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Mechanisms of estradiol in fear circuitry: implications for sex
differences in psychopathology
KK Cover1, LY Maeng1,2, K Lebrón-Milad1,2 and MR Milad1,2

Over the past two decades, substantial knowledge has been attained about the mechanisms underlying the acquisition and
subsequent extinction of conditioned fear. Knowledge gained on the biological basis of Pavlovian conditioning has led to the
general acceptance that fear extinction may be a useful model in understanding the underlying mechanisms in the
pathophysiology of anxiety disorders and may also be a good model for current therapies treating these disorders. Lacking in the
current knowledge is how men and women may or may not differ in the biology of fear and its extinction. It is also unclear how the
neural correlates of fear extinction may mediate sex differences in the etiology, maintenance, and prevalence of psychiatric
disorders. In this review, we begin by highlighting the epidemiological differences in incidence rate. We then discuss how estradiol
(E2), a primary gonadal hormone, may modulate the mechanisms of fear extinction and mediate some of the sex differences
observed in psychiatric disorders.
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We form associations between emotional events and co-occurring
cues that can guide future behavioral outcomes. This is the basis
of classical conditioning, a paradigm used to study mechanisms of
associative learning and memory. In the past few decades,
conditioned fear and its extinction have been the focus of
extensive research efforts, in part, due to the clinical relevance of
fear to the etiology and pathophysiology of many psychiatric
disorders. Key nodes of brain regions involved in conditioned fear
and fear extinction learning have been identified in rodents and
humans.1 The majority of the rodent studies have been conducted
in males and those conducted in humans, for the most part,
disregard the role of sex differences in this form of learning
(Figure 1). Below, we begin by outlining why this is an issue that
deserves attention from a clinical perspective; a point previously
alluded to by others.2 We review evidence for the relevance of fear
extinction in studying anxiety disorders and then discuss the
mechanisms by which estrogens might interact with the function
of the fear extinction network. We conclude with a discussion of
how natural variations, or exogenous manipulations, of estrogens
throughout a woman’s lifespan may translate to heightened
vulnerability to psychopathology.

SEX DIFFERENCES ACROSS PSYCHIATRIC DISORDERS
Epidemiological studies highlight significant differences between
men and women in the incidence of psychiatric disorders
(Figure 2). There is a higher incidence in men for autism, attention
deficit hyperactivity disorder, schizophrenia and Parkinson’s
disease. Conversely, women are more susceptible to depression,
anxiety and posttraumatic stress disorder (PTSD). In addition to
differences in incidence, many psychiatric disorders are character-
ized by marked sex differences in progression and severity.
Women are twice as likely to be diagnosed with PTSD;3–6 have

longer symptom duration,7 higher symptom severity and func-
tional impairment,8 and have worse quality of life.9 Women with
obsessive compulsive disorder are more likely to have more
contamination/cleaning obsessions10 and their symptoms begin
or worsen at menarche and postpartum.11 Women comprise 60%
of individuals with generalized anxiety disorder and are more
likely to develop comorbid psychiatric disorders and have worse
prognosis and impairment.12,13 In addition to increased incidence
of panic disorder in women, studies also suggest that panic
attacks occur more frequently in women relative to men.14,15 Data
indicate that women are at higher risk of developing anxiety
disorders during reproductive life events such as menarche,
menstruation, pregnancy, parturition and menopause.16,17 All
together, these epidemiological data suggest that gonadal
hormones may have a role in the onset of psychiatric disorders
in women.

FEAR EXTINCTION AS A MODEL FOR ANXIETY-RELATED
DISORDERS
The inability to appropriately inhibit fear is a central underlying
feature of anxiety disorders, with individuals avoiding fear-
provoking situations or employing maladaptive safety behaviors.
PTSD, for example, is marked by uncontrollable recurring
memories of a traumatic life event with sufferers unable to
extinguish their fear to stimuli related to the event. Conditioned
fear paradigms elicit the symptomatic behaviors that mimic those
observed in anxiety disorders and fear extinction protocols
directly assess the core dysfunction, thus providing a means to
investigate the underlying neural pathophysiology. The neural
mechanisms underlying fear extinction have been extensively
studied in rodents and have been reviewed elsewhere.28–31 Briefly,
the brain circuitry underlying extinction memory consolidation
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involves an integrated network of the amygdala, hippocampus
and the ventromedial prefrontal cortex (vmPFC).1 Fear expression
can be modulated by interactions within different nodes of this
circuit. Input from the prelimbic cortex of the PFC to the
basolateral amygdala increases activity in the central nucleus of
the amygdala for increased fear output.32 Input from the
infralimbic cortex (IL) to the inhibitory intercalated neurons of
the amygdala suppresses activity within the central amygdala to
reduce fear responses.33 Based on the context in which extinction
learning took place, the hippocampus can either allow or suppress
the expression of the fear memory by activating the IL.34

The brain regions involved in fear conditioning and extinction
in humans parallel those described in rodents.1 It has been
suggested that the dorsal anterior cingulate and the vmPFC may
be the functional homologs to the rat prelimbic cortex and IL,
respectively. Along with the amygdala, increased activation of the
vmPFC and dorsal anterior cingulate has been reported during

fear conditioning and extinction in humans.35 Specifically,
increased vmPFC activation to the extinguished cue during
extinction recall positively correlated with the magnitude of
extinction recall.36–38 In addition, context-specific hippocampal
activation supports the role of this structure in modulating the
network based on contextual information.37 Neuroimaging studies
with PTSD patients show deficits in this network, including dorsal
anterior cingulate hyperactivity and vmPFC hypoactivity correlat-
ing with impaired extinction.39 However, not all neuroimaging
studies report results congruent with the fear extinction model.
For example, although the model predicts blunted vmPFC activity
in PTSD patients, several studies have reported hyperactivation or
no differences within this brain region between PTSD and trauma-
exposed or healthy individuals during symptom provocation.40–42

In addition, the fear extinction model does not capture all features
of anxiety such as anticipatory symptoms nor does it accurately
model disorders like obsessive compulsive disorder. Despite these
limitations, this model is a useful tool for studying the neural
mechanisms and vulnerability for anxiety, as well as evaluating
treatment efficacy.
All of the above studies have not examined sex differences in

the activation of the different nodes of the fear extinction network
nor have they examined how sex hormones such as estrogen
might manipulate their responsivity. Before discussing how
estradiol may influence fear extinction memory, we first provide
a brief overview of the different types of estrogens and their
receptors and briefly describe the localization of estrogen receptor
expression.

TYPES OF ESTROGENS
Estrogens are the primary female sex hormones and are produced
by the ovaries and adrenal gland. The four primary steroidal
estrogens are estrone (E1), estradiol (E2), estriol (E3) and estetrol
(E4). E2 is the most potent in nonpregnant females whereas E1 is
predominant during menopause and E3 and E4 are greatest
during pregnancy.43 Estrogen synthesis also occurs in males.
Although the adrenal glands and testes produce low levels
of estrogens, males rely on the conversion of testosterone, by
the enzyme aromatase, into estrogen for physiological
functioning.44–47 In both sexes, high levels of aromatase localize
in the hypothalamus, amygdala, hippocampus, midbrain and
cortex, thus denoting sites of estrogen synthesis.43 As 17β E2 is
the most potent circulating estrogen in males and nonpregnant
females, we focus our discussion on this type of estrogen.

ESTRADIOL RECEPTORS
E2 acts primarily through estrogen receptor subtypes alpha (ERα)
and beta (ERβ). ERα is functionally related with reproductive
behavior48 whereas ERβ is associated with nonreproductive
behaviors such as learning and memory49 and anxiety-related
behaviors.50 These receptors are expressed throughout the brain
and may localize in the nucleus, cytoplasm and cell membrane.43

The ERs have similar distribution in male and female brains but
may differ in relative expression.51,52 ERα and ERβ expression
patterns generally overlap, though ERα dominates hypothalamic
subregions53 whereas ERβ is more abundant in the
hippocampus52 and cerebral cortex.54 The ERs show distinct
expression within the amygdala subregions, however, ERα is the
predominate receptor.51,55 Regarding the vmPFC, both ERα and
ERβ have been detected in the rat IL and prelimbic cortex.56–58 A
summary of relative receptor distribution within the fear extinc-
tion network is illustrated in Figure 3.
E2 receptors exhibit sensitivity to estradiol fluctuations, with

expression and cellular localization varying across the phases of
the rat estrous cycle in the hippocampus57 and hypothalamus.60 In
the cornu ammonis 1 (CA1) subregion of the hippocampus, for

Figure 1. Studies published within the past decade that focus on
fear extinction research. To highlight the disparity in research
focused on women and female animals, we used keywords ‘fear
extinction’ and ‘male’ or ‘female’.

Figure 2. Sex differences in the lifetime incidence of psychiatric
disorders vary from higher incidence in women, to no differences, to
higher in men. Women/men lifetime incidence ratio was obtained
directly from the publications referenced within the table or were
calculated from the percentages of lifetime incidence published in
the referenced studies. Superscripted letters next to each ratio
reflects the citation from which we obtained such data: a, ref. 18; b,
ref. 19; c, ref. 20; d, ref. 21; e, 22; f, ref. 23; g, ref. 24; h, ref. 25; i, ref. 26.
*Of note, a sex bias for OCD is under debate and may depend on
age; one study reports greater incidence among boys than girls.
ADHD, attention deficit hyperactivity disorder; OCD, obsessive
compulsive disorder; PTSD, posttraumatic stress disorder.27
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instance, ERα expression correlates with serum estradiol levels and
shows greatest expression during estrus, whereas ERβ is
upregulated during both estrus and metestrus phases.57 In
addition, ERα localizes in the CA1 cytoplasm and translocates to
the nucleus during diestrus, whereas ERβ localizes in the nucleus
throughout the estrous cycle.57 Halting E2 production through
ovariectomy causes both ER downregulation and
desensitization,61 suggesting that circulating E2 preserves ER
density. These data suggest that ovariectomy may drastically alter
E2 signaling. Therefore, careful consideration should be made as
to the translational validity of studies utilizing ovariectomized
females.

ESTRADIOL MODULATES FEAR EXTINCTION
Rodents
Almost all of the data on the neural mechanisms underlying the
fear extinction network in rodents have come from studies
conducted in males.62 Relatively few studies have examined
female rats, and there are few published studies that examine the
role of gonadal hormones specifically in fear extinction. However,
there is evidence indicating that estradiol modulates extinction
processes. For example, studies have reported that estradiol
facilitates extinction in passive avoidance task63 and conditioned
taste aversion tasks.64 In our laboratory, we have demonstrated
that the natural fluctuations in estradiol can influence recall of fear
extinction memory. Specifically, female rats that extinguished
during the low-E2 metestrus phase of the estrous cycle exhibit
poor extinction recall, whereas females that underwent extinction
training during the high-E2 proestrus phase displayed improved
extinction recall.65 Moreover, systemic E2 administration before
extinction training in metestrus rats significantly improved
extinction recall, whereas blocking E2 receptors in female rats
impaired extinction memory consolidation.65,66 Together, these
data suggest that the consolidation of fear extinction memory is

dependent on the female’s naturally fluctuating levels of E2
throughout the estrous cycle.

Humans
Neuroimaging studies have shown that measures of fear and
arousal are associated with changes in hormonal levels across the
menstrual cycle and correlate with changes in the functional
reactivity of the amygdala and hippocampus.67,68 In the Go-No-Go
task, a measure of emotional response inhibition, women
exhibited increased dorsal lateral PFC reactivity during the high-
E2 luteal phase relative to the lower E2 follicular phase. Moreover,
this reactivity was positively correlated to positive stimuli and
negatively to negative stimuli,69 suggesting that estradiol may
facilitate the functional activation of the PFC with specificity for
valence. We have recently shown that women with high estradiol
exhibit significantly enhanced fear extinction recall relative to
women with low estradiol levels; the increased extinction capacity
in women with high estradiol was associated with increased
vmPFC, hippocampus and amygdala function during extinction
recall.66 Consistent with our findings, women in low estradiol
states showed impaired fear inhibition in a fear-potentiated startle
task relative to women with elevated estradiol levels.70

Performance in fear-related tasks may be indicative of risk for
psychopathology, namely PTSD. Sex differences persist among
individuals with PTSD;71 women exhibit greater acquisition of the
conditioned fear response than men72 and have greater difficulty
extinguishing fear responses. Low estradiol levels appear to be
associated with impaired fear extinction and may be a vulner-
ability factor for developing PTSD.73

MOLECULAR MECHANISMS OF FEAR EXTINCTION
Numerous studies have described the molecular and cellular
cascades that are necessary for the acquisition, consolidation and
retrieval of fear extinction memory. In these studies, activation of
the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) signaling pathway appears neces-
sary for the consolidation of fear extinction memory.74–77

Specifically, intra-amygdalar infusions of an MAPK inhibitor before
extinction training significantly impair extinction recall of condi-
tioned fear-potentiated startle, whereas hippocampal infusions do
not.76 Moreover, extinction learning increases phosphorylated
MAPK/ERK in the basolateral amygdala.74 In addition, it has been
demonstrated that consolidation of fear extinction is dependent
on MAPK/ERK signaling and protein synthesis in the medial
PFC.75,78 Enhancing extinction learning with pretraining adminis-
tration of D-serine, an NMDAR agonist, correlated with ERK
phosphorylation in the hippocampus during extinction training
and in the basolateral amygdala during recall.79 This finding of
enhanced ERK phosphorylation in the amygdala after extinction
recall may reflect the feedback mechanism from the basolateral
amygdala to IL in suppressing fear expression.
Another molecular pathway that has been shown to be critical

for fear extinction learning is the phosphoinositide 3-kinase (PI3K)
cascade. Successful fear extinction is associated with Akt
phosphorylation in the CA180 and dephosphorylation in the
amygdala.81 Infusing a PI3K inhibitor in the IL following extinction
training resulted in impaired extinction consolidation in male
rats.82 The MAPK/ERK and PI3K signaling pathways converge in
the activation of cAMP response element-binding protein (CREB),
resulting in transcription of brain-derived neurotrophic factor
(BDNF), and may be a critical component of this model (Figure 4).
BDNF is a neurotrophin that critically supports long-term
potentiation (LTP), spinogenesis and dendritic plasticity, mechan-
isms that underlie learning and memory. Binding to receptor TrkB
activates MAPK/ERK and PI3K pathways.83 BDNF and TrkB are
expressed abundantly in the brain, including the PFC,

Figure 3. Relative estrogen receptor distribution within the rat fear
extinction network. Estrogen receptor alpha (ERα; left) is expressed
moderately in the ventromedial prefrontal cortex (vmPFC) and
hippocampus and strongly in the amygdala. Estrogen receptor beta
(ERβ; right) is weakly expressed in the vmPFC and amygdala and
strongly in the hippocampus. These relative distributions are
compiled from studies employing immunoreactivity and in situ
hybridization methodologies.51,52,55,56–58 Atlas images are adapted
from Paxinos and Watson.59
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hippocampus and amygdala. As these regions are involved in fear
circuitry, it is unsurprising that BDNF modulates fear
extinction.84,85 BDNF lowers the threshold for LTP induction,
facilitates extinction consolidation in the amygdala and supports
cue-dependent extinction in the hippocampus.86

In summary, MAPK/ERK, PI3K and BDNF are several molecular
markers that appear to be critical for the consolidation of fear
extinction. Most of the reviewed data were obtained from males.
As previously noted, estradiol enhanced the consolidation of
extinction memory in female rodents and in women. Could this
effect of estradiol in females be mediated via modulation of these
pathways during fear extinction?

CELLULAR PATHWAYS ACTIVATED BY ESTRADIOL
To date, the literature points to at least three different (but
potentially convergent) cellular pathways through which estradiol
appears to influence gene expression and learning-induced
plasticity. Most of these data have been gathered from studies
focusing on the hippocampus and have recently been reviewed in
detail.87–89 Below, we provide a brief overview of these pathways.

Genomic pathway
ERs located in the cytoplasm and nucleus serve as ligand-activated
transcription factors. The binding of E2 to its cytoplasmic receptor
forms a steroid receptor complex that dimerizes, enters the
nucleus and binds to the estrogen-response elements of target
gene promoters to regulate transcription (Figure 5.1). It has been
suggested that this genomic pathway mediates the long-term
effects of E2 exposure, with gene products detected within 12–24
h.90 Activated nuclear ERs may also regulate gene expression
indirectly by binding to transcription factors such as AP-1 and
Sp1.91 These independent mechanisms enable selective estrogen
receptor modulators such as tamoxifen to act as both an
antagonist (via the estrogen-response element-dependent
mechanism) and agonist (through AP-1 binding),92 data high-
lighting the complexity of the role that ERs and their ligands may
have on synaptic plasticity.

Membrane-bound pathway
ERs may also be trafficked to the cell membrane, providing rapid
(seconds to minutes) and transient signaling by modulating
intracellular signaling cascades, including PI3K, MAPK/ERK, cyclic
adenosine monophosphate (cAMP) and other protein kinases.
Membrane-bound ERs may also activate other G protein-coupled
receptors, notably metabotropic glutamate receptors (mGluRs;
Figure 5.2).93,94 Through ER–mGluR coupling, estradiol modulates
intracellular calcium levels, CREB phosphorylation, and modulates
L-type calcium channel currents;88 cellular events that support
synaptic plasticity and learning. ERα-mGluR coupling in CA1 post-
synaptic neurons has been shown to mediate inhibitor post-
synaptic potential suppression.95 ER–mGluR coupling in the
hippocampus mediates MAPK and CREB phosphorylation, an
effect that has only been found in female neurons.88 These
findings, in addition to sex differences in local E2 synthesis,96

suggests that the membrane-bound ER pathway mediates a

Figure 4. Schematic illustration of two molecular pathways impli-
cated in fear extinction that are induced by estradiol (E2) or brain-
derived neurotrophic factor (BDNF). In this diagram, PI3K (left) and
MAPK/ERK (right) protein cascades may be activated by E2 or BDNF-
bound membrane receptors. Both pathways phosphorylate CREB
resulting in protein transcription, neuronal plasticity and memory
formation and consolidation. Several examples of intra-pathway
crosstalk are illustrated with facilitative activation represented with
solid arrows and inhibitory actions by dashed lines. CREB, cAMP
response element-binding protein; Gab1, GRB2-associated-binding
protein 1; MAPK/ERK, mitogen-activated protein kinase/extracellular
signal-regulated kinase; MEK, mitogen-activated protein kinase
kinase; MTOR, mammalian target of rapamycin; PDK1, pyruvate
dehydrogenase lipoamide kinase isozyme 1; PI3K, phosphoinositide
3-kinase; RSK, ribosomal s6 kinase.

Figure 5. Schematic illustration of the different estrogen signaling
pathways. Genomic ER pathway (1): estradiol mediates gene
transcription by activating E2 receptors (ERs) located in the
cytoplasm and nucleus, which bind to the estrogen-response
element of gene promoters and induce gene transcription (hours
to days). Membrane-bound ER pathway (2): membrane ERs activate
intracellular cascades and neighboring GPCRs (such as metabotropic
glutamate receptors), promoting CREB-modulated protein transcrip-
tion. GPER pathway (3): localized in either the cell membrane or
cytoplasm, E2-activated GPER initiates intracellular protein signaling
resulting in CREB activation and gene transcription. Both
membrane-bound ER and GPER pathways exert effects within
seconds or minutes of activation. CREB, cAMP response element-
binding protein; GPCR, G protein-coupled receptor; GPER, G protein-
coupled estrogen receptor.
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mechanistic sex difference in hippocampal-dependent learning
and memory.

GPER pathway
GPER (formerly known as GPR30) is a recently discovered G
protein-coupled receptor found to localize in the cell membrane,
nucleus and endoplasmic reticulum.97 GPER is strongly expressed
in the hippocampus, cortex and limbic system98,99 and modulates
anxiety-related behavior in rodents.100,101 As with the membrane-
bound ER pathway, the GPER pathway may facilitate the rapid
non-genomic effects of estradiol by activating intracellular
cascades (Figure 5.3).

INFLUENCE OF ESTRADIOL ON PLASTICITY
Estradiol induces neuronal plasticity underlying cognitive function.
Acute estradiol treatment promotes hippocampal neurogenesis in
the female rat,102,103 which has been linked to hippocampal-
dependent learning and memory.104,105 In female rats, E2 rapidly
increases synaptic and spine density in the CA1 to enhance LTP.106

The ER subtypes have been reported to drive opposing synaptic
events. For example, ERα agonists facilitate long-term depres-
sion in the CA1, whereas ERβ agonists suppress it.96 Estradiol has
also been shown to induce dendritic remodeling in the PFC and
hippocampus.107 For instance, spine density in hippocampal
pyramidal cells fluctuates with rat estrous cycle.108,109 ERβ is
thought to mediate spinogenesis in the cortex, whereas spine
formation in the hippocampus has been attributed to ERα.54,110

Investigation of the mechanisms driving dendritic spinogenesis in
CA1 pyramidal cells suggest that E2 binds to membrane ERα,
activating an intracellular cascade involving the MAPK/ERK
pathway.96

Lastly, estradiol may promote spinogenesis through interactions
with BDNF. BDNF transcription fluctuates across the estrous cycle,
correlating with changes in hippocampal excitability.111 Ovariec-
tomized rats exhibit reduced BDNF expression in the hippocam-
pus and cortex; expression that is restored with E2 treatment and
correlates with enhanced recognition memory.112,113 E2 activates
BDNF transcription through both genomic and non-genomic ER
pathways resulting in increases in dendritic spine density, which
may be supportive of memory enhancement.111 Altogether, there
is a strong positive correlation between elevated E2, BDNF levels,
spine density and enhanced memory.

THE INTERSECTION OF FEAR EXTINCTION, ESTRADIOL AND
MOLECULAR SIGNALING
Our overview of estradiol signaling highlights a diverse and
complex system involving multiple types of receptors and
signaling pathways to produce region-specific functional and
behavioral effects in the female brain. Merging this information
with current knowledge of the fear extinction circuitry may further
our understanding of how E2 could contribute to some of the
inherent sex differences we observe in fear extinction learning,
specifically as they relate to molecular signaling in the vmPFC and
amygdala. We propose that elevated estradiol levels during
extinction training may acutely induce MAPK/ERK signaling in
the IL by (1) membrane ERβ—G protein-coupled receptor
coupling resulting in ERK phosphorylation, LTP and spine
remodeling and (2) enhancing BDNF transcription to promote
dendritic spine growth, with both mechanisms of plasticity
enhancing memory formation and consolidation. Estradiol may
utilize both MAPK/ERK and PI3K pathways to phosphorylate CREB,
which in turn prompts transcription of proteins involved in
synaptic plasticity. This molecular process will strengthen the
newly formed synaptic connections between the IL and inter-
calated amygdalar cells responsible for suppressing fear

responses. Interestingly, there is recent evidence to suggest that
there is crosstalk between the MAPK/ERK and PI3K cascades,114

which may amplify the functional effects of membrane ER
transmission. According to our hypotheses, impaired fear extinc-
tion that accompanies low-E2 states may be attributed to a
reduction in activation of membrane-bound ERβ, consequently
resulting in less CREB phosphorylation, and a lack of LTP and
dendritic spine growth. In addition, the synergistic effects
provided by BDNF are absent, as estradiol is not present to
initiate protein transcription.
Given its strong expression in the hippocampus, ERβ may also

support extinction learning through actions within this region. It
has been suggested that ERβ may serve as a negative regulator of
ERα transcription and that cognitive memory depends on the
relative interactions between E2 and the ER subtypes.115 In
addition, infusing BDNF into the IL enhances extinction memory
whereas increased BDNF levels in the ventral hippocampus is
associated with increased neuronal firing within the IL.116 There-
fore, it is possible that during fear extinction hippocampal ERβ
suppresses the anxiogenic effects associated with ERα by
inhibiting its transcription as well as enhancing extinction memory
through BDNF modulation.
Our predictions are not conclusive and will need further

examination, as they apply knowledge of estrogen-mediated
signaling to a fear extinction network built on male animal studies.
The overwhelming prevalence of fear-related disorders in women
suggests that there may be intrinsic sex differences in fear
circuitry. Investigating the neural mechanisms underlying fear
extinction in female rats with respect to gonadal hormone levels
will aid in identifying these differences.

FEAR EXTINCTION AND OTHER GONADAL HORMONES
In addition to E2, there are several other sex hormones that
fluctuate and differ in concentration between males and females.
Progesterone is one of these key hormones that may be
interacting with or contributing to the effects of E2 on extinction
memory. In fact, we have observed facilitative effects of
progesterone administration on extinction recall in female
rodents, an effect that is comparable with that attained with E2
administration.65 This effect, however, was not observed in
women.117 Although these discrepant findings may be due to
differences in species, it is more likely that progesterone may have
its effects on the fear network through its metabolites. This is
consistent with other findings demonstrating the protective
effects of its metabolite allopregnanolone.118,119 More recent
imaging studies have, in fact, shown that allopregnanolone is
associated with reduced amygdala responsivity to aversive stimuli,
further supporting the anxiolytic role of this hormone.120,121 These
studies highlight the need to further examine the role of this
hormone on the mechanisms associated with emotional memory
formation.
Another important sex hormone is testosterone. Testosterone

and its metabolites have been linked to reduced anxiety behaviors
and enhanced cognition in male rodents.122–124 As noted earlier in
this review, testosterone is aromatized to estradiol in the brain via
the enzyme aromatase. Fadrazole, an aromatase inhibitor,
prevents estrogen synthesis. In our laboratory, we have demon-
strated that administration of fadrazole before extinction training
impairs fear extinction recall in male rats.125 In humans, low doses
of testosterone administration appears to be associated with
reduced anxiety.126 In a recent study, we have shown that
extinction learning and extinction memory recall is best in men
with an elevated testosterone to cortisol ratio,127 further implicat-
ing this hormone in fear extinction. Future studies are needed to
examine the influence of testosterone on the mechanisms
mediating fear extinction and its interactions with estrogens and
other sex hormones.
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POTENTIAL CONTRIBUTION OF ESTRADIOL TO VULNERABILITY
FOR MOOD AND ANXIETY DISORDERS
The experimental evidence reviewed thus far clearly indicates that
endogenous fluctuations as well as exogenous manipulations of
E2 influence emotional memory consolidation. Specifically, low
levels of E2 appear to be associated with reduced memory
consolidation whereas elevated E2 is associated with enhanced
memory consolidation. Drastic hormonal fluctuations occur
throughout the woman’s lifespan and appear to coincide with
vulnerability for mood disturbances. Risk for depression and
anxiety increases at the onset of puberty,128 and mood
disturbances such as premenstrual dysphoric disorder are
associated with hormonal changes during menstruation.129 The
sharp drop in estradiol production at menopause coincides with
cognitive deficits130 and increased risk for depression.131 During
pregnancy, a period of extremely high hormone levels, women
exhibit a blunted stress response132 and have a lower risk for
mood disorders than nonpregnant women.133 However, the
dramatic decrease in hormone levels following pregnancy
accompanies a significant risk for postpartum depression.134

These data suggest that fluctuations of E2 and other sex
hormones may potentially place women at risk for developing
mood and anxiety disorders. In support of this possibility, there
are several studies indicating that estradiol therapy improves
anxiety and depressive symptoms in postnatal depression,135,136

recurrent postpartum affective disorder,137 and menopause.138–140

In addition to natural fluctuations of E2, hormonal contra-
ception induces an overall reduction in circulating E2. Hormonal
contraceptives (HCs) are used by a large percent of women and
inhibit ovarian production of estradiol and progesterone. HC
treatment has been associated with altered functional connectiv-
ity in regions important for cognitive and emotional processing.141

We recently conducted a translational investigation on the impact
of HCs on fear extinction in healthy women and female rats.142 In
our study, HC-using women demonstrated significantly impaired
extinction recall compared with naturally cycling women. This
impairment was also found in HC-treated rats and correlated with
reduced serum estradiol levels. Extinction impairment was rescued
in rats through administration of ER agonists before extinction
learning or by halting HC treatment after fear learning, both
correlating to restored serum estradiol levels. In addition, a single
dose of estradiol to low-estrogen naturally cycling women
significantly enhanced extinction recall.142 It is not clear if the
use of contraceptives may also increase vulnerability to psycho-
pathology. However, a recent study compared the development
of PTSD symptoms in HC-using women who did or did not take
emergency contraception following sexual assault. Women who
took Ogestrel, a combination estradiol and progesterone emer-
gency contraceptive, reported less severe PTSD symptoms
6 months later compared with women who took Plan B (a
progesterone-only drug) or declined contraceptive treatment.143

One possible explanation for this finding is that the dose of E2
immediately following the traumatic event partially rescued
HC-induced vulnerability and conferred resilience against long-
term PTSD symptoms.
Although our model for vulnerability implies a negative

influence of HC use, it should be noted that HCs have differing
effects on mood and cognition depending on task and type of
hormone. Combined estradiol and progestin HCs has been
associated with enhanced verbal memory144 and overall cognitive
functioning.145 However, the progestins used in HCs have been
suggested to have a masculinizing effect in certain tasks. Both
men and HC users differ from naturally cycling women in
expressing enhanced recall for gist as opposed to story details
in an emotional memory task.146,147 In a cognitive task involving
number processing, HC users performed similarly to women in the
low hormone follicular phase but showed neural activation similar

to men.148 Examining the hormones used in combined HCs, one
study correlated deficits in mental rotation and verbal fluency to
androgenic testosterone-derived progestins.149 Few studies have
examined the influence on HCs on mood; however, epidemiolo-
gical data suggest that the combined HC is protective against
mood disorders whereas progestin-only contraceptives may have
a deleterious influence.150

FUTURE DIRECTIONS
The reviewed data indicate that low E2 levels in females may be
associated with deficits in fear extinction recall and may
potentially be related to vulnerability to anxiety, fear and mood
disorders. In males, low levels of estradiol do not appear to impair
extinction recall. This may be due to the effects of testosterone,
which has been reported to have anxiolytic properties.151 It is also
probable that estradiol engages male and female brains
differently. As such, we cannot preclude the possible roles that
other hormones, or their interactions with E2, may have in this
phenomenon. It is also important to note that while low levels of
estradiol are disadvantageous to extinction memory consolida-
tion, it is likely that fluctuations rather than absolute levels of
estradiol may be the critical factor for elevated risk of anxiety.
We have reviewed evidence that estradiol may influence the

molecular and cellular machinery involved in fear extinction, a
behavioral process that models the psychopathology of PTSD and
anxiety disorders. Together, these data highlight the association
between the dynamic estrogen states that occur across the female
lifespan and increased vulnerability to anxiety-related disorders. It
is imperative that future studies investigate fluctuations in levels
of E2 to determine their possible associations with, and
contributions to, vulnerability to mood and anxiety disorders in
women. There are many questions that remain to be answered in
this field that are related to where, how and when E2 modifies
neural function to elicit its effects on extinction memory recall
(Figure 6). Future research aimed at localizing and identifying
cellular and molecular mechanisms by which estrogen modulates
fear extinction and anxiety can better inform us of treatment
targets and improve the efficacy of clinical applications.

Figure 6. Future directions for exploring the role of estradiol in fear
extinction and psychopathology. An apparent correlation between
fluctuating estradiol states and vulnerability for fear and anxiety
disorders necessitates further research into where, how and when
estradiol modulates the fear extinction network. Investigating these
questions may provide new options for targeted, and thus more
effective, treatment and therapy in the clinic. BDNF, brain-derived
neurotrophic factor; MAPK, mitogen-activated protein kinase; mPFC,
medial prefrontal cortex; PI3K, phosphoinositide 3-kinase.
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