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We address the problem of long-term dynamics of tuberculosis (TB) and latent tuberculosis (LTB) in semiclosed communities.
These communities are congregate settings with the potential for sustained daily contact for weeks, months, and even years between
theirmembers. Basic examples of these communities are prisons, but certain urban/rural communities, some schools, among others
could possibly fit well into this definition. These communities present a sort of ideal conditions for TB spread. In order to describe
key relevant dynamics of the disease in these communities, we consider a five compartments SEIR model with five possible routes
toward TB infection: primary infection after a contact with infected and infectious individuals (fast TB), endogenous reactivation
after a period of latency (slow TB), relapse by natural causes after a cure, exogenous reinfection of latently infected, and exogenous
reinfection of recovered individuals. We discuss the possible existence of multiple endemic equilibrium states and the role that the
two types of exogenous reinfections in the long-term dynamics of the disease could play.

1. Introduction

Dynamics of tuberculosis (TB) spread has been the subject of
a considerable body of theoretical and mathematical work.
For review, see, for example, [1, 2] and references therein.
The choice of a particular model is strongly connected to the
questions we want to answer, and in the present work we will
address the problem of long-term dynamics of tuberculosis
and latent tuberculosis (LTB) in semiclosed communities.

For semiclosed communities we mean not strictly closed
communities with certain mobility of their members out or
into the community, with a recruitment of newmembers and
departure of others. But, essentially these communities are
congregate settings with the potential for sustained daily con-
tact for weeks, months, and even years between community
members. Basic examples of these communities are prisons,
but certain urban/rural communities, schools, among others
could possibly fit well into this general definition. These
communities present a sort of ideal conditions for frequent

TB outbreaks, enhanced TB transmission, and accelerated
spread of the disease.

The basic characteristics of such settings including the
possibility of high concentrations of infectious individuals
and immunodeficient hosts, improper precautions taken for
protection, delay in diagnosis, sustained contact with the
index case, and inadequate ventilation and/or overcrowding
make them well suited for TB transmission, creating this
way genuine high transmission pockets of TB inserted in the
general population [3, 4].

In fact, prisons are especially high burden communities,
in which incidence and prevalence of TB are very high, and
consequently the frequency of infections and reinfections
considerably increases in comparison with population at
large; see the works by Chiang and Riley [5] and by Baussano
et al. [6].

Studying the dynamics of the TB spread in semiclosed
communities is an interesting and significant topic by itself;
however, there is an important phenomenon due to which
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the study of these types of communities is essential in the
context of TB spread. This phenomenon has been called the
Reservoir Effect [6, 7]. Indeed, semiclosed communities such
as prisons represent a reservoir for disease transmission to the
population at large and should be a source of public concern.
For example, TB infection may spread into the general
population through prison staff, visitors, and close contacts
of released prisoners. The transmission dynamics between
prisoners and the general population [6], together with
immigration from developing countries with high prevalence
of TB [8, 9], has been hypothesized to play a key role in
driving overall population-level TB incidence, prevalence,
and mortality rates.

In a recent work [4] the authors have even gone further
in relation to this effect and have named these communities
Institutional Amplifiers of TB Propagation. Some examples of
communities given by these authors are poor hospitals in
which dozens of patients share poorly ventilated communal
rooms, crowded prison cell blocks, and mining barracks
among others.

The transmission and progression of TB infection has
been relatively well understood on a population scale. Gener-
ally, it is assumed that once an individual is infected with TB,
he or she is immune from further infection events. Moreover,
it was proposedwhat came to be known as the unitary concept
of pathogenesis [10], which states that TB always begins with
primary infection, and subsequent episodes of active TB are
due to reactivation of dormant bacilli from this primary
infection. However, a persistent evidence has recently been
shown (see [5] for a review) that the paths to TB infection
are not as linear as was suggested by the unitary concept
of pathogenesis. The availability of individual, strain-specific
infection histories (see, e.g., [11–13]) has made it clear that
exogenous reinfection in people with previously documented
TB infection does occur. The important question is whether
reinfection occurs commonly enough to have an effect on the
overall infection dynamics of the population [14].The relative
importance of these pathways to the development of active
disease has significant implications for treatment and control
strategies, most notably in deciding whether latently infected
and treated individuals are at risk of reinfection [15].

Several authors [15–20] have declared that exogenous
reinfection plays an important role in the disease progression
and that the inhalation of tubercle bacilli by persons who
have had a primary TB infection previously for more than
five years represents an increasing risk to develop active
TB soon after reinfection. A study from South Africa [21]
has demonstrated that the rate of reinfection by TB after
successful treatment could be higher than the rate of new TB
infections. In this study the reinfection rate after successful
treatment was estimated at 2.2 per 100 person-years, which
was approximately seven times the crude incidence rate
(313 per 100 000 population per year) and approximately
four times the age-adjusted incidence rate of new TB (515
per 100 000 population per year). So, ignoring exogenous
reinfection when modeling TB spread in high-incidence
and high-prevalence community setting such as semiclosed
communities has been seen to be inappropriate. (Henao-
Tamayo et al. in [22] recently published a mouse model of TB

reinfection that could help to explain immunological aspects
of reinfection risk in high-incidence areas.)

We will use an SEIR standard compartmental model;
see for example the works by Blower et al. [23] and more
recently by Liao et al. [24] with somemodifications explained
bellow that turn out to be quite useful in the study of the
particularities of TB spread at this type of communities.
This model assumes that the population in the community
is homogeneous that it does not consider the heterogeneities
in the social structure between community members, and it
is based on the so-calledmass action or fully mixing approxi-
mation. This means that individuals with whom a susceptible
individual has contact are chosen at random from the whole
community. It is also assumed that all individuals have
approximately the same number of contacts in the same
time and that all contacts transmit the disease with the same
probability.

The model we use in this work takes into account the
following relevant facts in the context of semiclosed commu-
nities.

(1) The overcrowding in the community can increase
(compared to what occurs in the population at
large) the likelihood of exogenous reinfection due
to repeated contacts with active infected individuals.
That is, besides primary infection themodel considers
the possible reinfection of individuals with LTB (indi-
viduals who are assumed to be asymptomatic and
noninfectious but capable of progressing to active TB)
and recovered individuals (individuals who have been
treated for TB in the past and been declared cured).
If latently infected or recovered individuals remain in
the community, they could be infected again.

(2) At present, it is not completely clear whether in
all cases previous infections with Mycobacterium
TB with or without subsequent recovery offer some
protection that could be translated into a reduced
susceptibility to reinfection [5, 21, 22, 25]. So, we will
be open at exploring different situations with regard
to this fact in the model.

(3) Poor nutrition, immunodepression, and other dis-
eases increase the likelihood of accelerated progres-
sion to active TB.

We will see that considering exogenous reinfection to
describe TB spread produces a richer and more complex
dynamics than the one observed in previous models (see e.g.,
[23, 25, 26]). In particular, unlike the model published by
Feng et al. in [26], which uses a single parameter for exoge-
nous reinfection, our model uses two parameters related to
two possible reinfections (reinfection of latently infected and
reinfection of recovered individuals).

2. Basic Epidemiology of TB Sources and
Probability of Infection in Semiclosed
Communities

The risk of infection with Mycobacterium tuberculosis, the
bacterium causing TB, depends mainly on two factors: first,
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significant exposure to a source of infection and second, the
probability of getting infection if there is exposure.

TB is mostly transmitted through the air; tubercle bacilli,
that depends on host and agent factors, is distributed in
tiny liquid droplets that are produced when someone with
clinical or active TB coughs, sneezes, spits, or speaks, allowing
infected individual to infect others. In closed places the
bacteria are expelled into a finite volume of air unless there
is ventilation, see [27]. In these conditions they may remain
viable and suspended in the air for a prolonged period of
time. But, the number of bacilli excreted bymost personswith
active pulmonary TB is relatively small [16], so the probability
of TB transmission per contact, per unit of time is in general
quite low. The risk of infection is very small during a single
encounter with an infectious individual [28]. However, the
probability of TB transmission can be enhanced by systematic
and long exposure of susceptible individuals to particular
infectious individuals.

The risk of TB transmission is particularly high in settings
with poorly ventilated areas (places with reduced air volume
per occupant, with ventilation systems which recirculate the
air, or with poorly filtered air exchanges) and/or closed areas
in which people are in close and frequent contact. Closed
regime prisons are examples of these high-risk areas. In
effect, the occurrence of TB in prisons for example is usually
reported to be much higher than the average levels reported
for the corresponding general population [6].

Although most exposed individuals develop an effec-
tive immune response to the initial infection [17], there is
another factor that raises the chances of TB contagion, the
fact that TB is an opportunistic disease. Indeed, infected
individuals with weakened immune systems are at significant
risk of developing clinical TB disease (active TB). High TB
prevalence is therefore observed in individuals with HIV
infection, poor nutritional status, alcoholism, drug abuse,
concurrence of other pathology, and psychological stress
decrease immune response levels. These conditions occur
frequently in imprisoned peoples.

TB is usually described as a slow disease because of its
long and variable period of latency and because of its short
and relatively narrow infectious period distribution. Long
periods of latency (inactive TB or latent TB or LTB) imply
that new cases of infection are not clinically noticeable and
therefore remain unobserved for a period of time. Immune
response of susceptible individuals can restrict proliferation
of the bacilli leading to what seems to be long-lasting
partial immunity against reinfection or a response capable of
stopping the progression from LTB to active TB.

Exposed individuals may remain in the latent stage for
long and variable periods of time. In fact, it often happens
that the host dies without ever developing active TB. The
progression from latent to active TB is uncommon in the
population at large. It is estimated that only about 5 to 10
percent of LTB individuals develop clinical or active TB
[16], but due to the above described extreme conditions at
semiclosed communities such as prisons, persons lived in
these communities may be at risk of rapid progression from
LTB to active TB following recent infection or reactivation of
latent infection, or reinfection, see [6].

Some additional known epidemiological facts to be con-
sidered for TB disease are the following.

(1) Most of the secondary infections generated by an
infected individual do take place within the first
months following TB activation [29].

(2) In the work by Styblo [16] it was noted that nearly 60
percent of the new cases arose during the first year
following infection, while the cumulative number of
cases generated over the first five years after infection
accounted for nearly 95 percent of the total observed
cases. People ill with TB can infect up to 10–15 other
people through close contact over the course of a year
[30].

(3) Case fatality among untreated pulmonary TB cases is
around 66.6 percent [30].

(4) Recovered individuals, naturally or from treatment,
may develop active TB again, a phenomenon known
as TB relapse. (Recurrent cases (formerly relapse
cases) have been treated for TB in the past and
been declared successfully treated (cured/treatment
completed) at the end of their treatment regimen.
Recurrent cases include relapses due to the same
Mycobacterium tuberculosis strain as for the previous
episode as well as new episodes of TB due to reinfec-
tion.)

(5) Individuals with LTB may progress to active TB due
to reexposure and reinfection. The extent to which
latent tuberculosis infection could reduce the risk
of progressive disease following reinfection is not
known [31].

3. A Compartmental Model for the TB Spread

In order to describe key relevant dynamics in the study of
the TB spread in semiclosed communities, we consider five
compartments SEIR model represented in Figure 1.

The compartments are uninfected individuals (suscep-
tible), the 𝑆 class; the latent class 𝐸, that is, individuals
who are assumed to be asymptomatic and noninfectious but
capable of progressing to the clinical disease or active TB;
the infectious class 𝐼 is subdivided into two subclasses: (a)
infected and infectious individuals 𝐼

𝐼
and (b) infected and

noninfectious individuals 𝐼
𝑁
; and the 𝑅 class of recovered by

treatment, self cure, or quarantine.
Every individual in the 𝐸, 𝐼

𝐼
, and 𝐼

𝑁
classes is con-

sidered infected. There are five possible routes toward TB
infection according to this model: primary infection after a
contact with infected and infectious individuals (fast TB),
endogenous reactivation after a period of latency (slow TB),
relapse by natural causes after a cure, exogenous reinfection
of latently infected, and exogenous reinfection of recovered
individuals.

The 𝑓 and 𝑞 are probability of developing infectious TB if
one develops fast and slow TB, respectively, 2𝑤 is the relapse
rate to active TB. Uninfected individuals are recruited at the
rate Π, and 𝜇 is the natural mortality rate. Individuals with
TB experience a death rate 𝜇

𝑇
due to TB infection.



4 Computational and Mathematical Methods in Medicine

𝑝𝑓𝛽𝑆𝐼𝐼

𝑞𝛿𝛽𝐸𝐼𝐼

𝜇𝑇𝐼𝐼 𝜇𝐼𝐼

𝜇𝐸𝜇𝑆 𝑞�𝐸
𝑐𝐼𝐼

𝑟2𝐼𝐼

𝜇𝑅
𝚷 (1 − 𝑝)𝛽𝑆𝐼

𝑅
𝐼
𝐸𝑆

𝛿(1 − 𝑞)𝛽𝐸𝐼𝐼

𝜂𝛽𝑅𝐼𝐼

(1 − 𝑞)�𝐸

(1 − 𝑓)𝑝𝛽𝑆𝐼𝐼

𝑟1𝐼𝑁

𝑐𝐼𝑁

𝜇𝑇𝐼𝑁 𝜇𝐼𝑁

𝐼𝐼

𝐼𝑁

𝑤𝑅

𝑤𝑅

Figure 1: Flow chart of TB compartmental model.

After infection, a fraction 𝑝 of individuals progresses to
disease relatively soon (i.e., within the first two years) after
infection; the remaining fraction 1−𝑝 of infected individuals
become latently infected. Of newly infected individuals who
thus progress quickly to disease,𝑓 represents the fraction that
develops infectious disease, and 1 − 𝑓 represents the fraction
that develops noninfectious disease.

The 𝐸 class, latently infected individuals, does not shed
bacilli and is not infective to others. In some latently infected
individuals, the infection remains latent and it may persist for
life. But, in a small minority of latently infected individuals,
reactivation of the latent infection leads to the disease.
The coefficients 𝑟

1
and 𝑟

2
denote the treatment rates for

infected and infectious individuals 𝐼
𝐼
class and infected and

noninfectious individuals 𝐼
𝑁

class, respectively. The model
does not consider unsuccessful treatments.

The parameter 𝛽 is the primary TB transmission rate; this
parameter summarizes socioeconomic and environmental
factors that affect primary TB transmission. We assume that
transmission rates are determined by broad demographic
and social contexts, as well as by characteristics of both
the transmitter and recipient (i.e., the number, viability, and
virulence of the organisms within sputum droplet nuclei,
immune status of the recipient, etc.)

TB transmission rate in case of reinfection might be
different than the transmission rate of primary infection.The
quantities that take into account these differences in case of
reinfection of latently infected individuals and reinfection
of recovered individuals are given by the dimensionless
parameters 𝛿 and 𝜂, respectively. The parameter 𝛿 is the
proportion in TB transmission due to exogenous reinfection
of latently infected individuals, and 𝜂 is the proportion in
TB transmission due to exogenous reinfection of recovered
individuals. Thus, 𝛿𝛽 is the exogenous reinfection rate of
latently infected, and 𝜂𝛽 is the exogenous reinfection rate of
recovered individuals.

A conservative point of viewwill consider that biologically
plausible values for the reinfection parameters 𝛿 and 𝜂 are
given within the intervals 0 ≤ 𝛿 ≤ 1, 0 ≤ 𝜂 ≤ 1.
In this case, the parameters 𝛿 and 𝜂 can be interpreted
as factors reducing the risk of reinfection of an individual
who has previously been infected and has acquired some
degree of protective immunity. However, studies on genetic
predisposition [22] or in communities with cases as those
reported in [21] have gathered some evidence that in certain
situations there may be some increased susceptibility to
reinfection. Therefore, we are willing to explore in the next
sections other mathematical possibilities where the reinfec-
tion parameters can take even less usual values 𝛿 > 1 and
𝜂 > 1.

However, recurrent TB due to endogenous reactivation
(relapse) and exogenous reinfection could be clinically indis-
tinguishable [32]; they are independent events. For this
reason, beside primary infection we will include in themodel
the possibility of endogenous reactivation and exogenous
reinfection as different way toward infection. So, we have the
following.

(1) TB due to the endogenous reactivation of primary
infection (exacerbation of an old infection) is consid-
ered in the model by the terms 𝑞]𝐸 and (1 − 𝑞)]𝐸.

(2) TB due to reactivation of primary infection induced
by exogenous reinfection is considered by the terms
𝛿𝑞𝛽𝐸𝐼

𝐼
and 𝛿(1 − 𝑞)𝛽𝐸𝐼

𝐼
.

(3) Recurrent TB due to exogenous reinfection after a
cure or treatment is described by the term 𝜂𝛽𝐼

𝐼
𝑅.

Theparameters of themodel, its descriptions, and its units
are given in Table 1.
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Table 1: Parameters of the model, its descriptions, and its units.

Parameter Description Unit
𝛽 Transmission rate 1/year
Π Recruitment rate 1/year
𝑐 Natural cure rate 1/year
] Progression rate from latent TB to active TB 1/year
𝜇 Natural mortality rate 1/year
𝜇
𝑇 Mortality rate or fatality rate due to TB 1/year

𝑤 Relapse rate 1/year
𝑞 Probability to develop TB (slow case) —
𝑓 Probability to develop TB (fast case) —

𝑝
Proportion of new infections that produce
active TB —

𝛿𝛽 Exogenous reinfection rate of latent 1/year
𝜂𝛽 Exogenous reinfection rate of recovered 1/year
𝑟
1 Treatment rates for 𝐼

𝐼
1/year

𝑟
2 Treatment rates for 𝐼

𝑁
1/year

All these considerations give us the following system of
equations:

𝑑𝑆

𝑑𝑡
= Π − 𝛽𝑆𝐼

𝐼
− 𝜇𝑆,

𝑑𝐸

𝑑𝑡
= (1 − 𝑝) 𝛽𝑆𝐼

𝐼
+ 𝜂𝛽𝑅𝐼

𝐼
− (] + 𝜇) 𝐸 − 𝛿𝛽𝐸𝐼

𝐼
,

𝑑𝐼
𝐼

𝑑𝑡
= 𝑓𝑝𝛽𝑆𝐼

𝐼
+ 𝑞]𝐸 + 𝑤𝑅 − (𝜇 + 𝜇

𝑇
+ 𝑐 + 𝑟

1
) 𝐼
𝐼
+ 𝛿𝑞𝛽𝐸𝐼

𝐼
,

𝑑𝐼
𝑁

𝑑𝑡
= (1 − 𝑓) 𝑝𝛽𝑆𝐼

𝐼
+ (1 − 𝑞) ]𝐸

+ 𝑤𝑅 − (𝜇 + 𝜇
𝑇
+ 𝑐 + 𝑟

2
) 𝐼
𝑁
+ 𝛿 (1 − 𝑞) 𝛽𝐼

𝐼
𝐸,

𝑑𝑅

𝑑𝑡
= 𝑐 (𝐼
𝐼
+ 𝐼
𝑁
) − (2𝑤 + 𝜇) 𝑅 − 𝜂𝛽𝑅𝐼

𝐼
+ 𝑟
1
𝐼
𝐼
+ 𝑟
2
𝐼
𝑁
.

(1)

Adding all the equations in (1) together, we have

𝑑𝑁

𝑑𝑡
= −𝜇𝑁 − 𝜇

𝑇
(𝐼
𝐼
+ 𝐼
𝑁
) + Π, (2)

where𝑁 = 𝑆 + 𝐸 + 𝐼
𝐼
+ 𝐼
𝑁
+ 𝑅 represents the total number of

the population, and the region

𝐷 = {(𝑆, 𝐸, 𝐼
𝐼
, 𝐼
𝑁
, 𝑅) ∈ R

5

+
: 𝑆 + 𝐸 + 𝐼

𝐼
+ 𝐼
𝑁
+ 𝑅 ≤

Π

𝜇
} (3)

is positively invariant of system (1).
It is a common practice in epidemic research to introduce

the basic reproduction number 𝑅
0
, defined as the average

number of secondary infections produced by an infected
individual in a completely susceptible population, as the
measure for the epidemic thresholds, if 𝑅

0
> 1 an epidemic

will arise.

We have calculated 𝑅
0
for this model using the Next

Generation Method [35] and it is given by

𝑅
0
= 𝛽Π ((ℎ𝑓𝑝 + (1 − 𝑝) ]𝑞) (𝑎𝑏 − 𝑚𝑤)

+ 𝑚𝑤 (ℎ (1 − 𝑓) 𝑝 + (1 − 𝑝) ] (1 − 𝑞)))

× (𝜇ℎ𝑎 (𝑎𝑏 − 𝑔𝑤 − 𝑚𝑤))
−1
,

(4)

where

𝑎 = 𝜇 + 𝜇
𝑇
+ 𝑐,

𝑏 = 2𝑤 + 𝜇,

ℎ = ] + 𝜇,

𝑔 = 𝑟
1
+ 𝑐,

𝑚 = 𝑟
2
+ 𝑐.

(5)

3.1. Steady-State Solutions. In order to find steady-state
solutions for (1) we have to solve the following system of
equations:

0 = Π − 𝛽𝑆𝐼
𝐼
− 𝜇𝑆,

0 = (1 − 𝑝) 𝛽𝑆𝐼
𝐼
+ 𝜂𝛽𝑅𝐼

𝐼
− (] + 𝜇) 𝐸 − 𝛿𝛽𝐸𝐼

𝐼
,

0 = 𝑓𝑝𝛽𝑆𝐼
𝐼
+ 𝑞]𝐸 + 𝑤𝑅 − (𝜇 + 𝜇

𝑇
+ 𝑐 + 𝑟

1
) 𝐼
𝐼
+ 𝛿𝑞𝛽𝐸𝐼

𝐼
,

0 = (1 − 𝑓) 𝑝𝛽𝑆𝐼
𝐼
+ (1 − 𝑞) ]𝐸 + 𝑤𝑅

− (𝜇 + 𝜇
𝑇
+ 𝑐 + 𝑟

2
) 𝐼
𝑁
+ 𝛿 (1 − 𝑞) 𝛽𝐼

𝐼
𝐸,

0 = 𝑐 (𝐼
𝐼
+ 𝐼
𝑁
) − (2 𝑤 + 𝜇) 𝑅 − 𝜂𝛽𝑅𝐼

𝐼
+ 𝑟
1
𝐼
𝐼
+ 𝑟
2
𝐼
𝑁
.

(6)

Solving system (6)with respect to 𝐼
𝐼
wehave the following

equation:

𝐼
𝐼
(𝐴𝐼
3

𝐼
+ 𝐵𝐼
2

𝐼
+ 𝐶𝐼
𝐼
+ 𝐷) = 0. (7)

The coefficients of (7) are all expressed as functions of the
parameters listed in Table 1. However, these expressions are
too long to be written here. See Appendix A for explicit forms
of the coefficients.

3.1.1. Disease-Free Equilibrium. For 𝐼
𝐼
= 0we get the disease-

free steady-state solution:

𝑃
0
= (𝑆
0
, 𝐸
0
, 𝐼
𝐼0
, 𝐼
𝑁0

, 𝑅
0
) = (

Π

𝜇
, 0, 0, 0, 0) . (8)

Lemma 1. The disease-free steady-state solution 𝑃
0
is locally

asymptotic stable for 𝑅
0
< 1.
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Proof. The Jacobian matrix of system (6) evaluated in 𝑃
0
=

((Π/𝜇), 0, 0, 0, 0) is

𝐽 =

[
[
[
[
[
[
[
[

[

−𝜇 0 −
𝛽 Π

𝜇
0 0

0 −] − 𝜇
(1 − 𝑝) 𝛽Π

𝜇
0 0

0 𝑞]
𝑓𝑝𝛽Π

𝜇
− 𝜇 − 𝜇𝑇 − 𝑐 − 𝑟1 0 𝑤

0 (1 − 𝑞) ]
(1 − 𝑓) 𝑝𝛽Π

𝜇
−𝜇 − 𝜇𝑇 − 𝑐 − 𝑟2 𝑤

0 0 𝑟1 + 𝑐 𝑟2 + 𝑐 −2𝑤 − 𝜇

]
]
]
]
]
]
]
]

]

.

(9)

The characteristic equation for 𝐽 have the form

(𝜆 + 𝜇) (𝜆
4
+ 𝑎
3
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
) = 0. (10)

Given the polynomial

𝑃 (𝜆) = 𝜆
4
+ 𝑎
3
𝜆
3
+ 𝑎
2
𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
= 0, (11)

in the special case when 𝑎
1
, 𝑎
2
, 𝑎
3
> 0, 3 roots of the polyno-

mial 𝑃(𝜆) have negative real part and if

(i) 𝑎
0
= 0, the 4th root, or largest eigenvalue, is zero,

(ii) 𝑎
0
> 0, all eigenvalues are negative,

(iii) 𝑎
0
< 0, the largest eigenvalue has positive real part.

Thus, the stability of disease-free steady-state solution is
determined solely by the sign of the constant term 𝑎

0
of the

polynomial 𝑃(𝜆) [36].
The coefficients 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
3
are all decreasing functions

of 𝛽 and they are linear functions with respect to the
parameter 𝛽, so they all take the general form 𝑎

𝑖
(𝛽) = −𝐴

𝑖
𝛽+

𝐵
𝑖
with 𝑖 = 0, 1, 2, 3 and 𝐴

𝑖
, 𝐵
𝑖
> 0. We can define 𝛽

𝑖
= 𝐵
𝑖
/𝐴
𝑖
.

It is easy to see that for 𝛽 < 𝛽
𝑖
we have 𝑎

𝑖
(𝛽) > 0.

For example,

𝑎
3
(𝛽) = −

𝑓𝑝𝛽 Π

𝜇
+ ] + 3𝜇 + 𝜇

𝑇
+ 𝑐 + 𝑟

2
+ 2𝑤,

𝛽
3
=

(] + 3𝜇 + 𝜇
𝑇
+ 𝑐 + 𝑟

2
+ 2𝑤) 𝜇

𝑓𝑝Π
.

(12)

By straightforward calculations and reminding that the
coefficients 𝑎

𝑖
are decreasing functions of 𝛽, we found that

𝑎
2
(𝛽
3
) < 0 ⇒ 𝛽

2
< 𝛽
3
,

𝑎
1
(𝛽
2
) < 0 ⇒ 𝛽

1
< 𝛽
2
,

𝑎
0
(𝛽
1
) < 0 ⇒ 𝛽

0
< 𝛽
1
.

(13)

This way, 𝛽
0
< 𝛽
1
< 𝛽
2
< 𝛽
3
and if we take 𝛽 < 𝛽

0
, all the

coefficients 𝑎
𝑖
are positive. But, for 𝑅

0
< 1, we can see that the

condition 𝛽 < 𝛽
0
is fulfilled. Indeed, the constant term 𝑎

0
of

the polynomial 𝑃(𝜆) can be written as

𝑎
0
(𝛽) = −𝐴

0
𝛽 + 𝐵
0
= 𝐵
0
(1 −

𝐴
0
𝛽

𝐵
0

) = 𝐵
0
(1 − 𝑅

0
) . (14)

Using this form for the coefficient 𝑎
0
we can see that if

𝑅
0
< 1, then 𝑎

0
(𝛽) > 0 so 𝛽 < 𝛽

0
.

Remark 2. For 𝑅
0
> 1 we have 𝑎

0
< 0, and the disease-free

steady-state solution is unstable. Indeed, if 𝜆
1
, 𝜆
2
, 𝜆
3
, and 𝜆

4

are the roots of polynomial 𝑃(𝜆) = 0, we have 𝜆
1
𝜆
2
𝜆
3
𝜆
4
=

𝑎
0
< 0, and it is impossible that the four roots have negative

real part.

3.1.2. Endemic Equilibria. From (7) we get that nontrivial
solutions are possible if

𝐴𝐼
3

𝐼
+ 𝐵𝐼
2

𝐼
+ 𝐶𝐼
𝐼
+ 𝐷 = 0. (15)

The explicit expressions for the coefficients 𝐴 and𝐷 are

𝐴 = 𝛽
3
𝛿𝜎 (𝜇 + 𝜇

𝑇
) (𝜇 + 𝜇

𝑇
+ 𝑐 + (1 − 𝑞) 𝑟

1
+ 𝑞𝑟
2
) > 0, (16)

𝐷 = ℎ ([𝑎𝑏 + 𝑤𝑟
2
+ 𝑟
1
(𝑤 + 𝜇)] (𝜇 + 𝜇𝑡)

+ 𝜇𝑚 (𝑟
1
+ 𝑎)) (1 − 𝑅

0
) ,

(17)

where parameters 𝑎, 𝑏, ℎ, and𝑚 are defined as in (5).
The coefficients 𝐵 and 𝐶 can be written in the following

general form:

𝐵 = 𝛽
2
𝑓
𝐵
(𝛽) ,

𝐶 = 𝛽𝑓
𝐶
(𝛽) ,

(18)

where
𝑓
𝐵
(𝛽) = −𝐵

1
𝛽 + 𝐵
2
,

𝑓
𝐶
(𝛽) = −𝐶

1
𝛽 + 𝐶

2
.

(19)

The coefficients {𝐵}
𝑖=1,2

and {𝐶}
𝑖=1,2

are all positive and
depend on the parameters given in Table 1. See Appendix A
for the explicit form of these coefficients.

Changes in the signs of the coefficient 𝐵 and 𝐶 as
function of transmission rate 𝛽 can be explained using the
above defined functions 𝑓

𝐵
(𝛽) and 𝑓

𝐶
(𝛽), respectively. The

functions 𝑓
𝐵
(𝛽) and 𝑓

𝐶
(𝛽) both are linear and decreasing

functions of 𝛽.
Consider the polynomial function

𝑃 (𝑥) = 𝐴𝑥
3
+ 𝐵𝑥
2
+ 𝐶𝑥 + 𝐷. (20)

From (17) we can see that for 𝑅
0

> 1 the coefficient 𝐷
is negative, so we have 𝑃(0) = 𝐷 < 0. On the other hand,
because the coefficient 𝐴 is always positive, there must be
a value 𝑥

∗ such that, for 𝑥 > 𝑥
∗, it holds that 𝑃(𝑥) > 0.

Since function 𝑃(𝑥) is continuous, this implies the existence
of solution for the equation 𝑃(𝑥) = 0.

To determine howmany possible endemic states arise, we
consider the derivative 𝑃(𝑥) = 3𝐴𝑥

2
+ 2𝐵𝑥+𝐶, and then we

analyse the following cases.

(1) If Δ = 𝐵
2
− 3𝐴𝐶 ≤ 0, 𝑃


(𝑥) ≥ 0 for all 𝑥,

then 𝑃(𝑥) is monotonically increasing function and
we have a unique solution, that is, a unique endemic
equilibrium.

(2) If Δ ≥ 0, we have solutions of the equation 𝑃

(𝑥) = 0

given by

𝑥
2,1

=
−𝐵 ± √𝐵2 − 3𝐴𝐶

3𝐴

(21)
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and 𝑃

(𝑥) ≥ 0 for all 𝑥 ≥ 𝑥

2
and 𝑥 ≤ 𝑥

1
. So, we need to

consider the positions of the roots 𝑥
1
and 𝑥

2
in the real line.

We have the following possible cases.
(i) If 𝐶 ≤ 0, then for both cases 𝐵 ≥ 0 and 𝐵 < 0, we

have 𝑥
1
< 0, 𝑥

2
> 0 and 𝑃


(𝑥) > 0 for all 𝑥 ≥ 𝑥

2
≥ 0.

Given that 𝑃(0) = 𝐷 < 0, this implies the existence of
a unique endemic equilibrium.

(ii) If 𝐵 ≥ 0 and 𝐶 ≥ 0, then both roots 𝑥
1
and 𝑥

2
are

negative and 𝑃

(𝑥) > 0 for all 𝑥 ≥ 0.

(iii) If 𝐵 < 0 and 𝐶 > 0, then both roots 𝑥
1
and 𝑥

2

are positive and we have the possibility of multiple
endemic equilibria. This is a necessary condition, but
not sufficient. It must be fulfilled also that 𝑃(𝑥

1
) ≥ 0.

Let 𝛽
𝐵
be the value of 𝛽 such that 𝑓

𝐵
(𝛽
𝐵
) = 0 and 𝛽

𝐶
the

value of𝛽 such that𝑓
𝐶
(𝛽
𝐶
) = 0.Moreover, let𝛽

𝑅0
be the value

for which the basic reproduction number 𝑅
0
is equal to one

(the value of 𝛽 such that coefficient𝐷 becomes zero).

Lemma 3. If the condition 𝛽
𝑅0

< 𝛽
𝐶
< 𝛽
𝐵
is met, then system

(1) has a unique endemic equilibrium for all 𝛽 > 𝛽
𝑅0

(Table 3).

Proof. Using similar arguments to those used in the proof of
Lemma 1, we have, given the condition 𝛽

𝑅0
< 𝛽
𝐶
< 𝛽
𝐵
, that

for all values of 𝛽 such that 𝛽 < 𝛽
𝑅0
, all polynomial coeffi-

cients are positive; therefore, all solutions of the polynomial
are negative and there is no endemic equilibrium (positive
epidemiologically meaningful solution).

For 𝛽
𝑅0

< 𝛽 < 𝛽
𝐶
the coefficients 𝐵 and 𝐶 are both

positive, while the coefficient𝐷 is negative; therefore, appears
only one positive solution of the polynomial (the greatest
one), so we have a unique endemic equilibrium.

For 𝛽
𝐶

< 𝛽 < 𝛽
𝐵
, the coefficient 𝐶 is negative and 𝐵 is

positive. According to the cases studied above we have in this
situation a unique endemic equilibrium.

Finally, for 𝛽 > 𝛽
𝐵

the coefficients 𝐵 and 𝐶 are
both negative, and according to the study of cases given
above we also have a unique positive solution or endemic
equilibrium.

Let us first consider biologically plausible values for the
reinfection parameters 𝜂 and 𝛿, that is, values within the
intervals 0 ≤ 𝛿 ≤ 1, 0 ≤ 𝜂 ≤ 1. This means that the
likelihood of both variants of reinfections is no greater than
the likelihood of primary TB. So, we are considering here
partial immunity after a primary TB infection.

Lemma 4. For biologically plausible values (𝛿, 𝜂) ∈ [0, 1] ×

[0, 1] system (1) fulfils the condition 𝛽
𝑅0

< 𝛽
𝐶
< 𝛽
𝐵
.

Proof. Using straightforward but cumbersome calculations
(we use a symbolic software for this task), we were able to
prove that if we consider all parameters positive (as it is the
case) and taking into account biologically plausible values
(𝛿, 𝜂) ∈ [0, 1] × [0, 1], then 𝑓

𝐵
(𝛽
𝐶
) > 0 and 𝐷(𝛽

𝐵
) > 0

and it is easy to see that these inequalities are equivalent to
𝛽
𝑅0

< 𝛽
𝐶
< 𝛽
𝐵
.

We have proven that the condition 𝛽
𝑅0

< 𝛽
𝐶

< 𝛽
𝐵

implies that the system can only realize two epidemiologically

Table 2: Qualitative behaviour for system (1) as a function of the
disease transmission rate 𝛽, when the condition 𝛽

𝑅0
< 𝛽
𝐶

< 𝛽
𝐵
is

fulfilled.

Interval Coefficients Type of
equilibrium

𝛽 < 𝛽
𝑅0

𝐴 > 0, 𝐵 > 0, 𝐶 > 0,𝐷 > 0
Disease-free
equilibrium

𝛽
𝑅0

< 𝛽 < 𝛽
𝐶 𝐴 > 0, 𝐵 > 0, 𝐶 > 0,𝐷 < 0

Unique endemic
equilibrium

𝛽
𝐶
< 𝛽 < 𝛽

𝐵 𝐴 > 0, 𝐵 > 0, 𝐶 < 0,𝐷 < 0
Unique endemic
equilibrium

𝛽 > 𝛽
𝐵 𝐴 > 0, 𝐵 < 0, 𝐶 < 0,𝐷 < 0

Unique endemic
equilibrium

800
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−200

−400

𝑥
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Figure 2: Bifurcation diagram (solution 𝑥 of polynomial (20) versus
𝛽) for the condition 𝛽

𝑅0
< 𝛽
𝐶

< 𝛽
𝐵
. 𝛽
𝑅0

is the bifurcation value.
The blue branch in the graph is a stable endemic equilibrium which
appears for 𝑅

0
> 1.

meaningful (nonnegative) equilibrium states. Indeed, if we
consider the disease transmission rate 𝛽 as a bifurcation
parameter for (1), then we can see that the system experiences
a transcritical bifurcation at 𝛽 = 𝛽

𝑅0
, that is, when 𝑅

0
= 1

(see Figure 2). If the condition 𝛽
𝑅0

< 𝛽
𝐶

< 𝛽
𝐵
is met, the

system has a single steady-state solution, corresponding to
zero prevalence and elimination of the TB epidemic for 𝛽 <

𝛽
𝑅0
, that is,𝑅

0
< 1, and two equilibrium states corresponding

to endemic TB and zero prevalence when 𝛽 > 𝛽
𝑅0
, that is,

𝑅
0

> 1. Moreover, according to Lemma 4 this condition is
fulfilled in the biologically plausible domain for exogenous
reinfection parameters (𝛿, 𝜂) ∈ [0, 1] × [0, 1]. This case is
summarized in Table 2.

From Table 2 we can see that although the signs of the
polynomial coefficients may change, other new biologically
meaningful solutions (nonnegative solutions) do not arise
in this case. The system can only display the presence of
two equilibrium states: disease-free or a unique endemic
equilibrium.
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Table 3: Qualitative behaviour for system (1) as function of the
disease transmission rate 𝛽, when the condition 𝛽

𝐵
< 𝛽
𝐶

< 𝛽
𝑅0

is
fulfilled. Here, Δ

1
is the discriminant of the cubic polynomial (20).

Interval Coefficients Type of
equilibrium

𝛽 < 𝛽
𝐵 𝐴 > 0, 𝐵 > 0, 𝐶 > 0,𝐷 > 0

Disease-free
equilibrium

𝛽
𝐵
< 𝛽 < 𝛽

𝐶 𝐴 > 0, 𝐵 < 0, 𝐶 > 0,𝐷 > 0

Two equilibria
(Δ
1
< 0) or none
(Δ
1
> 0)

𝛽
𝐶
< 𝛽 < 𝛽

𝑅0
𝐴 > 0, 𝐵 < 0, 𝐶 < 0,𝐷 > 0

Two equilibria
(Δ
1
< 0) or none
(Δ
1
> 0)

𝛽
𝑅0

< 𝛽 𝐴 > 0, 𝐵 < 0, 𝐶 < 0,𝐷 < 0
Unique endemic
equilibrium

The basic reproduction number 𝑅
0
in this case explains

well the appearance of the transcritical bifurcation, that is,
when a unique endemic state arises and the disease-free
equilibrium becomes unstable (see blue line in Figure 2).

However, the change in signs of the polynomial coef-
ficients modifies the qualitative type of the equilibria. This
fact is shown in Figures 5 and 7 illustrating the existence
of focus or node type steady-sate solutions. These different
types of equilibria as we will see in the next section cannot
be explained using solely the reproduction number 𝑅

0
.

In the next section we will explore numerically the para-
metric space of system (1), looking for different qualitative
dynamics of TB epidemics. We will discuss in more detail
how dynamics depends on the parameters given in Table 1,
especially on the transmission rate 𝛽, which will be used as
bifurcation parameter for the model.

Let us consider here briefly two examples of parametric
regimes for the model in order to illustrate the possibility to
encounter a more complex dynamics, which cannot be solely
explained by changes in the value of the basic reproduction
number 𝑅

0
.

Example I. Suppose 𝛽 = 𝛽
𝑅0
, this implies that 𝑅

0
= 1 and

𝐷 = 0; therefore, we have the equation:

𝑃 (𝑥) = 𝐴𝑥
3
+ 𝐵𝑥
2
+ 𝐶𝑥

= 𝑥 (𝐴𝑥
2
+ 𝐵𝑥
2
+ 𝐶) = 0.

(22)

It is easy to see that besides zero solution, if 𝐵 < 0, 𝐶 > 0

and 𝐵
2
− 4𝐴𝐶 > 0, (22) has two positive solutions 𝑥

1
and 𝑥

2
.

So, we have in this case three nonnegative equilibria for the
system.

The condition 𝐵 < 0 for 𝛽 = 𝛽
𝑅0

means 𝑓
𝐵
(𝛽
𝑅0
) < 0, and

this in turn implies that 𝛽
𝐵

< 𝛽
𝑅0
. On the other hand, the

condition 𝐶 > 0 implies 𝑓
𝐶
(𝛽
𝑅0
) > 0 and therefore 𝛽

𝑅0
< 𝛽
𝐶
.

Gathering both inequalities we can conclude that if 𝛽
𝐵
<

𝛽
𝑅0

< 𝛽
𝐶
, then the system has the possibility of multiple

equilibria.
Since the coefficients 𝐴 and 𝐵 are both continuous

functions of 𝛽, we can always find a 𝜖 neighbourhood of 𝛽
𝑅0
,

|𝛽 − 𝛽
𝑅0
| < 𝜖 such that the signs of these coefficients are

preserved. Although in this case we do not have the solution

×10−3

𝑃
(𝑥
)

0.1

0.05

−0.05

−0.1

−200 0 200 400 600
𝑥

Figure 3: Polynomial 𝑃(𝑥) for different values of 𝛽 with the
condition 𝛽

𝐵
< 𝛽
𝑅0

< 𝛽
𝐶
. The graphs were obtained for values of

𝛿 = 3.0 and 𝜂 = 2.2.The dashed black line indicates the case𝛽 = 𝛽
𝑅0
.

The figure shows the existence of multiple equilibria.

𝑥 = 0, we eventually could still have two positive solutions
and consequently, multiple equilibrium states; see the green
line in Figure 3.
Example II. Suppose we take numerical values for the param-
eters in Table 1 such that the condition 𝛽

𝐵
< 𝛽
𝐶

< 𝛽
𝑅0

is
fulfilled.

If 𝛽 < 𝛽
𝐵
, then all coefficients of the polynomial (20) are

positive and there is not nonnegative solutions. In this case,
the system has only a disease-free equilibrium.

For 𝛽
𝐵

< 𝛽 < 𝛽
𝐶
and 𝛽

𝐶
< 𝛽 < 𝛽

𝑅0
the signs of the

coefficients of the polynomial are 𝐴 > 0, 𝐵 < 0, 𝐶 > 0, and
𝐷 > 0, 𝐴 > 0, 𝐵 < 0, 𝐶 < 0,𝐷 > 0, respectively.

In both cases the polynomial has two possibilities:

(a) three real solutions: one negative and two positive
solutions for Δ

1
< 0,

(b) one negative and two complex conjugate solutions for
Δ
1
> 0.

Here Δ
1
is the discriminant for the polynomial (20).

In the (a) case we have the possibility of multiple endemic
states for system (1). This case is illustrated in numerical
simulations in the next section by Figures 8 and 9.

We should note that the value 𝛽 = 𝛽
𝐵
is not a bifurcation

value for the parameter 𝛽.
If 𝛽 = 𝛽

𝐵
, then 𝐴 > 0, 𝐵 = 0, 𝐶 > 0, and 𝐷 > 0. In this

case we have

Δ
1
=

1

4

𝐷
2

𝐴2
+

1

27

𝐶
3

𝐴3
> 0. (23)

ThediscriminantΔ
1
is a continuous function of𝛽, for this

reason this sign will be preserved in a 𝜖 neighbourhood of 𝛽
𝐵
.

We should be able to find a bifurcation value solving
numerically the equation

Δ
1
(𝛽
∗
) = 0, (24)
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Figure 4: Bifurcation diagram for the condition 𝛽
𝐵

< 𝛽
𝐶

< 𝛽
𝑅0
.

𝛽
∗ is the bifurcation value. The blue branch in the graph is a stable

endemic equilibrium which appears even for 𝑅
0
< 1.

where 𝛽∗ can be bounded by the interval 𝛽
𝐵
< 𝛽
∗
< 𝛽
𝑅0

(see
Figure 4).

4. Numerical Simulations

In this section we will show some numerical simulations
with the compartmental model (1). This model has fourteen
parameters that have been gathered in Table 1. In order to
make the numerical exploration of the model more manage-
able, we will adopt the following strategy.

(i) First, instead of fourteen parameters we will reduce
the parametric space using four independent param-
eters 𝛽

𝑅0
, 𝛽, 𝛿, and 𝜂. The parameters 𝛽, 𝛿, and 𝜂 are

the transmission rate of primary infection, exogenous
reinfection rate of latently infected, and exogenous
reinfection rate of recovered individuals, respectively.
𝛽
𝑅0

is the value of 𝛽 such that basic reproduction
number 𝑅

0
is equal to one (or the value of 𝛽 such that

coefficient 𝐷 in the polynomial (20) becomes zero).
On the other hand, 𝛽

𝑅0
depends on parameters given

in the list Λ = {Π, 𝑐, 𝑓, 𝜇, ], 𝑝, 𝑞, 𝑤, 𝜇
𝑡
, 𝑟
1
, 𝑟
2
}. This

means that if we keep all the parameters fixed in the
listΛ, then 𝛽

𝑅0
is also fixed. In simulations we will use

𝛽
𝑅0

instead of using basic reproduction number 𝑅
0
.

(ii) Second, we will fix parameters in the list Λ according
to the values reported in the literature. In Table 4 are
shown numerical values that will be used in some of
the simulations, besides the corresponding references
from where these values were taken. Mostly, these
numerical values are related to data obtained from
the population at large, and in the next simulations
we will change some of them for considering the
conditions of extremely high incidence/prevalence of

Table 4: Numerical values for the parameters in the list Λ. Some
of the given numerical values for the model parameters are mainly
related to the spread of TB in the population at large and are basically
taken as reference. Other values assuming for the parameters,
different than those given in this table will be clearly indicated in
the text.

Parameter Description Value
Π Recruitment rate 200 (assumed)
𝑐 Natural cure rate 0.058 [23, 33, 34]

]
Progression rate from latent TB to
active TB 0.0256 [33, 34]

𝜇 Natural mortality rate 0.0222 [2]
𝜇
𝑇 Mortality rate due to TB 0.139 [2, 33]

𝑤 Relapse rate 0.005 [2, 33, 34]
𝑞 Probability to develop TB (slow case) 0.85 [2, 33]
𝑓 Probability to develop TB (fast case) 0.70 [2, 33]

𝑝
Proportion of new infections that
produce active TB 0.05 [2, 33, 34]

𝑟
1 Treatment rates for 𝐼

𝐼
0.50 (assumed)

𝑟
2 Treatment rates for 𝐼

𝑁
0.20 (assumed)

TB in semiclosed communities. In any case, these
changes will be clearly indicated in the text.

(iii) Third, for any pairs of values 𝛿 and 𝜂 we can compute
𝛽
𝐵
and 𝛽

𝐶
, that is, the values of 𝛽 such that 𝐵 = 0

and 𝐶 = 0, respectively, in the polynomial (20). So,
we have that the exploration of parametric space is
reduced at this point to the study of the parameters
𝛽
𝑅0
, 𝛽
𝐵
, 𝛽
𝐶
, and 𝛽. According to the chosen values for

𝛿, 𝜂, and 𝛽
𝑅0
, we have six possible orderings for the

parameters 𝛽
𝑅0
, 𝛽
𝐵
, and 𝛽

𝐶
(see Appendix B).

The dynamic behavior of system (1) will depend of
these orderings. In particular, from Table 5, it is easy
to see that if 𝛽 ≤ min(𝛽

𝑅0
, 𝛽
𝐵
, 𝛽
𝐶
) then the system

has a unique equilibrium point, which represents a
disease-free state, and if 𝛽 ≥ max(𝛽

𝑅0
, 𝛽
𝐵
, 𝛽
𝐶
), then

the system has a unique endemic equilibrium, besides
an unstable disease-free equilibrium.

(iv) Fourth and finally, we will change the value of 𝛽,
which is considered a bifurcation parameter for sys-
tem (1), taking into account the previous mentioned
ordering to find different qualitative dynamics.

It is especially interesting to explore the consequences
of modifications in the values of the reinfection parameters
without changing the values in the list Λ, because in this case
the threshold 𝛽

𝑅0
remains unchanged. Thus, we can study in

a better way the influence of the reinfection in the dynamics
of the TB spread.

The values given for the reinfection parameters 𝛿 and 𝜂

in the next simulations could be extreme, trying to capture
this way the special conditions of high burden semiclosed
communities.
Example I (Case 𝛽

𝑅0
< 𝛽
𝐶

< 𝛽
𝐵
, 𝛿 = 0.9, 𝜂 = 0.01). Let us

consider here the case when the condition 𝛽
𝑅0

< 𝛽
𝐶
< 𝛽
𝐵
is
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met.We know from the previous section that this condition is
met under biologically plausible values (𝛿, 𝜂) ∈ [0, 1] × [0, 1].

According to Lemmas 3 and 4, in this case the behaviour
of the system is characterized by the evolution towards
disease-free equilibrium if 𝛽 < 𝛽

𝑅0
and the existence of

a unique endemic equilibrium for 𝛽 > 𝛽
𝑅0
. Changes in

the parameters of the list Λ alter the numerical value of the
threshold 𝛽

𝑅0
but do not change this behaviour.

First, we consider the following numerical values for these
parameters: 𝛿 = 0.9, 𝜂 = 0.01, and 𝛽 = 0.00052. We also
fix the list of parameters Λ according to the numerical values
given in Table 4.

The basic reproduction number for these numerical val-
ues gives𝑅

0
= 3.585422172.The initial conditions considered

were

𝑆 (0) = 4980, 𝐸 (0) = 0, 𝐼
𝐼 (0) = 20,

𝐼
𝑁 (0) = 0, 𝑅 (0) = 0.

(25)

We also have the following values:

𝛽
𝑅0

= 0.0001450317354,

𝛽
𝐵
= 0.01087387065,

𝛽
𝐶
= 0.0002715343808.

(26)

These values clearly meet the condition 𝛽
𝑅0

< 𝛽
𝐶

< 𝛽
𝐵
,

and according to Lemma 3 the system must have in this case
a unique endemic equilibrium for all 𝛽 > 𝛽

𝑅0
.

Figure 5 shows that under the above described situation,
the system will converge to an endemic equilibrium given by
the focus type stationary steady solution:

𝑆
∞

= 1616, 𝑅
∞

= 4080, 𝐼
𝑁∞

= 103,

𝐼
𝐼∞

= 195, 𝐸
∞

= 1150.

(27)

By straightforward calculations we can show that this
focus is stable, and nomatter what initial conditions are taken
for the system, the solutions always evolve to this endemic
state.

Figure 6 shows the trajectories of the system for multiple
initial conditions in a three-dimensional phase space in
which the horizontal axes are susceptible 𝑆 and recovered 𝑅

individuals, while the vertical axis is the prevalence 𝐼
𝐼
+𝐼
𝑁
+𝐸.

Example II (Case 𝛽
𝑅0

< 𝛽
𝐶
< 𝛽
𝐵
, 𝛿 = 0.0, 𝜂 = 0.9). For our

next numerical simulation we consider the following values
for the used parameters: 𝛿 = 0.01, 𝜂 = 0.9, 𝛽 = 0.00052, and
as before the list of parametersΛ is fixed according to Table 4.

The basic reproduction number for these parameters as
before gives the same value 𝑅

0
= 3.585422172. The used

initial conditions were

𝑆 (0) = 4980, 𝐸 (0) = 0, 𝐼
𝐼 (0) = 20,

𝐼
𝑁 (0) = 0, 𝑅 (0) = 0.

(28)
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Figure 5: Numerical simulation for 𝑅
0

= 3.585422172, 𝛿 = 0.9,
𝜂 = 0.01, and 𝛽 = 0.00052. The system goes toward a focus type
stable stationary equilibrium.
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Figure 6: Phase space representation of the evolution of the system
toward a stable focus type equilibrium. In this representation were
used multiple initial conditions and the following values: 𝑅

0
=

3.585422172, 𝛿 = 0.9, 𝜂 = 0.01, and 𝛽 = 0.00052.

We also have the following values:

𝛽
𝑅0

= 0.0001450317354,

𝛽
𝐵
= 0.01226355348,

𝛽
𝐶
= 0.0003132229272.

(29)

These values meet the condition 𝛽
𝑅0

< 𝛽
𝐵
< 𝛽
𝐶
, and as in

the previous simulation the system evolves toward a unique
endemic equilibrium, but this time the dynamical properties
of the equilibrium have changed.

In fact, Figure 7 shows the evolution of the system toward
a stable node type endemic equilibrium:

𝑆
∞

= 1938, 𝑅
∞

= 974, 𝐼
𝑁∞

= 60,

𝐼
𝐼∞

= 156, 𝐸
∞

= 4530.

(30)
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Figure 7: Numerical simulation for 𝑅
0
= 3.585422172, 𝛿 = 0.01,

𝜂 = 0.9, and 𝛽 = 0.00052. In this case the system converges to a
stable node type equilibrium.

In our model, considering biologically plausible domain
for exogenous reinfection parameters (𝛿, 𝜂) ∈ [0, 1] × [0, 1],
the condition 𝛽

𝑅0
< 𝛽
𝐶

< 𝛽
𝐵
is fulfilled. Under this

condition we have a unique endemic equilibrium for𝛽 > 𝛽
𝑅0
.

The emergence by a transcritical bifurcation of this endemic
state is properly explained by the basic reproduction number
𝑅
0
. However, changes in the reinfection parameters 𝛿, 𝜂

can modify the qualitative nature of the dynamics of the
disease, in addition to changing the numbers of individuals
in the different compartments of the model in the endemic
equilibrium state, without having any change in the value of
the basic reproduction number 𝑅

0
, which in this case fails to

describe these variations in the dynamics of the disease.
Example III (Case 𝛽

𝐵
< 𝛽
𝐶

< 𝛽
𝑅0
, 𝛿 = 3.0, 𝜂 = 2.5). There

is now evidence that rates of secondary tuberculosis in high
endemic communities (for example semiclosed communi-
ties), in patients with LTB or/and already treated for primary
disease, are actually higher than in people presenting with
primary infection [21, 22]. Taking this into consideration
we consider now the following numerical values for the
parameters: 𝛽 = 0.00014, 𝛿 = 3.0, 𝜂 = 2.5. In this
case the basic reproduction number takes the value 𝑅

0
=

0.9653059690. Additionally we have

𝛽
𝑅0

= 0.0001450317354,

𝛽
𝐵
= 0.0001066568066,

𝛽
𝐶
= 0.0001225687204.

(31)

For these parameter we have that the condition𝛽
𝐵
< 𝛽
𝐶
<

𝛽
𝑅0

is fulfilled and the system has the possibility of multiple
equilibria. In fact, we have in this case the following stationary
points 𝑃 = (𝑆, 𝑅, 𝐼

𝑖
, 𝐼
𝑛
, 𝐸):

𝑃
1
= (9009, 0, 0, 0, 0) ,

𝑃
2
= (8507, 182, 9, 5, 2166) ,

𝑃
3
= (3221, 1406, 285, 103, 1566) .

(32)
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Figure 8: Numerical simulation for 𝑅
0
= 0.9653059690, 𝛿 = 3.0,

and 𝜂 = 2.5.The systemcan evolve to twodifferent equilibria 𝐼
𝐼∞

= 0

(red lines) or 𝐼
𝐼∞

= 285 (dark green lines) according to different
initial conditions.
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Figure 9: Numerical simulation for 𝑅
0
= 0.9653059690, 𝛿 = 3.0,

and 𝜂 = 2.5. Phase space representation of the system with multiple
equilibrium points.

𝑃
1
is a stable disease-free equilibrium point (stable node), 𝑃

3

is a stable endemic equilibrium (stable focus), and 𝑃
2
is an

unstable equilibrium point (saddle point).
Figure 8 shows the convergence to 𝐼

𝐼∞
= 0 or to 𝐼

𝐼∞
=

285 according to with different initial conditions.
In Figure 9 is shown another representation (phase space)

of the evolution of the system toward 𝑃
1
or to 𝑃

3
according

to different initial conditions. The representation is a three-
dimensional phase space in which the horizontal axes are
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susceptible 𝑆 and recovered 𝑅 individuals, while the vertical
axis is the prevalence 𝐼

𝐼
+ 𝐼
𝑁
+ 𝐸.

For the previously numerical values, the system expe-
riences a backward bifurcation [37] at the value 𝛽

∗
=

0.0001261648723with 𝛽
𝐵
< 𝛽
∗
< 𝛽
𝑅0
. For 𝛽 > 𝛽

∗
, the system

possesses two stable equilibrium points and one unstable (see
Figure 4).
Example IV (Case 𝛽

𝐵
< 𝛽
𝑅0

< 𝛽
𝐶
, 𝛿 = 3.0, 𝜂 = 2.5). Consider

now a more extreme situation with 𝜂 = 2.5, 𝛿 = 3.0, and
𝑝 = 0.7 (the other parameters kept the same values given in
Table 4). In this case the condition 𝛽

𝐵
< 𝛽
𝑅0

< 𝛽
𝐶
is fulfilled.

This example is shown in order to illustratemore complex
and rich dynamics that might admit system (1), which is
mathematically possible and could in principle be a model
case for an extreme hypothetical situation in a semiclosed
high burden community. For these parameters we have

𝛽
𝑅0

= 0.0001679568390,

𝛽
𝐶
= 0.0001729256777,

𝛽
𝐵
= 0.0001489092005,

(33)

which clearly satisfy the condition 𝛽
𝐵
< 𝛽
𝑅0

< 𝛽
𝐶
. Therefore,

as was explained in the previous section, the system has the
possibility of multiple equilibria.

In fact, for the bifurcation value 𝛽
1
= 0.0001673533706

of the disease transmission rate, which satisfies the condition
𝛽
𝐵

< 𝛽
1
< 𝛽
𝑅0
, the system acquires two positive equilibria,

apart from the disease-free equilibrium.
When 𝛽 = 𝛽

𝑅0
appear three positive equilibrium points

and the disease-free equillibrium becomes unstable. For 𝛽
2
=

0.0001688612368 with 𝛽
𝑅0

< 𝛽
2
< 𝛽
𝐶
the system admits a

unique and stable endemic equilibrium (see Figure 10).
We take now the value 𝛽 = 0.0001675, which satisfies the

condition 𝛽
1
< 𝛽 < 𝛽

𝑅0
.

With these numerical values the basic reproduction
number is𝑅

0
= 0.9972800211 < 1, and therefore, the disease-

free equilibrium is stable.
We have in this case the following stationary points 𝑃 =

(𝑆, 𝑅, 𝐼
𝑖
, 𝐼
𝑛
, 𝐸):

𝑃
0
= (5148, 0, 0, 0, 0) ,

𝑃
1
= (3372, 1041, 122, 60, 482) ,

𝑃
2
= (2828, 1283, 190, 88, 651) .

(34)

𝑃
0
is the stable disease-free equillibrium point (stable node),

𝑃
1
is an unstable equilibrium point (saddle point), and 𝑃

2
is

a stable endemic equilibrium (stable focus). Figure 11 shows
the convergence to 𝐼

𝐼∞
= 0 or to 𝐼

𝐼∞
= 190 according to the

initial condition.
In Figure 12 is shown another representation (phase

space) of the evolution of the system toward 𝑃
0
or to 𝑃

2

according to the initial conditions.
Let us take now the value 𝛽 = 0.0001683, which satisfies

the condition 𝛽
𝑅0

< 𝛽 < 𝛽
2
. In this case, the basic

reproduction number has the value 𝑅
0
= 1.002043150. We

still have that the condition 𝛽
𝐵

< 𝛽
𝑅0

< 𝛽
𝐶
is fulfilled

𝛽𝑅0
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𝑥

Figure 10: Bifurcation diagram (solution 𝑥 of polynomial (20)
versus 𝛽) for the condition 𝛽

𝐵
< 𝛽
𝑅0

< 𝛽
𝐶
. The system experiences

multiple bifurcations at 𝛽
1
, 𝛽
𝑅0
, and 𝛽

2
.
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Figure 11: Numerical simulation for 𝑅
0
= 0.9972800211, 𝛿 = 3.0,

and 𝜂 = 2.5.The systemcan evolve to twodifferent equilibria 𝐼
𝐼∞

= 0

or 𝐼
𝐼∞

= 190 according to the initial condition.

and the system in this case has four equilibrium points 𝑃 =

(𝑆, 𝑅, 𝐼
𝑖
, 𝐼
𝑛
, 𝐸):

𝑃
0
= (5148, 0, 0, 0, 0) ,

𝑃
1
= (5042, 76, 5, 3, 20) ,

𝑃
2
= (3971, 734, 69, 36, 298) ,

𝑃
3
= (2491, 1413, 246, 109, 750) .

(35)
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Figure 12: Numerical simulation for 𝑅
0
= 0.9972800211, 𝛿 = 3.0,

and 𝜂 = 2.5. Phase space representation of the system with multiple
equilibrium points.

𝑃
0
is the unstable disease-free equillibrium point (saddle

point ), 𝑃
1
is a stable endemic equilibrium point (node), 𝑃

2

is an unstable equilibrium (saddle point), and 𝑃
3
is a stable

endemic equilibrium point (focus).
Figure 13 shows the phase space representation of this

case.
For further numerical analysis, we set all the parameters

in the list Λ according to the numerical values given in
Table 4, leaving free the parameters 𝛽, 𝜂, and 𝛿 related to the
primary transmission rate and reinfection rates of the disease.

We will explore the parametric space of system (1) and
relate it to the signs of the coefficients of the polynomial (20).

In Figure 14, we consider values of 𝛽 such that 𝑅
0

>

1. We can observe from this figure that as the primary
transmission rate of the disease 𝛽 increases, and with it the
basic reproduction number 𝑅

0
, the system under biological

plausible condition, represented in the figure by the square
(𝛿, 𝜂) ∈ [0, 1] × [0, 1], evolves such that initially (for lower
values of 𝛽) coefficients 𝐵 and 𝐶 are both positive, then 𝐵

remains positive and 𝐶 becomes negative and finally both
coefficients become negative.

This change in the coefficients signs as the transmission
rate 𝛽 increases agrees with the results summarized in Table 2
when the condition 𝛽

𝑅0
< 𝛽
𝐶
< 𝛽
𝐵
is fulfilled.

Next, in order to explore another mathematical possibili-
ties we will modify some numerical values for the parameters
in the list Λ in a more extreme manner, taking a hypothetical
regime with Λ

∗
= {𝜇 = 0.03885, 𝜇

𝑡
= 0.01520, 𝑝 = 0.8,

] = 0.0266, 𝑓 = 0.8, 𝑞 = 0.85, 𝑤 = 0.005, 𝑐 = 0.4, 𝑟
1
= 0.5,

𝑟
2
= 0.2}.
In Figure 15 besides signs of 𝐵 and 𝐶 we consider also the

signs of the discriminant Δ of the quadratic equation 𝑃

(𝑥) =

0, where 𝑃(𝑥) is the polynomial (20).
From Figure 15, in particular we can see that the domain

with 𝐵 < 0, 𝐶 > 0, Δ > 0, and 𝑃(𝑥
1
) > 0 represented in
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Figure 13: Numerical simulation for𝑅
0
= 1.002043150, 𝛿 = 3.0, and

𝜂 = 2.5. The system can evolve to two different equilibria 𝑃
1
(stable

node) or 𝑃
3
(stable focus) according to the initial condition. 𝑃

0
and

𝑃
2
are unstable equilibria.

red allows the possibility of multiple endemic equilibria for
system (1). However, despite the extreme numerical values
for the parameters taking in Λ

∗, this domain is still far
from the domain of biologically plausible values for 𝛿 and
𝜂, represented in the figures by the square (𝛿, 𝜂) ∈ [0, 1]×

[0, 1].
As the transmission rate of the disease 𝛽 increases, and

with it the basic reproduction number 𝑅
0
, this red domain

of the parametric space becomes increasingly smaller until
finally it disappears. In fact, the red domain is only significant
when the basic reproduction number 𝑅

0
is near one.

In Figure 16, we show some numerical simulation where
basic reproduction number 𝑅

0
is less than one. The red

domain indicates the possibility of multiple endemic equilib-
ria for the system even for𝑅

0
< 1.We can see that this domain

is far from the domain of biologically plausible values for 𝛿
and 𝜂 represented in the figure by the square (𝛿, 𝜂) ∈ [0, 1] ×

[0, 1]. As the transmission rate of the disease 𝛽 decreases, and
with it the number 𝑅

0
, this parameter domain moves away

from the square. In all represented cases 𝐵 > 0 and 𝐶 > 0

inside the square (𝛿, 𝜂) ∈ [0, 1] × [0, 1].

5. Discussion and Conclusions

In order to consider high incidence and prevalence of TB and
LTB in semiclosed communities, we have used in this work
a compartmental SEIR model with five possible pathways
to TB disease. The extra nonlinear terms considered in the
model lead to a more complex mathematical treatment in
comparisonwith previously usedmodels (see e.g., [23, 25–29,
32, 35, 36]). But the special form of some coefficients obtained
from the analysis of standard SEIR models with constant
transmission rate allowed us to move forward with some
analytical results that were confirmed later by numerical
simulations.
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Figure 14: Signs of coefficients 𝐵 and 𝐶 as functions of exogenous reinfection rate of latent 𝛿 and exogenous reinfection rate of recovered 𝜂

for 𝑅
0
⩾ 1. The parameter 𝛽 has the values: (a) 𝛽 = 𝛽

𝑅0
= 0.0001450317354, (b) 𝛽 = 0.0002450317354, (c) 𝛽 = 0.0003450317354, and (d)

𝛽 = 0.001145031735.

In this paper we follow a newmethodology for numerical
exploration of this kind ofmodels, which allowedus to handle
the high dimensionality of its parameter spaces and thus
study its different dynamic behaviors. We found that the
transmission rate 𝛽 can be used as a bifurcation parameter
and that the system undergoes qualitative changes in the
dynamics when this parameter varies. In this context the
analysis of the parametric space is reduced to the study of
variations of the parameters 𝛽

𝑅0
, 𝛽
𝐵
, 𝛽
𝐶
, and 𝛽. We divided

the parametric space into six possible arrangements for these
parameters, which in turn determine all possible different
qualitative behaviours of the system dynamics.

From model (1) we can see that reinfection requires
latently infected, recovered, and actively infectious individ-
uals. The basic reproduction number 𝑅

0
has to do solely

with infections produced when an infectious individual is
introduced into an uninfected population, but reinfection
does not alter the dynamics of an uninfected population. So,
the number 𝑅

0
does not completely describe the dynamics of

the model when the reinfection is incorporated, as was noted
before by Feng et al. in [26]. Unlike the model published by
these authors, which uses a single parameter for exogenous
reinfection, in our model we use two parameters related to
two possible pathways of reinfection (reinfection of latently
infected and reinfection of recovered individuals).This is a
reason why our model shows a more complex and richer
dynamics.

We have showed through theoretical analysis in
Section 3 and numerical simulations in Section 4 that if we
accept as valid the plausible assumption that exposure to
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Figure 15: Signs of coefficients 𝐵, 𝐶, and discriminant Δ = 𝐵
2
− 3𝐴𝐶 as functions of exogenous reinfection rate of latent 𝛿 and exogenous

reinfection rate of recovered 𝜂 for 𝑅
0
⩾ 1. The parameter 𝛽 has the values: (a) 𝛽 = 𝛽

𝑅0
= 0.0002277727471, (b) 𝛽 = 0.0002287727471, (c)

𝛽 = 0.0002477727471, and (d) 𝛽 = 0.0005277727471.

mycobacterium induces an immune response, which is
partially protective against reinfection, then the system
for semiclosed communities (1) reproduces well, common
observed trends in TB epidemiology that are similar to what
happens in population at large, which is basically that, for
𝑅
0
< 1, there is only one disease-free status, while for 𝑅

0
> 1,

there exists a unique endemic state with nonzero prevalence.
For 𝑅

0
= 1 occurs a transcritical bifurcation from which

emerges an endemic stable state.
Moreover, according to Lemmas 3 and 4, any values of

reinfection parameters in this parametric regime: (𝛿, 𝜂) ∈

[0, 1]×[0, 1]would lead to the same qualitative dynamics and
will not affect this already classical behavior in SEIR models.
In this case only one of the aforementioned arrangements

(𝛽
𝑅0

< 𝛽
𝐶

< 𝛽
𝐵
) emerges as valid under this biologically

plausible condition.
Since the two parameters related to exogenous reinfection

of latently infected and recovered individuals do not affect the
value of the number 𝑅

0
, even under the plausible assumption

of partial immunity, variation of reinfection parameters
can make that for the same value of the number 𝑅

0
, the

quality of dynamics and the number of affected by disease
individuals (incidence and prevalence) drastically change.
For example, Figures 5 and 7 show two types of dynamics,
that is, convergences to different stationary points, a focus
and a node for the same basic reproduction number𝑅

0
. Some

evidence of this variability in tuberculosis epidemiology
due to dynamic balance between primary infection and
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Figure 16: Signs of coefficients 𝐵, 𝐶, and discriminant Δ = 𝐵
2
− 3𝐴𝐶 as functions of exogenous reinfection rate of latent 𝛿 and exogenous

reinfection rate of recovered 𝜂 for 𝑅
0
⪕ 1. The parameter 𝛽 has the values: (a) 𝛽 = 0.0002177727471, (b) 𝛽 = 0.0002027727471, (c) 𝛽 =

0.0001777727471, and (d) 𝛽 = 0.0001277727471.

reinfection has been presented in several works (see e.g.,
[26, 38]).

Taking less plausible assumption, but already evidenced
in several works [5, 21, 22, 26], of an increased susceptibility
to reinfection over primary infection in some cases leads
us to a further study of model (1). For 𝛿 > 1 and 𝜂 >

1 system (1) experiences a rich and complex dynamics
with successive and different kind of bifurcations as the
transmission rate 𝛽 changes.These cases incorporate possible
multiple endemic states, regardless of whether the values for
the basic reproduction number 𝑅

0
were less than or greater

than 1. So, these behaviors cannot be explained using only
this number. It is in this context that the use of the disease
transmission rate 𝛽 as bifurcation parameter instead of 𝑅

0

acquires real usefulness.

Some important implications of the simulations with 𝛿 >

1 and 𝜂 > 1 lie in the fact that many of the measures taken
to stop and control an epidemics are designed to reduce the
value of the basic reproduction number 𝑅

0
such that disease-

free status for𝑅
0
< 1 is achieved.However, in this parametric

regime, reinfection might cause the system to fall into a state
unable to eliminate endemic disease, although it fulfills that
𝑅
0

< 1. Thus, semiclosed communities with this kind of
regime will become in genuine high transmission pockets of
TB inserted in the general population [4]. Indeed, semiclosed
communities such as prisons might become in a reservoir for
disease transmission to the population at large and should be
a source of public concern [4, 6, 7].

The theoretical approach and numerical simulations pre-
sented in this paper for the study of the impact of reinfection
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Table 5: Different possible orderings for 𝛽
𝑅0
, 𝛽
𝐵
, and 𝛽

𝐶
. In every case 𝐴 > 0, Δ

1
is the cubic discriminant of the equation 𝑃(𝑥) = 0, Δ is the

discriminant of the quadratic equation 𝑃

(𝑥) = 0, where 𝑃(𝑥) is the polynomial (20).

Interval Coefficients Equilibria
𝛽
𝑅0

< 𝛽
𝐶
< 𝛽
𝐵

𝛽 < 𝛽
𝑅0

𝐵 > 0, 𝐶 > 0,𝐷 > 0 Disease-free equilibrium
𝛽
𝑅0

< 𝛽 < 𝛽
𝐶

𝐵 > 0, 𝐶 > 0,𝐷 < 0 Unique endemic equilibrium
𝛽
𝐶
< 𝛽 < 𝛽

𝐵
𝐵 > 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium

𝛽
𝐵
< 𝛽 𝐵 < 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium

𝛽
𝐶
< 𝛽
𝑅0

< 𝛽
𝐵

𝛽 < 𝛽
𝐶

𝐵 > 0, 𝐶 > 0,𝐷 > 0 Disease-free equilibrium
𝛽
𝐶
< 𝛽 < 𝛽

𝑅0
𝐵 > 0, 𝐶 < 0,𝐷 > 0 Two equilibria if 𝑃(𝑥

2
) ≤ 0 or Δ

1
< 0; none if 𝑃(𝑥

2
) ≥ 0 or Δ

1
> 0

𝛽
𝑅0

< 𝛽 < 𝛽
𝐵

𝐵 > 0, 𝐶 < 0,𝐷 < 0 One equilibrium for Δ
1
< 0 or Δ

1
> 0

𝛽
𝐵
< 𝛽 𝐵 < 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium

𝛽
𝐶
< 𝛽
𝐵
< 𝛽
𝑅0

𝛽 < 𝛽
𝐶

𝐵 > 0, 𝐶 > 0,𝐷 > 0 Disease-free equilibrium
𝛽
𝐶
< 𝛽 < 𝛽

𝐵
𝐵 > 0, 𝐶 < 0,𝐷 > 0 Two equilibria if 𝑃(𝑥

2
) ≤ 0 or Δ

1
< 0; none if 𝑃(𝑥

2
) ≥ 0 or Δ

1
> 0

𝛽
𝐵
< 𝛽 < 𝛽

𝑅0
𝐵 < 0, 𝐶 < 0,𝐷 > 0 Two equilibria (Δ

1
< 0) or none (Δ

1
> 0)

𝛽
𝑅0

< 𝛽 𝐵 < 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium
𝛽
𝑅0

< 𝛽
𝐵
< 𝛽
𝐶

𝛽 < 𝛽
𝑅0

𝐵 > 0, 𝐶 > 0,𝐷 > 0 Disease-free equilibrium
𝛽
𝑅0

< 𝛽 < 𝛽
𝐵

𝐵 > 0, 𝐶 > 0,𝐷 < 0 Unique endemic equilibrium
𝛽
𝐵
< 𝛽 < 𝛽

𝐶
𝐵 < 0, 𝐶 > 0,𝐷 < 0 One equilibrium (Δ

1
> 0), three equilibria (Δ

1
< 0)

𝛽
𝐶
< 𝛽 𝐵 < 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium

𝛽
𝐵
< 𝛽
𝑅0

< 𝛽
𝐶

𝛽 < 𝛽
𝐵

𝐵 > 0, 𝐶 > 0,𝐷 > 0 Disease-free equilibrium
𝛽
𝐵
< 𝛽 < 𝛽

𝑅0
𝐵 < 0, 𝐶 > 0,𝐷 > 0 Two equilibria (Δ

1
< 0) or none (Δ

1
> 0)

𝛽
𝑅0

< 𝛽 < 𝛽
𝐶

𝐵 < 0, 𝐶 > 0,𝐷 < 0 One equilibrium (Δ
1
> 0), three equilibria (Δ

1
< 0)

𝛽
𝐶
< 𝛽 𝐵 < 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium

𝛽
𝐵
< 𝛽
𝐶
< 𝛽
𝑅0

𝛽 < 𝛽
𝐵

𝐵 > 0, 𝐶 > 0,𝐷 > 0 Disease-free equilibrium
𝛽
𝐵
< 𝛽 < 𝛽

𝐶
𝐵 < 0, 𝐶 > 0,𝐷 > 0 Two equilibria (Δ

1
< 0) or none (Δ

1
> 0)

𝛽
𝐶
< 𝛽 < 𝛽

𝑅0
𝐵 < 0, 𝐶 < 0,𝐷 > 0 Two equilibria (Δ

1
< 0) or none (Δ

1
> 0)

𝛽
𝑅0

< 𝛽 𝐵 < 0, 𝐶 < 0,𝐷 < 0 Unique endemic equilibrium

on TB dynamics in semiclosed communities could have
important implications at multiple levels, including vaccine
design, control programdesign, epidemiology of tuberculosis
in regions where the risk of reexposure is high, and for
systems-based computer models which to date assume that
primary infection will confer at least some degree of (stable)
memory immunity to a secondary infection, but that in fact
also have to consider less plausible assumptions about an
increased susceptibility to reinfection.

Appendices

A. Explicit Form of Coefficients

Introducing the notations:

𝑎 = 𝜇 + 𝜇
𝑇
+ 𝑐,

𝑏 = 2𝑤 + 𝜇,

ℎ = ] + 𝜇,

𝑔 = 𝑟
1
+ 𝑐,

𝑚 = 𝑟
2
+ 𝑐,

𝜃 = 𝜇 + 𝜇𝑡,

𝜖 = 1 − 𝑝,

𝐿
1
= 𝜃 + 𝑔 (1 − 𝑞) + 𝑚𝑞,

𝐿
2
= ]𝑞𝑟
2
+ ℎ𝑎 + 𝑟

1
] (1 − 𝑞) + 𝑟

1
𝜇,

𝐾
1
= 𝑟
2
𝑤 + 𝑏𝑎 + 𝑟

1
(𝑤 + 𝜇) ,

𝐾
2
= ]𝑞𝑟
2
+ ℎ𝑎 + 𝑟

1
] (1 − 𝑞) + 𝑟

1
𝜇.

(A.1)

We have

𝐵
1
= (𝜃 (𝑓𝑝 + (1 − 𝑝) 𝑞) + 𝑚𝑞)Π𝛿𝜎,

𝐵
2
= 𝜎 (𝜇𝐿

1
𝜃 𝛿 + 𝐿

2
𝜃 + 𝑚𝜇 (𝑎 + 𝑟

1
))

+ (𝑟
2
𝑤𝜃 + 𝑟

1
(𝑤 + 𝜇) 𝜃

+ 𝑏𝑎𝜃 + 𝑚𝜇 (𝑎 + 𝑟
1
)) 𝛿,
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𝐶
1
= Π (𝛿 ((𝑓𝑝 + 𝜖𝑞) (𝑏𝜇𝑡 + (𝑚 + 𝑏) 𝜇) + 𝑚𝑤)

+ 𝜎 ((]𝑞𝜖 + 𝑓ℎ𝑝) 𝜃 + 𝑚 (𝜇𝑓𝑝 + ] 𝑞))) ,

𝐶
2
= 𝜇 (𝐾

1
𝜃 + 𝑚𝜇 (𝑎 + 𝑟

1
)) 𝛿 + 𝜇 (𝐾

2
𝜃 + 𝑚𝜇 (𝑎 + 𝑟

1
)) 𝜎

+ ℎ (𝐾
1
𝜃 + 𝑚𝜇 (𝑎 + 𝑟

1
)) .

(A.2)

The coefficients 𝐵 and 𝐶 can be written in the following
general form:

𝐵 = 𝛽
2
𝑓
𝐵
(𝛽) ,

𝐶 = 𝛽𝑓
𝐶
(𝛽) ,

(A.3)

where
𝑓
𝐵
(𝛽) = −𝐵

1
𝛽 + 𝐵
2
,

𝑓
𝐶
(𝛽) = −𝐶

1
𝛽 + 𝐶

2
,

𝐴 = 𝛽
3
𝛿𝜎 (𝜇 + 𝜇

𝑇
) (𝜇 + 𝜇

𝑇
+ 𝑐 + (1 − 𝑞) 𝑟

1
+ 𝑞𝑟
2
) > 0,

𝐷 = ℎ ([𝑎𝑏 + 𝑤𝑟
2
+ 𝑟
1
(𝑤 + 𝜇)] (𝜇 + 𝜇𝑡)

+ 𝜇𝑚 (𝑟
1
+ 𝑎)) (1 − 𝑅

0
) .

(A.4)

B. Summary for Possible Orderings for the
Different Transmission Rate Parameters

Table 5 shows different orderings for the parameters 𝛽
𝑅0
, 𝛽
𝐵
,

and 𝛽
𝐶
and their implications concerning the possible equi-

librium or stationary points of system (1). This table is
complemented with the analysis given in Section 3.1.2.

Acknowledgments

This work was supported by Concurso Nacional de Proyectos
de Investigación en Salud, FONIS project/Code SA11I2073.
The authors wish to thank Claudia González, Macarena
Hirmas, Patricia González, Juan Carlos Hormazabal, Iris
Delgado, and the students Matias Meyer and Ilani Kauffman
for their valuable collaboration to the research.

References

[1] C. Castillo-Chavez andB. Song, “Dynamicalmodels of tubercu-
losis and applications,”Mathematical Biosciences and Engineer-
ing, vol. 1, pp. 361–404, 2004.

[2] C. Ozcaglar, A. Shabbeer, S. L. Vandenberg, B. Yener, and
K. P. Bennett, “Epidemiological models of Mycobacterium
tuberculosis complex infections,”Mathematical Biosciences, vol.
236, pp. 77–96, 2012.

[3] J. Raffalli, K. A. Sepkowitz, and D. Armstrong, “Community-
based outbreaks of tuberculosis,” Archives of Internal Medicine,
vol. 156, no. 10, pp. 1053–1060, 1996.

[4] S. Basu, D. Stuckle, and M. McKee, “Addressing institu-
tional amplifiers in the dynamics and control of tuberculosis
epidemics,” The American Journal of Tropical Medicine and
Hygiene, vol. 84, no. 1, pp. 30–37, 2011.

[5] C. Y. Chiang and L. W. Riley, “Exogenous reinfection in
tuberculosis,” The Lancet Infectious Diseases, vol. 5, no. 10, pp.
629–636, 2005.

[6] I. Baussano, B. G. Williams, P. Nunn, M. Beggiato, U. Fedeli,
and F. Scano, “Tuberculosis incidence in prisons: a systematic
review,” PLoS Medicine, vol. 7, no. 12, Article ID e1000381, 2010.

[7] FONIS Project, Code SA11I2073, Ongoing research in: deter-
minants of TB transmission in the prison population and its
impact as a reservoir for the general population of Chile.
CEPS, Facultad deMedicina, Clinica Alemana, Universidad del
Desarrollo.

[8] Z. W. Jia, G. Y. Tang, Z. Jin et al., “Modeling the impact of
immigration on the epidemiology of tuberculosis,” Theoretical
Population Biology, vol. 73, no. 3, pp. 437–448, 2008.

[9] Y. Zhou, K. Khan, Z. Feng, and J. Wu, “Projection of tubercu-
losis incidence with increasing immigration trends,” Journal of
Theoretical Biology, vol. 254, no. 2, pp. 215–228, 2008.

[10] W. W. Stead, “Pathogenesis of a first episode of chronic pul-
monary tuberculosis in man: recrudescence of residuals of the
primary infection or exogenous reinfection?” American Review
of Respiratory Disease, vol. 95, no. 5, pp. 729–745, 1967.

[11] R. Sahadevan, S. Narayanan, C. N. Paramasivan, R. Prabhakar,
and P. R. Narayanan, “Restriction fragment length polymor-
phism typing of clinical isolates of Mycobacterium tuberculosis
from patients with pulmonary tuberculosis inMadras, India, by
use of direct-repeat probe,” Journal of Clinical Microbiology, vol.
33, no. 11, pp. 3037–3039, 1995.

[12] L. K. Fitzpatrick, A. Okwera, R. Mugerwa, R. Ridzon, J. Ellner,
and I. Onorato, “An investigation of suspected exogenous
reinfection in tuberculosis patients in Kampala, Uganda,” Inter-
national Journal of Tuberculosis and Lung Disease, vol. 6, no. 6,
pp. 550–552, 2002.
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