster and more objective.

In behavioural sciences, the objective and quantifiable measurement of behavior is a fundamental requirement 
for conducting research. For this purpose, video-based or live behavior coding is a frequently used method. 
However, manual coding (i.e. coding by human observers based on visual inspection) is time-consuming and 
can have subjective components1.

Body movements are among the main measurable components of behavior. Therefore, the use of motion 
sensor devices, such as accelerometers and gyroscopes, can help behavioral scientists to automatically measure 
behavior, both in studies on animals2,3 and humans4,5. These devices can supply researchers with a large amount 
of objective and quantitative data based on the three spatial dimensions. This way, data collection can be con-
ducted with more individuals in parallel, and over a longer period of time because these devices can be used in 
a wide range of environments (not only in the laboratory). This may help to solve statistical problems related to 
low sample size (and consequences e.g. low statistical power, not representative sample).

However, such data (big data) requires specific analytic methods. Machine learning algorithms can be used 
to train models that are able to automatically identify predetermined behavior categories (supervised learning6). 
This can improve behavior measurement and make it more objective than the visual inspection of behavior by 
human observers.

In humans, movement sensors are increasingly used in different settings, such as the entertaining or healthcare 
industry. Smartwatches with accelerometer and gyroscope can derive general health related parameters such as 
total step counts, and people often use this function for maintaining regular physical activity. These devices can 
be used also by healthcare professionals, for e.g. assisting rehabilitation7,8, monitoring physical activity in specific 
patient groups9,10, or monitoring symptoms of movement disorders (e.g. essential tremor or motor symptoms 
of Parkinson’s disease; for a review see11).

Sedentary lifestyle is increasingly frequent in children which is partly attributed to the excessive usage of 
digital devices12. This may explain why the prevalence of obesity, diabetes and other related health problems is 
increasing in childhood13,14. However, children can be especially motivated by games, and the ubiquity of smart 

OPEN

1Department of Ethology, Eötvös Loránd University, Budapest, Hungary. 2MTA-ELTE Comparative Ethology Research 
Group, Budapest, Hungary. 3Doctoral School of Psychology, Eötvös Loránd University, Budapest, Hungary. 4Institute of 
Psychology, Eötvös Loránd University, Budapest, Hungary. *email: csizmadia.gabor.tamas@ttk.elte.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-09521-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5472  | https://doi.org/10.1038/s41598-022-09521-1

www.nature.com/scientificreports/

mobile devices makes it possible to use these devices for exergaming and facilitating children to do physical 
activity. An additional advantage of mobile devices is that they can be used anywhere, therefore, outdoor activities 
can be also facilitated by them, and geolocation data can be also exploited for the game experience15. If machine 
learning based feedback can be included in a game, it may become more motivating and entertaining and can 
also improve motor skills (for a review see16).

Another potential application area for motion sensors with machine learning in healthcare is the identifica-
tion of symptoms of movement disorders or neurological diseases, which can aid either in the establishment of a 
diagnosis17 or in the management of symptoms18,19. This method could help in diagnosing mental disorders which 
have no biomarker and thus, straightforward diagnosis is problematic. For example, activity-based automatic 
detection has been increasingly used in case of neurocognitive disorders, like autism spectrum disorder and 
attention-deficit hyperactivity disorder20. These developmental disorders start in infancy but are often diagnosed 
only in pre-school or school years, while earlier diagnosis leads to better prognosis21. Therefore, the usage of 
motion sensor data with machine learning has the potential to predict developmental disorders at an earlier age 
than usual22. Additionally, this method can also aid in managing symptoms that present a burden to the affected 
individuals and their family23,24.

In sum, wearable motion sensors can provide an objective research tool and a useful healthcare aid in pre-
vention, diagnosis, and treatment. However, more research is needed on how automatic detection of activity 
can be optimally carried out. We propose a method with which children’s activity can be assessed and detected 
automatically. This way game applications can be improved which facilitate physical activity, predict neurode-
velopmental disorders and/or improve motor skills in children with motor problems.

We developed a wearable system and an activity test battery for children and assumed that we can success-
fully identify activities by the means of machine learning models. In contrast to other approaches4, we aimed at 
applying and detecting complex (playful and everyday) activities which can form the base of a game application.

As the time spent on using mobile devices, especially playing games, increases in the school age25 and many 
children get diagnosis of developmental disorders at the beginning of elementary school26, both the develop-
ment of game applications facilitating physical activity and the training of machine learning models to predict 
developmental disorders would be feasible to carry out in this age group. Therefore, in the present study we 
focused on 6–8-years-old children.

ML methods in Human Activity Recognition (HAR) rely on two main approaches regarding the pre-pro-
cessing of data before the learning task, one is based on derivative parameters or features, and the other one 
works on raw data. The first one requires the segmentation of the data and the extraction of derived features. 
On these data mostly decision tree-based classifications are used. The second one, is the deep learning method, 
which automatically learns the required feature representation directly from the raw data using e.g. convolutional 
neural networks27.

The first step of any ML method is segmentation. i.e. dissecting the time series into smaller segments. One of 
three different windowing techniques are usually used to determine these segments and recognition accuracy may 
be affected by them and by the length of the window: (i) sliding window technique where signals are divided into 
equal segments using a sliding fix-length window; (ii) event-defined window techniques, where pre-processing 
is necessary to locate specific events, which are further used to define successive data partitioning and (iii) 
activity-defined window technique where data partitioning is based on the detection of activity changes. These 
windows may (but not necessarily) overlap, and the degree of the overlap may also affect the ML performance28. 
The sliding window approach is well-suited to real-time applications since it does not require pre-processing.

The second step of many ML methods is the feature extraction the aim of which is to get the most effective fea-
tures from the obtained raw segments. Time domain features include mean, median, variance skewness, kurtosis, 
range etc. Peak frequency, peak power and spectral power on specific frequency bands and spectral entropy are 
generally included in the frequency-domain features. Feature extraction is crucial in any HAR targeted solution 
since the features used primarily determine the overall system accuracy. One widely used approach is to rely 
on various arbitrarily chosen measures of the raw data and then to find the most effective combination of these 
features (these may range from a few to many hundreds).

After segmentation and feature extraction, various classification algorithms are applied to each window, and 
the recognition process (decision tree based methods, most frequently boosted variants) runs on the derivative 
features.

There is no unified standpoint about which ML methods (including classification method, or preprocessing 
method) yield the best success. The choice of the classifier method is the most important parameter, followed 
by the segmentation method, window size and finally sampling frequency29. The picture is even more complex 
because there is also a correlation between the number of features and the window size30.

Therefore, our aim was to find the best machine learning method and parameters that delivers the best 
performance in the recognition process, is fast and effective and can also run on different types smartphones 
or smartwatches, so it is usable in typical life situations. Further, we aimed also to produce guidelines for other 
similar HAR projects targeting children’s behavior.

Results
The overall (mean) accuracy of the classification was 0.95 ± 0.04 (M ± SD) and the AUC was 0.76 ± 0.15. The 
performance of the LGBM model regarding the recognition of a specific activity varied from AUC = 0.5 (Shoe_
off_same, Sock_off_other) to AUC = 0.98 (Hopscotch) (Table 1).

As the underlying data is inherently imbalanced, the accuracy measures could be misleading, but we pro-
vided them only for comparison with similar data in the literature, so we favour AUC as the main performance 
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indicator. The recognition was the highest (AUC > 0.9) in the case of Hopscotch, Ball, Goliath, Drawing, Crab, 
Swimming, Spider, Seal, Building blocks and Bear (Figs. 1, 2, 3).

To analyse whether there is an optimal window size in terms of AUC, we fitted a quadratic regression using 
the lm function of R, version 3.6.3. on the AUC—window size values of each activity. A quadratic curve allows 
for having a local maximum, enabling the investigations of the optimum. We defined the effect size as relevant 
if due to window size change an AUC change of 0.05 can be achieved within the 15–149 range explored. We 
assessed adj. R2 values of the regression for goodness of fit. The highest value of R2 was 0.327 for “Seal” (effect 
size = 0.027), while the highest effect size was 0.156 for Rabbit (R2 = 0.069, see Fig. 2), with the effect size mostly 
due to the linear term in the model, that is, no local maxima was found. “Door handle” is the sole activity where 
both measures were appreciable (R2 = 0.092, effect size = 0.062), while for most activities, both measures were 

Table 1.   The Budapest activity test battery (BATB) and performance of the machine learning methods. The 
table was sorted by AUC with the highest recognition figures at the top. Num pos is the number of occurrences 
of a given activity in the dataset.

Activity name Description Sequence Activity type Accuracy AUC​ Num pos Pos %

Hopscotch Alternating hopping on single leg and double leg 
on a hopscotch ground One jump (from bouncing off till arriving) Playful 0.9773 0.9871 868 3.97

Ball Throwing and catching a ball From preparing to throw (hand rising) till catch-
ing the ball Everyday 0.9813 0.9569 556 2.54

Goliath Walking on the toes, hands stretched upwards From the first step till the last step; if child stops 
coding is paused Playful 0.9769 0.9447 765 3.50

Drawing Drawing with a pencil on a paper As the pencil touches the paper till lifting up 
the pencil Playful 0.9266 0.9429 2656 12.15

Crab Crawling backward (hands stretched, legs bent, 
chest upwards)

From the first step till the last step; if child stops 
coding is paused Playful 0.9649 0.9396 880 4.03

Swimming Lying on stomach, hands moving around like 
swimming From the first hand movement till end of the last Playful 0.9740 0.9380 1037 4.74

Spider Crawling forward (hands stretched, legs bent, 
chest upwards)

From the first step till the last step; if child stops 
coding is paused Playful 0.9573 0.9314 947 4.33

Seal Legs and hips on the ground, hands stretched, 
moving only by using hands

From the first step till the last step; if child stops 
coding is paused Playful 0.9461 0.9159 902 4.13

Building blocks
Building a tower from 5 building blocks (coding 
only when the action is done with the hand 
smartwatch on it, and only if building a horizon-
tal tower)

From reaching towards a cube till putting it onto 
another cube Everyday 0.9329 0.9057 1773 8.11

Bear Crawling forward (hands stretched, legs bent, 
chest downwards)

From the first step till the last step; if child stops 
coding is paused Playful 0.9588 0.9020 787 3.60

Light off Turning off the light, then releasing hands From lifting hand till the hand is next to the 
body in the start position Everyday 0.9820 0.8984 359 1.64

Figure 1.   Playful activities with the highest AUC values, AUC values as a function of the window size. 
Quadratic curves fitted (Hopscotch: adj. R2 = 0.240, Ball: adj. R2 = 0.044). A small random jitter was added to the 
window sizes for better visibility.
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low (see Fig. 4 and Tables 1, 2, 3). Thus, for all but one activity the applied window size did not influence the 
AUC values.

Discussion
Our main goal was to introduce a ML method which is able to recognize various playful and everyday activities 
for rapid automated analysis in children. Overall, our method of data pre-processing and the applied LGBM 
algorithm is successful regarding the recognition performance. Our mean accuracy (0.95) is in the top range of 
other similar HAR machine learning results (see summary Table 1 in31) When evaluating our results, it should 
be noted that we used only one movement sensor located on the wrist of the children.

Although the accuracy values were excellent, we also examined AUC values because those are more robust 
indicators of recognition success (e.g. accuracy is high even when not only true positives, but false positives are 
high). We obtained at least acceptable AUC values for all activities, and very good values for the majority of 
them, e.g. seventeen activities were recognized with AUC values above 0.8. Activities with lower AUC values 
are those with lower sample size (see Table 1, last column for the occurrence of the activities). Therefore, larger 
sample might increase the recognition rate of these activities.

We achieved the highest AUC values mainly for the playful activities. Besides that these were also among the 
activities most frequently carried out, but it is also possible that the LGBM method performs better in the case 
of complex activities that involve several body parts, with characterized sensor data patterns32.

The recognition of everyday activities was in the lower segment of the performance list. One possible explana-
tion (besides lower sample size) is that some of these actions are executed very similarly in 3D space. For example, 

Figure 2.   Playful activities with the highest AUC values, AUC values as a function of the window size. 
Quadratic curves fitted (Goliath: adj. R2 = 0.007, Drawing: adj. R2 = 0.074, Crab: adj. R2 = 0.084, Swimming: adj. 
R2 = 0.026). A small random jitter was added to the window sizes for better visibility.
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praying and clapping with the hands are very similar actions when measured by one sensor on the wrist that 
mainly differ in their speed of execution. This kind of problem, undeniably, could be addressed by using different 
feature extraction methods for various activities and optimising for unique features from the best performed 
IMU signals, but our intention was to develop a widely usable method which could be adopted for any kind of 
activity in the future. Another explanation could be that some everyday activities (e.g. taking socks on or off) 
could be executed variably resulting in large inter-individual differences. Such variation may make it impossible 
for the algorithm to find a common pattern in the feature set.

No systematic effect of the window size (window size 15 (0.3 s) to 149 (3 s)) on the AUC was revealed, sug-
gesting that it either does not exist, or the sample size and range of values was insufficient to detect such an effect. 
Awais et al33 reported similar observations with no or little effect of the window size when they compared various 
experiments on HAR datasets. In contrast, Banos et al.30 reported a significant drop in the accuracy when they 
examined the effect of the window size ranging from 0.25 s to 7 s in steps of 0.25 s. Intervals below 1 s resulted 
in lower accuracy values. Based on our data, window size optimization has an effect only when the recognition 
performance is in the middle range, not too low or not too high. Both scenarios push the variance toward extreme 
values, so the outcome is masked by this side effect. Importantly, we used subject-independent cross-validation 
(CV), while window size effect was reported in studies applying a subject-dependent CV30. In the latter case 
individual differences do not mask the effect of window sizes. This is especially true for overlapping windows, 
which we used in this study, in case of which the performance difference between subject-dependent CV and 
subject independent CV increases with the window size. Dehgani et al28 also reported that there was no window 
size effect in case of subject-independent CV.

Figure 3.   Playful activities with the highest AUC values, AUC values as a function of the window size. 
Quadratic curves fitted (Spider: adj. R2 = 0.091, Seal: adj. R2 = 0.327, Building blocks: adj. R2 = 0.036, Bear: adj. 
R2 = 0.115). A small random jitter was added to the window sizes for better visibility.
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The categorization performance is better at higher AUC figures, ranging from 0.5 as minimum value to 1.0 
as the maximum. However, the closer AUC is to the maximum value the lower is the variance of the AUC and 
as a consequence the window size has lower impact on the performance.

Our results enable the development of game applications which improve motor skills as the ML model inte-
grated into the Senskid system is able to give feedback to the user about the accuracy of movement execution. 
At least the 17 movement types can be used in such applications as these were identified with very high AUC 
values. We achieved the highest AUC values mainly for the playful activities which children frequently execute 
during preschool or school activities or physical training (e.g. crab and spider crawling, bear walking, etc.). 
Therefore, our activity battery can be easily applied in preschools and schools with the help of the teachers. 

Figure 4.   The AUC values of two everyday activities as a function of the window sizes and the quadratic curves 
fitted (Light on: adj. R2 = 0.138, Doorhandle: adj. R2 = 0.088) for the two activities with the highest R2. A small 
random jitter was added to the window sizes for better visibility.

Table 2.   The Budapest activity test battery (BATB) and performance of the machine learning methods. The 
table was sorted by AUC with the highest recognition figures at the top. Num pos is the number of occurrences 
of a given activity in the dataset.

Activity name Description Sequence Activity type Accuracy AUC​ Num pos Pos %

Dwarf Walking in squat position From the first step till the last step; if child 
stops coding is paused Playful 0.9512 0.8838 1113 5.09

Rabbit Legs between hands, first moving forward 
hands, then jumping with legs

Begins with hand stretching, ends with com-
pleting the jump Playful 0.9790 0.8711 362 1.66

Book Turning pages in a book From grasping a page till releasing it Everyday 0.9571 0.8667 750 3.43

Nose Touch nose From reaching towards nose till releasing it Everyday 0.9797 0.8576 503 2.30

Light on Turning on the light, then releasing hands From lifting hand till the hand is next to the 
body in the start position Everyday 0.9800 0.8558 375 1.72

Door handle Grabbing door handle, pushing down, releas-
ing hands

From lifting hand till releasing the door 
handle Everyday 0.9686 0.8451 645 2.95

Peck Peck the skin on the back of the hand From reaching towards the hand till releasing 
it Everyday 0.9710 0.7892 535 2.45

Frog Jumping with open legs, hands in the air 
beside the body

From moving upward till arriving to the 
lowest point Playful 0.9780 0.7781 346 1.58

Glass grabbing Grabbing a glass From reaching glass till grabbing Everyday 0.9828 0.7696 268 1.23

Pudding eat Eating a pudding One mouthful, from putting spoon into the 
mouth till moving it away from mouth Everyday 0.9598 0.7678 836 3.82

Clapping Clapping hands From approximating hands till start position Everyday 0.9825 0.7577 208 0.95

Drinking Drinking from a glass From touching mouth with the glass till 
releasing it Everyday 0.9630 0.7473 178 0.81

Glass lifting Lifting a glass From grabbing till lifting the upmost point Everyday 0.9802 0.6961 216 0.99

Sock on (same side) Put on socks From grasping a sock till the sock is on the 
foot Everyday 0.9752 0.6889 512 2.34

Sock on (other side) Put on socks From grasping a sock till the sock is on the 
foot Everyday 0.9697 0.6863 462 2.11
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Game applications relying on ML algorithms which request and measure these activities could be used in such 
context to facilitate and improve movement, or predict motor or neurocognitive problems. Although some of the 
everyday activities were less successfully recognized in the present study, this could be improved by increasing 
sample size of the collected data. Many children with motor/neurocognitive problems34 have difficulties with 
performing everyday activities, thus, there is a huge need for gamified technological solutions which improve 
their motor skills.

Methods
Participants.  Thirty-nine children participated in the study (22 girls, 17 boys; age range: 6.59–8.38; median 
age = 7.45), but the data of 5 children was not used in the analysis due to technical problems (either the move-
ment data or the video recording was lost). Thus, finally we analyzed the data of 34 children (19 girls; 15 boys age 
range: 6.59–8.38; median age = 7.47). All children were typically developing first graders from three elementary 
schools (see Sect. 1.3). The parents of all participants gave their written informed consent to the study.

Materials.  Budapest activity test battery (BATB).  The Budapest Activity Test Battery (BATB) was developed 
by our research group, and it contains complex activities (the activities and their definitions are presented in 
Tables 1, 2, 3, that are executable by 6–8-year-old children. The selection criteria for the activities were that they 
should be motivating enough for the children to be integrated later into a game application, they should improve 
different motor skills after regular practice (fine and gross motor activities, arm-leg coordination, cross-side and 
same-side activities), and they could be either shown by a character on the mobile/tablet’s screen or explained 
(asked) verbally. Therefore, two main types of activities were included: playful, entertaining (mostly reproduc-
ing or mimicking movements of animals) activities that the child would be motivated to perform, and everyday 
activities that (being part of a child’s everyday routine) the parent would be motivated to ask from the child (e.g. 
taking off the shoes, washing hands).

We used different instructional methods for the playful and everyday activities. Playful activities (N = 10) 
were shown by the experimenter, and children were asked to imitate them. In contrast, children were instructed 
verbally to perform everyday activities (N = 24). If they were not able to carry them out, then the experimenter 
demonstrated the actual activity. The children were asked to repeat each of them 5 times in order to obtain 
more data. Some of the activities required some equipment e.g. ball, book, building blocks, glass, spoon, snack, 
toothbrush, toothpaste.

Playful activities (except for hopscotch) were repetitive movement sequences: the same movement elements 
were repeated over a predetermined distance (e.g. crawling like a crab across the room). Everyday activities 
were single (not repetitive) action sequences (their units were functional on their own, e.g. throwing up a ball, 

Table 3.   The Budapest activity test battery (BATB) and performance of the machine learning methods. The 
table was sorted by AUC with the highest recognition figures at the top. Num pos is the number of occurrences 
of a given activity in the dataset.

Activity name Description Sequence Activity type Accuracy AUC​ Num pos Pos %

Toothbrush (other) Put toothpaste on to the toothbrush From grabbing toothbrush and toothpaste till 
finishing putting toothpaste on the toothbrush Everyday 0.9720 0.6855 371 1.69

Hand wash Washing hands From rubbing hands till hands are under water Everyday 0.9814 0.6849 285 1.30

Snack eat Eating a snack One bite, from putting snack into the mouth 
till moving away from mouth Everyday 0.9677 0.6587 288 1.32

Knee (same) Touch knee From reaching towards knee till releasing it Everyday 0.9762 0.6478 227 1.04

Knee (other) Touch knee From reaching towards knee till releasing it Everyday 0.9171 0.6161 134 0.61

Shoe on (same side) Put on shoes From grasping a shoe till the shoe is on the 
foot Everyday 0.9734 0.6139 417 1.91

Pray Hands together in pray style From approximating hands till releasing them Everyday 0.9740 0.5993 389 1.78

Toothbrush (same)
Put toothpaste on to the toothbrush (same: 
pushing toothpaste with the hand smartwatch 
on it)

From grabbing toothbrush and toothpaste till 
finishing putting toothpaste on the toothbrush Everyday 0.9534 0.5637 226 1.03

Glass to mouth Lifting glass to the mouth From lifting glass to the mouth till it touches 
the mouth Everyday 0.7987 0.5631 31 0.14

Shoe off (other side) Take off shoes, opposite side of the body rela-
tive to the hand with the smartwatch

From grasping a shoe till the shoe is off the 
foot Everyday 0.8706 0.5383 53 0.24

Shoe on (other side) Put on shoes From grasping a shoe till the shoe is on the 
foot Everyday 0.9387 0.5366 247 1.13

Sock off (same side) Take off socks From grasping a sock till the sock is off the 
foot Everyday 0.9280 0.5110 167 0.76

Sock off (other side) Take off socks From grasping a sock till the sock is off the 
foot Everyday 0.8481 0.5 115 0.53

Shoe off (same side) Take off shoes, same side of the body relative 
to the hand with the smartwatch

From grasping a shoe till the shoe is off the 
foot Everyday 0.8130 0.5 70 0.32
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grabbing the door handle). At the end of the data collection the number of the activities varied from 31 to 2656 
(number of positive, ground truth).

Device and software.  The data collection equipment consisted of two devices, one sensor device (smartwatch) 
and another one (smartphone) for controlling the sensor device and managing sensor data, both running Sen-
sKid software. We used Apple Watch as sensor device which is a commercially available Apple product, regard-
ing product details, please see https://​www.​apple.​com/.

SensKid software is a member of the SensX software family, which is under development and not yet com-
mercially available. The sensor device contained a 9-axis motion sensor (3-axis gyroscope + 3-axis accelerom-
eter + 3-axis magnetometer) and samples data at 50 Hz (50 sample/sec). Each sample data point contained 3 
dimensional parameters of the device except attitude which had 4 dimensions (9 + 4). During the experimental 
session the sensor device processed and stored the gyroscope and accelerometer data in real time. At the end of 
the session the processed sensor data was sent to the measurement device connected via Bluetooth that in parallel 
recorded the session on video, then transferred the data and the video to our network servers. The synchronisa-
tion of the raw data and the video was made automatically by the SensKid software.

Procedure.  Data collection took place in classrooms/gyms of three elementary schools (Kispesti Vass Lajos 
Általános Iskola: N = 8; Virányos Általános Iskola: N = 12; Terézvárosi Két Tannyelvű Általános Iskola: N = 19). 
The school psychologist/ class teacher was contacted first directly via email, then, an informed consent was asked 
from the director of the school. The class teacher helped us in contacting the parents to obtain their informed 
consents. All methods were performed in accordance with the relevant guidelines and regulations, and all the 
experiment protocol for involving humans was in accordance to 2018 Declaration of Helsinki.

Children were tested in groups of 2 or 3 in the presence of their teacher. The experimenter informed the 
child about what would happen in the test and put the sensor device on the wrist of the child, on the child’s 
dominant hand (which was determined by offering a high five to the child and checking which hand he or she 
used spontaneously). The experimenter then set the connection between the smartwatch and the smartphone 
and launched the recording.

The order of the activities was not fixed, it was determined ad hoc, based on (1) what the child wanted to 
perform, (2) how exhaustive the activity was (e.g. after 4–5 playful activities, children got tired so we changed 
to a less exhaustive everyday activity), (3) how much space was available for the activities. Additionally, most 
children did not perform all activities because of time limitation, exhaustion or other personal reasons (e.g. the 
child did not want to or was not allowed to perform something, e.g. eating the snack). Children were asked to 
repeat an activity two or five times (two times in case of longer sequences, like bear walk or frog jump, and five 
times in case of shorter activities like switching the light on/off). The total number of the collected samples pre 
activity is reported in Tables 1, 2, 3.

The study was approved by the Unified Psychological Research Ethical Committee (EPKEB; reference num-
ber: 2019/18).

Video coding.  For video coding we used Solomon Coder (© András Péter). The coding protocol included defi-
nitions of the 40 activities and the length of an activity sequence (bout length: start—endpoint, without inter-
ruption). Per definition we used the number of positives as the number of occurrences of a given activity, which 
means the number of bouts, activity running ongoing without being interrupted by any other activities. For the 
activities and their definitions, see Tables 1, 2, 3. Video recordings were coded by five coders. Video recordings 
were manually synchronized to the inertial data. All coders were trained using a standardised protocol of the 
department, and inter-coder reliability analyses were performed during training to ensure consistent labelling.

Data analysis.  We chose LGBM for the categorisation (LGBM 3.1.1, https://​pypi.​org/​proje​ct/​light​gbm/), 
because our previous research (submitted) on other datasets showed that LGBM did just deliver the best per-
formance, but it significantly over-performed other boosting methods (e.g. XGBM) in speed and computational 
efforts (1.2 h vs 8.5 h per iteration).

The hyperparameters were set to default, except for that we used the ‘unbalance = true’ parameter, as our data-
set is unbalanced as it’s expected. To evaluate the machine learning model, we separated the data to independent 
data sets for training, validating and testing. This has been carried out by k-fold cross-validation (CV). In k-fold 
CV, the training data is randomly partitioned in k equal subsets. The model is then trained on k − 1 subsets, and 
the remaining one is used for validation. We used a threefold cross validation, splitting the dataset 25 + 25% for 
train and 25% for validation group. We used the validation group to tune the hyper-parameters and check the 
overfitting. Then all the remaining 25% of the dataset made up the test group. We did the cross-validation per 
child, so the training and test sets did not contain the data of the same subject. Therefore, this method is referred 
to as subject-independent CV.

One of the most important statistical assumptions for ML processes is that samples are independent and 
identically distributed, that is, all the data points are sampled independently from the same distribution. However, 
samples drawn from the same subject are most likely not independent. This means that the similarity of samples 
drawn from the same participants is likely to be higher than that of samples drawn from different participants 
(see also35).

This kind of bias of k-fold CV may overestimate the performance of categorization. This problem of k-fold CV 
is more serious when it is used with overlapping sliding windows, as in our experiment, because these overlaps 
between adjacent windows are another source of unwanted dependency between data points. To address these 
issues, the training and testing sets should be split by participants. According to this method, which is known 

https://www.apple.com/
https://pypi.org/project/lightgbm/
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as subject-independent CV, in each iteration the model is trained on all the participants except those, which are 
used for testing. In our case, we separated the participants into 3-folds using 2-folds for training and one-fold 
for testing.

We used the dynamic overlapping sliding window technique for segmentation of the data with 5 sampling unit 
shifts. Sliding window sizes of 15, 32, 60, 81,100, 149 sample points (0.3, 06, 1.2, 1.6, 2.0, 2.9 s) was considered 
for feature computation; this provided sufficient temporal resolution of activity and was short enough to capture 
bouts of activities with the shortest duration. Successive windows had an overlap of 5 sample points. Windows 
containing transitions between different activities were labelled as the activity at the end of the bout. Thus each 
window contained activity data corresponding to exactly one video-labelled activity.

As any multi-class problem could be built up from binary classifications, we decided to use separate binary 
models, not one multi-label, one for each activity, and comparing the positive class to the remaining 39 activi-
ties. We ran 20 iterations per window size per fold, 60 total runs for every activity and calculated the weighted 
AUC value (0.5–1.0) of the run of the activity as the indicator of recognition success. We used the feature set as 
published earlier in35.

Conclusion
In summary, we collected activity motion data with a special SensKid software by means of wearable smart-
watches on the children’s wrist, asking them to show various kinds of daily routine or playful activities. We 
analysed the data of 34 children who were typically developing first graders from three elementary schools. Our 
aim was to build a machine learning model which could recognize these activities.

Light Gradient Boosted Machine (LGBM) learning algorithm was used, with a threefold cross validation in 
a binary classification task. We used sliding window technique during the signal processing, and we also ana-
lysed the effect of window size for the analysis of each behaviour element to achieve the most effective settings. 
Seventeen activities out of 40 were successfully recognized with AUC values above 0.8.

In summary, the LGBM is a very promising solution for recognizing daily routine or playful activities among 
children in real life situations, which is not sensitive to the window size. Big advantage of our finding that this 
machine learning method even works on commercially available devices, which could open the window for more 
promising examination of children behaviour in every-day situations.
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