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The sophistication of artificial intelligence (AI) technologies has significantly advanced in

the past decade. However, the observed unpredictability and variability of AI behavior in

noisy signals is still underexplored and represents a challenge when trying to generalize

AI behavior to real-life environments, especially for people with a speech disorder, who

already experience reduced speech intelligibility. In the context of developing assistive

technology for people with Parkinson’s disease using automatic speech recognition

(ASR), this pilot study reports on the performance of Google Cloud speech-to-text

technology with dysarthric and healthy speech in the presence of multi-talker babble

noise at different intensity levels. Despite sensitivities and shortcomings, it is possible to

control the performance of these systems with current tools in order to measure speech

intelligibility in real-life conditions.
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INTRODUCTION

Parkinson’s disease is the second most common neurodegenerative disorder, following Alzheimer’s
disease (Dorsey et al., 2007), with a prevalence of more than six million people worldwide (Dorsey
et al., 2018). In the United States, the disease affects approximately one million individuals (its
prevalence in 2020 was estimated to be 930,000), with numbers projected to increase to 1.2 million
by 2030 (Marras et al., 2018). Although the average age of disease onset is 60 years (Ishihara et al.,
2007), younger individuals (those in their 20s and 30s) may also be affected (Kostic, 2009).

One of the hallmarks of PD is the presence of dysarthria, a motor speech disorder, characterized
by a significant reduction in vocal loudness (i.e., hypophonia), monopitch, hoarse and breathy
vocal quality, misarticulations of consonants and vowels, short rushes of speech, and variable
rate (Duffy, 2020). These deviant features of healthy speech have a significant impact on speech
intelligibility, which refers to how an acoustic signal is decoded by a listener (Kent et al., 1989).
Speech intelligibility is fundamental for success in communicative interactions (Kent and Kim,
2011) and, therefore, paramount for quality of life (Weismer, 2007). It is well known that ∼90%
of individuals with PD are likely to develop voice and speech problems during the course of the
disease (Logemann et al., 1978) and that more than half of these speakers experience problems with
intelligibility (Miller et al., 2007).

Speech perception is differentially affected when the acoustic signal occurs in noise (vs. in a
quiet setting; Mattys et al., 2005), given the masking effects of noise on different segmental and
suprasegmental cues in the speech signal. Intelligibility in individuals with PD is particularly
affected in noisy environments, such as dining out at a restaurant or in social gatherings. What is
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more, a recent study showed that even those individuals with
a mild speech disorder may experience a reduction in their
intelligibility in the presence of background noise (Chiu and
Neel, 2020). Multi-talker babble noise is a form of structured
background noise that may mask a target speaker’s voice. This
noise is created by combining speech signals from multiple
speakers. When multi-talker babble contains fewer speakers,
noise is more likely to interfere with the foreground speaker, and,
thus, there may be an increased difficulty to decode the target
speaker’s exact utterance.

In the context of a chronic illness, such as PD, collaborative
disease management encourages individuals with PD to closely
work with their treating clinicians to maintain and/or improve
their well-being (Lyons, 2004). One of the tenets of this
approach is the notion of self-management, which corresponds
to the patient’s ability to observe a given behavior and react
or problem-solve according to such observation (Lorig, 1993).
Dysarthria latency in PD averages 7 years post disease onset
(Müller et al., 2001). Therefore, when considering our patients
within a collaborative management approach, self-management
techniques can serve to establish preventative measures for
speech and intelligibility degradation and/or control measures
of intelligibility levels if speech deficits already exist. As shown
in Hayes (2002) survey of 120 individuals with PD on a variety
of self-management characteristics, knowing how to respond to
worsening of disease symptoms and when to seek medical advice
are crucial aspects in patients’ well-being.

Clinical Applications of Artificial
Intelligence
The use of artificial intelligence (AI) for automatic speech
recognition (ASR) has greatly evolved in the past years. This
technological advancement can be experienced in our daily
lives, from captions in movies, digital assistants (e.g., Siri) in
mobile phones to home appliances (e.g., Alexa). The use of AI
has facilitated communication for a wide range of individuals,
including those with hearing loss and speakers with motor
impairments, hence its benefits for improved quality of life
seem, at the very least, promising. For those individuals with
speech disturbances, such as those caused by laryngectomy
(Schuster et al., 2006), head and neck cancer (Maier et al., 2010),
cleft palate (Maier et al., 2006) or oral cancer (Maier et al.,
2007), ASR has also been shown to be effective in estimating
speakers’ intelligibility deficits (Tu et al., 2016). For individuals
with dysarthria, however, ASR research has been more limited
(Christensen et al., 2012; Sharma and Hasegawa-Johnson, 2013)
and it has highlighted the high degree of variability inherent in
dysarthric speech (Tu et al., 2016).

Despite the undeniable success of deep neural networks
(DNN) in enhancing the quality of ASR (Amodei et al.,
2016; Arik et al., 2017), these systems remain sensitive to
noise in input signals. Typical training of speech recognition
systems uses samples recorded in a quiet environment. If
noise is implemented, however, it is either not “natural”
(Zhang et al., 2017), or only occurs during the training phase
(Chan et al., 2016). Therefore, the effect of unstructured

and structured noise in real-life speech recognition remains
largely unknown. Additionally, it has been noted that DNNs
may behave unpredictably when provided with perturbed or
out-of-distribution samples (Cisse et al., 2017; Eykholt et al.,
2018). Research to improve the robustness of ASR in noisy
environments is an active research area (Richey et al., 2018;
Mošner et al., 2019). Therefore, understanding the sensitivity
of DNNs to various application-specific types of noise and
establishing protocols to ameliorate response variability can help
generalize AI to real-life applications.

The goal for this pilot study was to measure speech
intelligibility in individuals with Parkinson’s Disease using ASR
in noise. To this end we report the sensitivity of Google
Cloud speech-to-text API, a prominent provider of ASR, to a
specific type of background noise, multi-talker babble, which is
commonly implemented in the study of dysarthria (Moya-Galé
et al., 2018; Chiu and Neel, 2020).

MATERIALS AND METHODS

This study was approved by the Institutional Review Board at
Long Island University, Brooklyn, NY.

To perform this pilot study, we developed a web application
intended to be used on participants’ cell phones. The web
application prompted each user to record their voice while
reading a predetermined set of sentences. The sentences were
sent to a backend server stored for post processing. The
recordings were then resampled, mixed with multi-talker babble
noise at a given signal-to-noise ratio (SNR) and sent to Google
speech-to-text API for the recognition phase. The recognition
results were then used to calculate word-error-rate against the
original sentences. Each of these sections is detailed below.

Participants
Five individuals with PD (3 females, 2 males; mean age = 71.2
years, SD= 13.07 years, age range= 49–81 years) participated in
this study. Inclusion criteria for participation included: (1) having
a medical diagnosis of PD, (2) having a stable antiparkinsonian
medication, (3) being a native English speaker, and (4) having
experienced changes in voice and/or speech or reporting voice
or speech as a current concern. Participants who had undergone
deep brain stimulation surgery or received individual, intensive
voice treatment within the last 2 years were excluded. Five
neurologically healthy adults (3 females, 2 males; mean age =

63.2 years, SD = 13.14 years, age range = 40–71 years) served as
experimental controls. Background information on individuals
with PD and healthy controls is provided in Table 1.

Procedure
Recordings were self-paced, and they were completed in the
participants’ homes, in a quiet space. The evaluator (second
author) met with participants over Zoom to instruct them on
the recording procedures and clarify any questions. Careful
instructions were provided so that speakers maintained a
constant distance of 8 cm (∼3.15 inches) between their mouths
and the recording device. Carepartners were recruited to assist
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TABLE 1 | Participant information, including age, sex, years since PD diagnosis

and dysarthria severity.

Participant Group Age Sex Years since PD

diagnosis

Dysarthria

severity

P1 PD 81 M 8 Moderate

P2 PD 71 F 4 Mild

P3 PD 76 F 9 Mild

P4 PD 48 M 7 Mild

P5 PD 79 M 10 Moderate

P6 HC 66 M

P7 HC 71 F

P8 HC 71 M

P9 HC 68 F

P10 HC 40 M

PD, Parkinson’s disease; HC, healthy control; M, male; F, female.

speakers when PD-related difficulties hindered proper recording
procedures (e.g., tremors).

Speech Stimuli
A data set of 50 sentences was created for this pilot study.
Sentences were grammatically and semantically correct (e.g.,
Make the most of your time; The schedule is flexible, but the salary
is low), varied in length, from 5 words to 9 words, and contained
high frequency English content words from the English Lexicon
Project (Balota et al., 2007). Speakers accessed our customized
web-based app, Understand Me for Life, from their phones and
were provided with a unique user code. A brief familiarization
task consisting of three sentences was subsequently completed
in order to ensure participants’ full comprehension of how to
utilize the recording interface. They were instructed to read
each sentence using their typical or habitual voice. Following the
familiarization phase, the app provided a list of five randomized
sentences to read. The task took∼15 mins to complete.

Sample Rate Adjustment
ASR performance was shown to be very sensitive to sample
rate. Due to storage space considerations and adhering to prior
studies we had initially converted all the recordings to 8 kHz
single channel audio. Although to the human ear there is very
little difference between this format and the original 48 kHz
recording, ASR is notoriously unforgiving. Although Google
ASR API provides an enhanced speech recognition model for
telephone audio, this API did not improve the performance for
our recordings, as detailed in the Results section. We therefore
ensured both the noise and audio recordings were stored in a
48 kHz single channel format.

Multi-Talker Babble Noise
Multi-talker babble noise was created to emulate the cocktail
party effect (O’Sullivan et al., 2015), where certain vowels and
consonants blend with the background speech from nearby
speakers. This type of noise was generated by recording a 30-s
sample fromNPR when a single speaker was speaking. The audio

was hand selected to avoid recording any overpronunciation,
exaggeration or sudden changes in vocal intensity (e.g., driven
by the context of program). Prolonged silences (i.e., over 500ms)
were trimmed and equalization of the audio spectrum in a
moving window was subsequently performed. The equalized
audios were combined to create the final audio file, which
contained an equal number of male and female speakers (Moya-
Galé et al., 2018), which resulted in 10-talker babble (5 males, 5
females; Chiu and Neel, 2020).

The Use of Phrase Hints
Despite impressive performance of speech recognition in
laboratory environments, there are characteristic differences in
how these systems work compared to human auditory perception
that severely affect ASR performance in noisy backgrounds. For
example, the reliance on context and attention in human hearing
(O’Sullivan et al., 2015) helps a human listener subconsciously
guess a partially inaudible word or clearly distinguish a speaker’s
voice from the background noise even in the presence of highly
structured noise, such as multi-talker babble. Google ASR API
allows submission of a list of words to be detected in the sample
audio. Not only does this better align ASR with human listener
performance, but it also helps avoid many of the common
ASR challenges, such as mismatched verb tense (e.g., develop
for developed), plural vs. singular words (e.g., car for cars) or
homonyms (e.g., sea levels vs. C-levels).

Accuracy Calculation
For a given utterance S and the corresponding ground sentence
T we first pad the shorter of the two with space until both S
and T were of equal length L. We codified each word in S with
wsand each word in T with wtwhere s and t were numbers from
0 to L−1. We then calculated the accuracy as the percentage
of matching words between S and T in a suitable alignment
as follows:

f (S,T) = argmaxs,t
100

L

L−1∑

s=0

L−1∑

t=0

σ (ws,wt)

where σ (ws,wt)= 1 ifws = wt and 0 otherwise. This setup avoids
rendering a score to words that appear in both S and T but out
of order.

RESULTS

The Effect of Downsampling Without Noise
Sampling rates of 8 and 48 kHz were contrasted to assess
ASR performance in a quiet environment. A Kruskal-Wallis
test was conducted to examine downsampling effects on ASR
accuracy scores. Downsampling at 8 kHz yielded significantly
worse performance than ASR at 48 kHz [χ2

(1)
= 9.153, p =

0.002]. Thus, a sampling rate of 48 kHz was implemented in the
subsequent experiments.

Table 2 provides intelligibility accuracy results from sampling
rates at 8 and 48 kHz.
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TABLE 2 | Automatic speech recognition accuracy scores at a sampling rate of

8 kHz and a sampling rate at 48 kHz.

Sampling rate at 8 kHz

Speakers with PD Healthy controls Total

Mean accuracy (%) 90 92 91

Standard deviation 14 13 13

Sampling rate at 48 kHz

Mean accuracy (%) 96 100 98

Standard deviation 8 0 6

FIGURE 1 | Change in accuracy of speech recognition with no hinting for

speech embedded in 10-talker babble noise at different SNR levels.

The Effect of Multi-Talker Babble Noise
Findings from different SNRs revealed that average ASR
performance started declining at 10 dB SNR, with a more
noticeable reduction in accuracy scores at 5 dB SNR (Figure 1).

Without hinting, no significant difference in ASR accuracy
scores was found between speakers with PD and healthy controls
across different SNRs (p > 0.05).

The Use of Phrase Hints
The use of hinting rendered an improvement in ASR in lower
SNRs compared to the previous condition (Figure 2). A Kruskal-
Wallis test yielded a significant difference in ASR performance
between the hinting and no hinting conditions at 0 dB SNR [χ2

(1)
= 29.225, p < 0.001].

Additionally, a significant difference in ASR accuracy scores
in 10-talker babble noise was found between speakers with PD
and healthy controls at 0 dB SNR [χ2

(1)
= 5.278, p = 0.022]. No

significant difference was found between the two groups at the
other SNRs (p > 0.05).

DISCUSSION

This pilot study examined the voice recognition accuracy
of a popular speech-to-text service provided by Google
Cloud Platform in two groups of speakers, individuals with

FIGURE 2 | Change in accuracy of speech recognition with hinting for speech

embedded in 10-talker babble noise at different SNR levels.

PD and healthy controls. Our goal was to determine the
feasibility of implementing this service in the development
of assistive technologies for people with PD, whose voice
and speech difficulties may significantly decrease their
intelligibility in noisy settings. To that end, ASR aimed
at replicating real-life challenges, such as the presence of
background multi-talker noise embedded within the speaker’s
speech signal.

Our initial experiment investigated the effects of
downsampling in a quiet condition, as this has been reported
as a potential factor affecting ASR. As has been advised
by Google, the downsampling under 16 kHz significantly
reduced the accuracy of speech recognition. The use of
multitalker babble noise was subsequently implemented to
determine ASR accuracy for speakers with PD and healthy
controls in different levels of background noise. As expected,
results revealed differential AI performance depending on
the SNR level, with higher noise levels corresponding to
a substantial decrease in ASR accuracy (∼40%) in both
groups. Additionally, without phrase hinting, no difference
could be detected between ASR accuracy scores for speakers
with PD and healthy controls. A subsequent application of
hint phrases to facilitate ASR and emulate human listeners’
performance yielded a statistically significant improvement in
ASR accuracy scores at the most challenging noise condition,
0 dB SNR. Furthermore, under this condition the algorithm
was also able to differentiate between individuals with PD and
healthy controls.

This work expands traditional research on intelligibility
in dysarthric speech, which traditionally relies on human
transcriptions of phrases or sentences presented in noise, to
incorporate AI. In particular, this pilot study showed that given
the current tools, it is possible to control the behavior of
ASR to approximate that of human listeners in its sensitivity
to noisy backgrounds. This opens the door to further studies
in this area and development of assistive technologies using
existing AI technologies. The pilot of our current web-based
app, Understand Me for Life, therefore, shows promise in
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the ability of the program to simulate real-life intelligibility
challenges posed by ambient noise in the process of speech
recognition and in providing individuals with PD with a self-
monitoring and easy to use tool to track their intelligibility
changes over time.
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