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Humans and the environment form a single complex system where humans
not only influence ecosystems but also react to them. Despite this, there are
far fewer coupled human–environment system (CHES) mathematical
models than models of uncoupled ecosystems. We argue that these coupled
models are essential to understand the impacts of social interventions and
their potential to avoid catastrophic environmental events and support sus-
tainable trajectories on multi-decadal timescales. A brief history of CHES
modelling is presented, followed by a review spanning recent CHES
models of systems including forests and land use, coral reefs and fishing
and climate change mitigation. The ability of CHES modelling to capture
dynamic two-way feedback confers advantages, such as the ability to
represent ecosystem dynamics more realistically at longer timescales, and
allowing insights that cannot be generated using ecological models. We dis-
cuss examples of such key insights from recent research. However, this
strength brings with it challenges of model complexity and tractability,
and the need for appropriate data to parameterize and validate CHES
models. Finally, we suggest opportunities for CHES models to improve
human–environment sustainability in future research spanning topics such
as natural disturbances, social structure, social media data, model discovery
and early warning signals.

This article is part of the theme issue ‘Ecological complexity and the
biosphere: the next 30 years’.
1. The sixth extinction and the need for a CHES approach
Humans have a resounding impact on their natural environment, with anthropo-
genic disturbances being a leading factor in the Sixth Extinction. Ecological
models usually represent human impacts on ecosystems through a fixed par-
ameter representing a constant harvesting pressure or pollutant inflow, for
instance. Under relatively short time scales, this can be a useful simplification,
since human behaviour can be decoupled from the natural system and approxi-
mated as having a fixed rate of change. However, in any ecological systemwhere
coupling with a human system exists and the timescale of interest is sufficiently
large, it may be necessary to abandon this assumption (figure 1). Instead, the fra-
mework of a coupled human-environment system (CHES) must be adopted,
where the natural and human systems are coupled to form a single system. (Simi-
lar terminologies include socio-ecological systems, social-ecological systems and
coupled human and natural systems). Human decision-making and behaviour
play a crucial role in the dynamics of the natural system, while simultaneously
being affected by changes in the natural system. As human and natural systems
have become inextricably entwined, an approach that, at its core, acknowledges
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Figure 1. Case I: through rarity-based conservation, the human system responds to a declining natural population by increasing conservation support, reducing extraction
which prevents collapse, and allows the natural system to recover; Case II: social norms which act to enforce majority behaviour can be both beneficial and detrimental to
the health of the natural system, depending on the initial state of the social system; Case III: strong coupling between the human and natural system can lead to
overshoot dynamics that destabilize an equilibrium with the potential to bring the natural system near extinction. (Online version in colour.)
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the two-way feedbacks present in these systems can help
mitigate catastrophic events.

In the context of species extinctions, assuming fixed
human behaviour on decadal timescales can lead to predict-
ing more extinction events than have actually transpired.
Human response can mitigate negative effects through efforts
such as habitat conservation, pollution reduction and biore-
mediation. Pressure from the wider population, or groups
of stakeholders, in response to dwindling natural species or
ecosystems has often resulted in the preservation of that
system and even a reversal of its downward course. An
early example is pressure from Swiss citizens in the nine-
teenth century for cantons to halt deforestation, in response
to flooding [1]. Subsequent examples include the rebound
of the bald eagle population following the 1972 ban of DDT
and introduction of conservation laws in the US sparked by
scientific and public outcry [2,3], the recovery of wolf popu-
lations in Canada and the US following a shift in public
perception and conservation laws [4], the development of
the Northwest Forest Plan in response to changing public
values calling for the preservation of old-growth forests
[4,5], and the protection of large swaths of Araucaria forest
in Southern Brazil by the government in response to exten-
sive deforestation [6]. In other cases, small-scale harvesters
have instituted social norms to prevent the worst effects of
over-exploitation [7]. We refer to this response of populations
at the nadir of a natural system as ‘rarity-based conservation’
(figure 1). This effect can be essential for understanding
both the environmental and social conditions that lead to
persistence or extinction of the natural system.

With specific reference to the Sixth Extinction, a 2050 time
horizon suggests that modelling prospects and strategies
for species and ecosystem conservation can benefit from
capturing CHES interactions. Even when making accurate
quantitative predictions over this timescale is difficult, such
approaches can still be useful to compare different possible
interventions, and evaluate how desirable they are relative
to one another in terms of their qualitative benefits to sustain-
ability. The possibility of gaining insights into how to
produce sustainable outcomes in the presence of dynamic
human–environment interactions is valuable.

2. The origins of CHES
Thomas Malthus presaged a role for environmental feedback
when he proposed that human populations always grow
exponentially until limited by (linearly growing) resource
availability [8]. His work influenced Verhulst’s logistic
growth model, which describes exponential growth when
resources are abundant and includes an environmental carry-
ing capacity to represent the regime of resource-limited
growth [9], first used to predict human population growth
[10]. This same model was derived again a half-century
later [11], soon being applied to predator-prey systems
by Lotka & Volterra [12,13], whose work was seminal
for ecology.
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In the 1950s, motivated by the desire to maximize fishery
yield while reducing the risk of collapse, bioeconomic models
described single species fish populations undergoing logistic
growth, where human harvest was represented by an effort
parameter [14–16]. Subsequently, age structure with den-
sity-dependent mortality determined by harvesting effort
was included [17]. By the 1960s, these models were devel-
oped into a dynamic framework where fish stock, harvest
and effort varied through time as harvesters responded to
changing profits in an open-access management framework,
thereby becoming perhaps the first true CHES models [18].
Later fishery models included explicit spatial structure
[19,20], increasing social complexity with the addition of indi-
vidual agents that can follow iterative rules [21] and are even
able to learn and base their decisions on limited available
information using basic neural networks [22].

Another stream of early CHES models described the
coupled dynamics of small, primarily indigenous human
populations and local resources, inspired by Lotka–Volterra
equations. It is important to note that many of these models
were conceptualized from a white colonial perspective with
many problematic assumptions and a lack of both consultation
and consensual data acquisition. An early case study that was
used inmany of thesemodels was the proposed self-regulating
population dynamics of the Tsembaga Maring tribe in New
Guinea through a ritual cycle that regulated their human
population warfare, pig production and agricultural land use
[23–25]. Interest in this vein of CHES modelling continued to
grow with an influential model of the Rapa Nui population
collapse [26–28]. A recent iteration of this model added the
element of accumulated wealth while also partitioning the
human population into elites and commoners, where elites
prey on the wealth generated by commoners [29]. This model
explores the ecological and socio-economic conditions leading
to societal collapse in a CHES framework.

A third extensive category of CHES models studies the
dynamics of land use, with a long history of using both
social and ecological empirical data from landowners and
tenants. The majority of these models account for spatial
structure and localized interactions—something that is inher-
ently important to land use and management. One of the
earliest CHES land use models defined interactions between
plots of land and mobile tenants through land use, carbon
release and settlement diffusion dynamics [30,31]. Others
parametrize land transitions using location and environ-
mental characteristics [32]. These early models focused
primarily on the environmental conditions leading to land
transitions, but subsequent studies adopted a CHES
approach using multi-agent models, where independent
actors, sometimes parametrized by socioeconomic data,
make decisions regarding the state of their parcel of land
with limited information and social learning [33–36].
Additional heterogeneity was introduced in the types of
agents’ interactions, with both landowners and institutional
actors [37]. These models have increased in complexity, for
example by including water flows, crop and vegetation
dynamics coupled to social management practices that
govern water, land, capital and a labour force [38].

Common-pool resources are defined as being open access
and finite, such as some forests and fisheries, and other
examples in the preceding paragraphs. Elinor Ostrom played
a foundational role in framing, studying and modelling
these systems within a CHES framework through her research
around how human populations self-organize and allow for
the maintenance and persistence of common-pool resources
in the absence of a central governing body. One of her main
findings was the importance of social norms, which are
shared understandings of acceptable behaviour. Through
both theoretical and empirical studies, Ostrom posited that
these norms can lead to long-lasting cooperative behaviour,
especially if enforced through sanctions [7,39–41]. An early
example incorporating social norms into a CHES model is
for a human population harvesting a common-pool resource
[42]. Here, the dynamics of resource users, denoted by their
strategies as cooperators (mitigators), defectors (non-mitiga-
tors) and enforcers (who sanction defectors) are dependent
on both the state of the social and environmental system, mod-
elled using techniques from evolutionary game theory.
3. How are social processes modelled?
As social processes in CHES models may involve strategic
decision-making of individuals, many models drawing inspi-
ration from game theory, formalized in [43]. Since its initial
focus on one-shot games with two players, the field has
developed in many ways, such as exploring opinion
dynamics in populations. These dynamical models stem
from evolutionary game theory, which combines the classical
framework with biological models of evolution, and thereby
confers a temporal dimension to individual interactions and
decision-making. Rather than focusing on the strategy a
rational player should choose, there is greater emphasis on
how the frequency of strategies in a given population changes
throughout time.

Models that describe the aggregate population dynamics
often represent human dynamics using replicator equations
[44] (figure 2). Here, each individual samples other’s traits at
a fixed rate, changing their trait only if it appears to offer a
higher utility than their current trait. The utility function may
include a parameter for the net cost of mitigation, for instance,
which acts as an incentive or deterrent for adopting themitiga-
tor ‘trait’ (opinion), depending on its sign. Social norms can
also be included. Norms that simply enforce the majority be-
haviour can act as a double-edged sword, with the ability to
incentivize both mitigative and non-mitigative behaviour,
depending on the currently dominant norm. Whereas, mitiga-
tion-enforcing norms only confer benefit to mitigators or
equivalently incur sanctions to non-mitigators, which increase
with the current frequency of mitigators. Utility terms for
rarity-based conservation cause the utility to adopt a mitigator
opinion to increase as the environment approaches collapse,
unlike the fixed net cost of mitigation. Finally, the rate of
social learning determines the speed at which social change
occurs, relative to the environment dynamics.

Stochastic decision-making is also used to represent social
dynamics and is often applied in the context of best response
dynamics, where players choose the highest-utility strategy
for the current state of the system (instead of relying upon
social learning). In a stochastic framework, probabilities of
changing strategies are represented with logistic functions
that include a term for the difference in utility between
strategies as well as a parameter that tunes the degree of sto-
chasticity [45,46]. These are used in both agent-based models
and ODE models of population dynamics [47]. A third
approach to social dynamics is threshold models, where



Figure 2. Replicator dynamics is a common theoretical framework for mod-
elling the human system. In CHES, the replicator equation (top) usually
represents the rate of change of the proportion of mitigators, x. The relative
utility of mitigation is determined by the utility function, DU (right), which
often includes terms representing the net cost of mitigation, c, social norms,
v, and rarity-based conservation, F. The speed of social dynamics relative to
the environment is represented by s, which can equivalently be controlled
through a similar term in the environmental system.
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agents choose to participate in an action based on their indi-
vidual threshold for the number of people already
participating [48,49]. These models allow for a focus on the
social structure of a given population, as two groups with
the same mean threshold to participate could have drastically
different dynamics given the distribution of thresholds
among individuals. Threshold models have also been formu-
lated for continuous systems where the frequency of
participants is modelled through population dynamics
[50,51] and have been sparsely applied to CHES models
[52,53]. For agent-based models, there are a number of
ways in which individuals learn, often inspired by voter
models [54] or Ising models [55] where agents simply imitate
the majority opinion of their peers. These can increase in
complexity to include utilities associated with replicator
equations, but we will not discuss these in detail since our
focus is on the replicator equation approach. For a review
of agent-based learning models, see [56,57].

4. Insights, strengths and weakness of CHES
In the following sections, we review findings among relevant
contemporary studies in the CHES literature. These studies
were found from a keyword search on Google Scholar
using ‘human environment system’ OR ‘socio-ecological
system’ OR ‘social ecological system’ OR ‘human ecological
system’ OR ‘human natural system’ combined with ‘coupled
model’ OR ‘dynamics’ OR ‘theory’ OR ‘social learning’ OR
‘social norms’ OR ‘conservation’ OR ‘time horizon’ OR
‘time discounting’ OR ‘foresight’. Additional literature was
found through works cited by relevant papers.

(a) Systems in isolation versus CHES approach
To demonstrate the profound impact of human feedbacks in
CHES, many studies have directly compared CHES models to
the uncoupled environmental system, where dynamic human
influence is replaced with fixed parameters. In all cases,
CHES feedback leads to a richer number of possible
regimes—and regime shifts—that are absent in the
uncoupled model [58–63]. Often, this coupling can stabilize
the environment, allowing resources to persist for longer
than expected under the constant harvesting assumption
[60,61,64]. CHES feedback can also alter the relationship
between environmental variables and cause counter-
productive outcomes. For example, in a decoupled climate
model, a low solar flux will lead to lower peak temperatures,
however with human-climate feedbacks, this slower
temperature increase will incentivize humans to become
non-mitigators, who in turn emit enough additional green-
house gases that peak temperatures increase to higher
levels than seen under baseline solar flux levels [65].
(b) Human response to the environment
Increasing the ability for humans to respond to the threat of
environmental collapse through effects like rarity-based con-
servation often leads to beneficial outcomes, as seen in a coral
reef model [66], forest-pest models [67,68] and generalized
resource models [69,70]. For lake eutrophication models,
increasing the strength of rarity-based conservation was
found to reduce pollution levels [47,71]. A more recent
model demonstrated a stronger effect of rarity-based conser-
vation, where increasing levels led to higher mitigation, with
the ability to destabilize a high pollution equilibrium through
stable limit cycles. At very high levels of rarity-based conser-
vation, a stable low pollution equilibrium emerged [72]. In
many models, however, increasing the strength of human
coupling can have counterintuitive outcomes. For example,
in forest models, strong rarity-based conservation effects
can destabilize an equilibrium of full forest cover, giving
rise to oscillatory dynamics in both opinion and forest
cover [60,73]. This results from humans valuing conservation
only when the environment is near depletion, leading to
scenarios where humans harvest at high levels until the
forest is near depletion and lower their extraction rate until
forest cover rebounds (figure 1, Case III). These dynamics
increase the risk of collapse in the environment system.
Rarity-based conservation has also been modelled as one of
many environment-dependent social incentives, in which
increasing its level led to mixed strategy and pure mitigation
equilibria, bistability and stable limit cycles depending on the
strength of the other incentives [74].

Along similar lines, in a fishery model where the strength
of resource dependence on harvesting efforts was varied,
increasing coupling strength led to an increase in the domi-
nant period of the limit cycles, followed by chaotic
dynamics. Intermediate coupling levels were also associated
with a higher resource yield, declining as coupling was
further increased [61]. Additionally, coupling has been rep-
resented by an individual’s perception of the environment,
where if the environment passes below a threshold of degra-
dation, individuals will become alarmed and reduce their
extractive effort [75], similar to rarity-based conservation.
Here, lower levels of coupling led to a higher biomass equili-
brium, offering long-term environmental benefits, whereas
with high levels of coupling, the system passed through a
higher minimum state of biomass, offering short-term
benefits. Similarly, in a fishery-pollution model, health con-
cern functions as a form of coupling as it informs the
demand for pollution abatement. Among the model’s find-
ings were that decreasing the level of health concern can
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lead to a pollution epidemic so long as the fishing industry is
able to persist [76].

(c) Enviromental response to humans
CHES models usually represent the strength of coupling of
the environment to the human system through the harvest
rate. In many models, including those for forests, generalized
resources and fisheries, high harvest rates can lead to oscil-
lations in both the state of the environment and human
opinion [59,61,73,74]. It can also have contradictory effects,
where in a forest cover model it could lead to collapse or
benefit the environment, depending on other social par-
ameters [60]. Through an alternative modelling approach,
with nonlinear coupling and a constantly increasing effi-
ciency of harvesting to represent technological growth,
increased coupling led to faster resource collapse at lower
levels of harvesting efficiency [77]. Similarly, in an Earth
system model where humans could harvest from two
energy sources, increased coupling to biomass through har-
vest led to a collapse of the environmental system [78]. One
study examined the strength of coupling through reducing
the strength of strictly ecological terms in the environmental
system. For three generalized resources, increasing the
strength of coupling benefited sustainable outcomes, but
also obscured differences between the natural systems, with
all three models displaying oscillatory dynamics in both the
environment and human system for high levels of social
learning [62].

(d) Social learning
In input-limited models, such as human-managed resource
extraction, high social learning rates tend to destabilize equi-
libria. Some examples are land use [62,79,80], coral reef [66]
and generalized resource models [74,81,82], where faster
learning leads to oscillations in both the human and environ-
ment system. An earlier agent-based land use model found
different outcomes through an alternative approach to learn-
ing, where high information flow between agents led to a
lower average harvesting rate and higher levels of forest
cover [83]. Similar work in this vein shows that higher
social learning rates lead to instability, causing synchronized
harvest among landowners with rapidly declining forest
cover followed by gradual recovery [84,85]. On the other
hand, slower rates of social learning have been shown to
benefit sustainable outcomes, increasing the stability of the
high forest cover [53], and supporting mitigators for a gener-
alized resource [86]. In adaptive network models, where each
node represents a renewable resource with an associated har-
vest effort, low rates of social learning and increased
homophily were most effective in leading to a sustainable
equilibrium, and a transition between sustainable and unsus-
tainable equilibria occurred when the rate of social learning
was approximately equal to the rate of ecological change
for homogeneous resources [87,88].

In output-limited models, where human behaviour con-
tributes to a detrimental environmental process such as
forest-pest and climate systems, high social learning rates
lead to better mitigation of environmental harms in the
short term [65,67,68,89], however these high learning rates
are not always sufficient for long-term sustainable outcomes
without additional interventions and often have diminishing
returns as they are further increased. Contrasting this, in lake
eutrophication models, high social learning rates destabilized
equilibria and led to limit cycles [47,72,90]. A recent extension
to these models found this to be the case only with strong
social and no ecological hysteresis, however high social learn-
ing could also stabilize oscillations in conditions of no social
and strong ecological hysteresis [71]. Alternatively, social
learning can occur through imitating similar agents’
decision-making (how information is used to decide a strat-
egy) rather than the strategy itself. One land use model
found that adding this feedback, paired with longer term
decision-making, resulted in a significant change in the
type of agriculture developed, leading to higher household
wealth [91].

In some cases, the strength of social learning has system-
dependent contradictory effects. For example, a global land
use model showed that increasing the strength of social learn-
ing increased agricultural land use under low incentives for
an eco-conscious diet and low future yields. However, if
incentives favoured adopting an eco-conscious diet and
future yields are high, increased social learning decreased
land use [92]. In a model of deforestation through ranching,
higher rates of social learning which led to faster intensifica-
tion of ranching only resulted in higher deforestation for a
stable cattle market, with a long-term reduction in deforesta-
tion resulting under a saturating market [93]. Only one recent
CHES model showed invariance under varying rates of social
learning [69] and this has been attributed to the fact that the
resource in this system does not contain intrinsic dynamics
and instead has a human-dependent growth term [74].
(e) Social norms
In CHES models, strong majority-enforcing social norms
typically lead to extreme equilibria consisting of a single strat-
egy, determined by the initial frequency of strategies. This
double-edged effect with the potential to support both sus-
tainable and catastrophic outcomes has been found in
forest-pest, forest cover, coral reef and climate change
models (figure 1, Case II) [60,65–68]. Increasing the strength
of these norms has also been shown to increase the number
of regimes and generate alternative stable states [80].

Increasing the strength of mitigation-enforcing social
norms often benefits sustainable outcomes [94–96]. However,
in a generalized resource model, very high levels of these
norms led the population to harvest at suboptimal levels
[96]. This was also shown in a fishery model, however for
low levels of social norms, slight over-harvesting by mitiga-
tors could make the system immune to invasion by
defectors leading to higher long-term sustainability [97]. In
many lake eutrophication models, strong social norms con-
sistently led to high levels of mitigation and low levels of
pollution, having a greater impact when the system was
already in a state of high mitigation [47,71,90]. A similar
model found increasing these norms led to the appearance
of alternate stable states, while decreasing the likelihood of
collapse [72]. In a generalized resource system, decreasing
the strength of social norms caused a catastrophic regime
shift to resource overexploitation, where re-establishing a
population of mitigators was very difficult or infeasible
[58]. In a forest cover model, the direction rather than the
strength of the social norms was varied through a global par-
ameter, where increasing this norm toward overharvesting
led to a decrease in the amount of robust forest cover [83].
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Social norms as sanctions can also be resource-dependent,
becoming more severe when the environmental system is
close to collapse, combining both the effects of social norms
and rarity-based conservation [98].

( f ) Net cost of mitigation
Decreasing the net mitigation cost often has a beneficial effect
on the environment, by increasing the proportion of mitiga-
tors and moving the system away from less stable
oscillations, as seen in forest cover and coral reef models
[60,63,80,99]. However, in a forest cover model, initial con-
ditions with low mitigator frequency led to oscillations in
opinion and forest cover before the system reached a stable
state, as the cost of mitigation was increased [80]. A contra-
dictory effect was found in a lake eutrophication model
where decreasing the cost of mitigation led to high mitigation
and low pollution levels with a higher positive impact for
initial conditions of low mitigation [47]. On the other hand,
increasing mitigation cost can lead to a catastrophic regime
shift with very low levels of mitigation and hysteresis,
making it difficult to restore the system to its previous state
[58]. In recent human–climate models, the cost of mitigation
can be changed simultaneously with other social parameters
such as the social learning rate, to accelerate mitigation
[65,100]. In a common-pool resource model, agents have
their payoff reduced relative to their harvest effort by a cost
per unit effort parameter, which acts similarly to a negative
mitigation cost. Here, high levels lead to the persistence of
the resource even when individuals are motivated by profit
over sustainability goals [101].

(g) Foresight
Many CHES models account for foresight in the human
decision-making process. In models of forest cover, pollution,
ecological public goods and reinforcement learning, this
environmental foresight can be very significant in conserving
natural states or mitigating harmful action [52,65,73,81,83,102].
One forest-grassland model included an additional term for
economic foresight, finding the persistence of the forest-
grasslandmosaic tobehighlydependenton individualsvaluing
long-term environmental health over long-term economic
benefits [73]. In many cases, the foresight of social groups can
change with time and in response to the state of the environ-
ment, as explored through a climate change model where each
country’s foresight in policymaking was treated as a dynamic
social trait influenced through imitation [103].

(h) Strengths and weaknesses of CHES: a summary
In summary, we have discussed a brief history of CHES mod-
elling, comparing insights across studies, and touched on
several strengths and weaknesses of this framework
(table 1). Perhaps the most fundamental strength of CHES
modelling is its ability to represent dynamics in systems
where human and environment respond to one another,
which is an increasingly prevalent situation during the
Sixth Extinction. These two-way feedbacks at the core of
CHES models have been observed in many empirical case
studies (see §1) and when modelling similar systems, classical
ecological models that lack these feedbacks will have more
limited application, especially on sufficiently long time hor-
izons. Including CHES feedbacks often leads to richer
model behaviour, allowing for valuable insight into both sus-
tainable and catastrophic trajectories, and a comparison of the
possible interventions and how human societies will respond
to them. The diversity of interventions primarily stems from
the ability to represent human behaviour mechanistically at
many levels (e.g. social norms, rarity-based conservation),
which can in turn elucidate the process of human behaviour
and choice. Finally, CHES models benefit from generality,
with the ability to apply similar models of human behaviour
to disparate human-environment systems. In some cases,
these techniques have been applied to entirely different
fields, such as epidemiological modelling [104,105].

Some weaknesses of CHES modelling include model
complexity challenges stemming from representing both
human and environment systems mechanistically. Addres-
sing this ‘curse of dimensionality’ by opting for a simplified
CHES model can result in a lack of heterogeneity in
both the social and ecological systems. On the other hand,
retaining complexity of both human and environment rep-
resentations can make model analysis difficult, and requires
more data than just an environment model or just a human
model. Additionally, social data are lacking in some systems
that would permit parameterization and validation, which
reduces the predictive power of these models (although the
coming years will likely see an improvement in this situ-
ation). Many of these weaknesses will be further addressed
in the subsequent section, with suggestions for improvement.
For example, future CHES models could represent more
relevant psychological and social processes, using social
media data to permit model parameterization.
5. Gaps and promising future directions in CHES
modelling

(a) What can we learn from ‘uncoupled’ developments
on each ‘side’?

We can advance CHES modelling not only by improving our
understanding of the coupling, but also by harnessing recent
progress in ecology and using more sophisticated represen-
tations of human systems. Here we outline some of the
major developments on both of these sides.

Disturbances contribute significantly to ecosystem
dynamics, and natural disturbances can either be an essential
aspect of ecosystem structure and function, or have devastating
effects. There is a large knowledge gap regarding interacting
disturbances and their ability to have unpredictable and
catastrophic effects.With the increase of anthropogenic disturb-
ances, improving our understanding is essential for mitigating
the worst effects of the Sixth Extinction and finding sustainable
trajectories into the future. Disturbance interactions have been
categorized as ‘linked’—altering the likelihood, extent, or inten-
sity of subsequent disturbances—or ‘compound’—altering the
recovery time or trajectory of an ecosystem with the potential
to create novel disturbances that can drastically affect ecosystem
resilience [106]. A novel framework combines discontinuous
shocks to the system with continuous dynamics to allow for
modellers to explore repeateddisturbances across awidevariety
of systems. It also offers newmethodology tomeasure resilience
to these disturbances, proposing metrics based in disturbance
space that reflect the dynamic interplay between distur-
bance and recovery [107]. Under this framework, linked



Table 1. A comparison of the CHES and classical ecological modelling frameworks through their strengths and weaknesses.

classical ecological models CHES models

strengths easier to create a detailed representation of environmental

processes

provides mechanistic representation of human-environment

feedbacks that dominate many systems

simpler dynamics rich dynamical regimes

more limited data requirements provides valuable insight into the effect of human interventions

easier model validation and analysis

weaknesses human role can be oversimplified the point of unrealism for

many systems

requires data from both human and environment systems

does not provide insight into how human interventions

respond to environmental changes

higher dimensionality, thus more difficult to analyze

requires data on coupling terms, which does not always exist
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disturbance interactions would increase the frequency and
intensity of shocks, whereas compounded disturbance inter-
actions would alter the trajectory of the flows. This can be
applied to human systems as well, where shocks are discrete
perturbations in the frequency of opinions caused by events or
opinion leaders, and flows could be the dynamics of the replica-
tor equation. In CHES, the direction of flows in human opinion
between shocks in either subsystem could influence the persist-
ence of the environment as a flow towards non-mitigation
could compound with harmful shocks, bringing the system to
a state of non-mitigator dominance and/or resource collapse.
On the other hand, a flow towards mitigation between shocks
could reduce their harmful effects, improving the resilience of
the resource. Additionally, shocks in the human system could
respond to the environment, representing immediate responses
of rarity-based conservation, triggered by natural disasters
and/or the enactment of new environmental legislation.

Many CHES models view human populations as rela-
tively uniform in how they learn and interact. However,
demographic structure can play a significant role in how indi-
viduals learn and respond to their environment, as well as
influencing human population size. Some recent CHES
models have introduced demographic structure, particularly
through the partitioning of human populations by economic
class, for example in coupled climate models [89,100,108] and
a human population model [29]. Other recent examples are
the partitioning of a human population into resource users
who only change their harvesting strategy in response to
the environment, and users who are also susceptible to
social influence [75], as well as a model with multiple
social functional traits relating to agricultural management
capacities, which demonstrated that social diversity enhanced
ecosystem services [109].

Age structure is much less explored in the CHES litera-
ture, although it is known that age can significantly affect
environmental concern, action and the mechanisms of learn-
ing [110–113]. Climate change action, for instance, is clearly a
generational phenomenon [111]. These diverse responses to
environmental issues can profoundly influence CHES
dynamics and can be modelled through age-dependent learn-
ing, mitigation rates, information sources and responses to
policy. Theoretical models agree with empirical observations
of imitation at a young age followed by individual learning
[114,115], and more recently, models have shown that fast
environmental changes select for individual-based learning
[116], whereas parental learning is optimal in slowly chan-
ging environments [117,118]. Age has also been modelled
as a trait that determines social influence [119–121], with a
recent study showing that varying the influential age group
affected the frequency of cooperation [122].

Biases can also play an important role in human learning.
For example, confirmation biases [123] can be represented
through the bounded confidence opinion model [124,125],
which represents individual opinions as continuous values,
only allowing agents to update their opinions with infor-
mation that is within a given threshold away from their
own opinion [126]. Another learning bias that can be mod-
elled is conviction [127,128], which can be seen as opposite
to the rate of social learning, and has been used as an individ-
ual trait in a land use CHES that used a modified bounded
confidence model [129]. These biases can be associated with
the demographic structure of a population, as seen in
[130,131], which modified the voter model to include
age-dependent conviction.

The environmental and social impact of institutions, as
well as their rates of change, are strikingly different than
those of most individuals, yet there remains largely unex-
plored potential to account for these differences in CHES
models (agent-based models especially). One recent global
model addressed this by exploring policy shifts between
local and global agreements for climate change mitigation
[132], finding a well-timed shift from local to global agree-
ments could show significant benefit in mitigating climate
change, compared to other approaches. Additionally, most
CHES models assume a discrete set of strategy choices that
humans can adopt, however in reality these opinions
evolve over continuous spectra. The bounded confidence
[124,125] and DeGroot models [133] are two well-known
approaches that account for a continuous strategy space and
have been used to model online social networks [134,135],
including a mass media environment [136,137].
(b) Incorporating new data
In earlier CHES models, social data for model parameteriza-
tion was generated in collaboration with social scientists
through population surveys [138–140]. Since the rise of
online social networks and mass media, there is now a
plethora of observational data for online human interactions,
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as well as the emergence of social models that aim to rep-
resent novel dynamics that arise in these environments.

Some models have drawn from the bounded confidence
and DeGroot models and incorporated homophily on net-
works (echo chambers), [141], to fit trends in online data,
while classifying users by personality types [142–145] and
differentiating sources of opinion change [146]. Sentiment
analysis of social media datasets, used to parametrize and
validate some of these models, has been broadly applied in
topics from voter preference for the 2008 US election [147],
to beliefs on vaccination and climate change [148,149]. This
can be extremely helpful to CHES modelling, as public per-
ception of extreme environmental events can be
quantitatively analysed [149], and metrics quantifying the
likelihood of transitioning between social media states can
detect anomalies in public perception [150]. Social media
data has also been used to reconstruct user networks based
on interactions and examine homophily within these net-
works [148], which can inform CHES network models.
Empirical trade and transport networks can provide impor-
tant insights into the spatial CHES coupling as well as
human metapopulation models [151], having already been
applied to CHES models for invasive species [152,153] and
land use via global food trade [92,154].

For the ecological side of CHES models, a trait-based
approach could adapt existing generalized models to specific
case studies, ideally with environmental data, to improve
their effectiveness for scientists and policymakers. Recent
advances using techniques such as machine learning [155],
transfer functions [156], and trait-dependent carrying
capacities [157] show great promise incorporating plant trait
data into models that use parameters that are difficult to
measure such as recruitment, growth and interaction
strength. Plant trait models have already proven to be very
effective in accounting for realistic ecological dynamics
[158] and these traits can be useful in the prediction of
novel interactions (e.g. invasive species, biological control)
through data that is readily available [159]. Along with exist-
ing plant-trait databases (e.g. [160,161]), other ecological
datasets can be immediately applied to CHES models such
as an invasive plant dataset with associated bioclimatic vari-
ables [162], a database of ecosystem services [163] as well as
land use datasets that already contain human environment
coupling that can further motivate future models [164–166].
(c) Model discovery
Often when constructing mathematical models for real world
processes, specific details such as precise functional forms
between variables and equation parameters cannot be accu-
rately known. This is an important limitation in CHES
modelling, which requires knowledge of both the feedbacks
within and between two distinct complex systems. In such
cases, generalized modelling can give insight into many cru-
cial aspects of the system while leaving many details
unspecified [167,168]. Although this technique lacks the abil-
ity to generate predictive time series, it can identify the types
of regime shifts that are possible, and assess the stability of
equilibria [58,64]. Additionally, these generalized models
can be related to empirical systems through generalized mod-
elling parameters that require less data than traditional
approaches and can help elucidate ambiguity in underlying
mechanisms [64]. This approach has shown promise when
used for a coupled resource harvesting model [58] and a fish-
eries model [64,169]. Similarly, machine learning has been
applied to predict regime shifts from time-series data, with-
out specification of the complex feedbacks that cause them,
while also predicting the type of bifurcation to expect [170].
This technique could be used in tandem with generalized
modelling to analyze the stability and potential trajectories
of very complex, highly-dimensional CHES for which we
have time-series data but lack mechanistic understanding.
Another recent advance uses sparse regression and a library
of candidate nonlinear functions to find a system of differen-
tial equations that best describe time series data with the
fewest terms [171,172]. To our best knowledge, this technique
has yet to be applied to CHES models, however a similar
model discovery approach was implemented for a land use
change and water resource use model [173].

(d) Early warning signals
Regime shifts in natural systems can be catastrophic,
especially in the presence of hysteresis, which can bring the
system into a depleted state from which it is extremely diffi-
cult to recover. Many systems display particular types of
early warning signals when approaching a regime shift
[60,174–178]. Near tipping points, these systems demonstrate
a decreased resilience to disturbances, taking a longer time to
return to their stable equilibrium if perturbed. The added
complexity brought about through coupling human behav-
iour to environmental systems leads to a greater number of
regime shifts in CHES systems, which makes interpreting
early warning signals much more challenging, especially in
predicting the new regime after a transition. Furthermore,
the addition of the social system can mute commonly used
early warning signals, making these transitions even more
difficult to predict [60]. Offsetting this drawback, many
CHES models have found signals from the social system to
be much more effective in predicting regime shifts than simi-
lar metrics gathered from the environmental system
[58,60,77,170]. This shows great potential as both social
media and economic systems generate immense amounts of
real-time data, which could be used to monitor environ-
mental systems and improve our understanding of regime
shifts through incorporating this data into CHES models.
Similarly, socio-ecological network models have demon-
strated that properties of the social network can affect the
accuracy of early warning signals [179,180], further motivat-
ing the need to better understand the structure and role of
human systems and their adaptive feedback, especially with
regard to mitigating the many looming environmental cata-
strophes that humanity currently faces.
6. Concluding comments
We have reviewed the history and recent developments of
CHES models, demonstrating their importance to under-
standing the diverse and sometimes surprising outcomes of
complex interactions between humans and the environment.
The CHES approach reveals novel regimes and trajectories
that we would not know from environmental models alone.
In many cases, these feedbacks can reveal new paths to
more sustainable outcomes as humans respond to the threat
of environmental collapse in the Sixth Extinction. However,
feedbacks that are too strong can have destabilizing effects,
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leading to oscillatory dynamics in both subsystems.
Additionally, the effects of interventions in CHES can lead
to drastically different outcomes depending on the type of
environmental system. The effect of social norms, if
majority-enforcing, are very sensitive to the initial makeup
of the social system and can act as a double-edged sword,
encouraging the status quo, regardless of the implications
for sustainability. Foresight in decision-making, however,
has shown to be beneficial across a vast array of systems
and model formulations. Insights from this more holistic
modelling approach can inform policymakers as to which
interventions will be most effective in mitigating potential
catastrophic trajectories and ushering in a more sustainable
future. This is perhaps best seen through the power of
social interventions, as CHES models have demonstrated
that their relationship to the environment and timing is
very important.

Given the immense environmental impact of social action,
it is useful to evaluate the extent of social change necessary to
mitigate environmental disasters such as climate change and
loss of biodiversity. Although incorporating human feedback
into models helps in the understanding of CHES, it is still dif-
ficult to predict exactly what will happen. It is clear that in
scenarios when the human system accelerates a harm such
as pollution or the spread of an invasive species, the rates
of social change are too slow. For example, we have known
about greenhouse gas emissions leading to climate change
for decades, but unfortunately, the global response has been
insufficient to mitigate its worst effects [104,105]. By coupling
climate models to a human system, we were able to show that
in order to meet IPCC goals [181], social learning must be fast
enough for our entire population to change their current be-
haviour within five years of the model’s publication, which
seems infeasible. For realistic sustainable trajectories, social
change needs to be supported through well-timed insti-
tutional change such as policies that reduce the cost of
mitigation as well as improved foresight [65]. Plotting sus-
tainable trajectories in other vulnerable CHES is extremely
urgent and requires further research. Regarding the global
challenges faced by declining biodiversity, there are currently
no models for the social action needed to reach biodiversity
goals set out by the IPBES [182]—a gap in our knowledge
that requires immediate study. Ultimately, there are limits
to what can be known through modelling. However, qualitat-
ive insights are extremely useful to inform policymaking that
can successfully mitigate future environmental catastrophes.
Implementing model findings poses a great challenge that
future CHES modellers will need to address.
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