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ABSTRACT The draft genome of Bacillus velezensis strain B6, a rhizobacterium with
good biocontrol performance isolated from soil in China, was sequenced. The as-
sembly comprises 32 scaffolds with a total size of 3.88 Mb. Gene clusters coding ei-
ther ribosomally encoded bacteriocins or nonribosomally encoded antimicrobial
polyketides and lipopeptides in the genome may contribute to plant disease control.

acillus velezensis strain B6, which was previously reported as Bacillus subtilis (1), was
isolated from soil in China. Through successful colonization in rhizosphere and the
production of antifungal metabolites, this strain performs good biocontrol efficacy in
suppressing cucumber wilt disease caused by Fusarium oxysporum and pepper root rot
caused by Phytophthora capsici. In addition, B. velezensis B6 could inhibit the multipli-
cation and delay the spread of F. oxysporum in cucumber stems (2, 3) to suppress the
disease development. However, the genes related to the biocontrol functions of B.
velezensis B6 are not well known. Here, we report the draft genome sequence of B.
velezensis B6.
Whole-genome sequencing was carried out by BGI Tech Solutions Co., Ltd. (People’s
Republic of China) with the lllumina HiSeq 2000 platform. A total of 586 Mb of data was
generated for the genome of B. velezensis B6. The short reads were assembled into
genome sequences by using SOAPdenovo 2.04 (4, 5). The draft genome sequence of
strain B6 comprises 32 scaffolds, with a total size of 3,879,012 bp and a GC content of
46.55%.
With SOAPaligner 2.21 sequence alignment software, all read sequences obtained
by sequencing were aligned with the reference genome sequence of B. velezensis
FZB42 (previously Bacillus amyloliquefaciens subsp. plantarum FZB42) (6). Indels and
single nucleotide polymorphisms (SNPs) were detected based on the alignment be-
tween the assembly results and reference genome. The indel analysis results exhibited
243 insertion mutations and 249 deletion mutations, and 84 indels located in the
coding regions of the genomic DNA sequence. A total of 38,320 SNPs were present
in the genome of strain B6, including 8917 nonsynonymous mutations. Some
nonsynonymous mutations occurred at functional genes, such as the surfactin-
encoding genes srfAA, srfAB, srfAC, and srfAD, the competence protein S gene comS, and
the spore germination protein genes gerKA, gerkB, and gerKC. Whether these mutations February 2018 Published 22 March 2018
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iturin family (7), was found in the strain B6 genome. Mycosubtilin enhances spreading access article distributed under the terms of
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activities (9). Strain B6 also harbors the encoding genes of surfactin and plipastatin
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(11). In addition to these lipopeptide antibiotics, strain B6 also contains genes to
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synthesize the catechol-type siderophore bacillibactin (12) and the antibiotics bacil-
laene (13) and bacilysin (14). The capability to produce these potent antimicrobial
compounds may contribute to the ability of B. velezensis B6 to control plant diseases.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number NEOS00000000. The version de-
scribed in this paper is version NEOS01000000.
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