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Contextual perception under active 
inference
M. Berk Mirza1,2*, Maell Cullen1,3, Thomas Parr4, Sukhi Shergill5 & Rosalyn J. Moran1

Human social interactions depend on the ability to resolve uncertainty about the mental states of 
others. The context in which social interactions take place is crucial for mental state attribution as 
sensory inputs may be perceived differently depending on the context. In this paper, we introduce 
a mental state attribution task where a target-face with either an ambiguous or an unambiguous 
emotion is embedded in different social contexts. The social context is determined by the emotions 
conveyed by other faces in the scene. This task involves mental state attribution to a target-face 
(either happy or sad) depending on the social context. Using active inference models, we provide a 
proof of concept that an agent’s perception of sensory stimuli may be altered by social context. We 
show with simulations that context congruency and facial expression coherency improve behavioural 
performance in terms of decision times. Furthermore, we show through simulations that the abnormal 
viewing strategies employed by patients with schizophrenia may be due to (i) an imbalance between 
the precisions of local and global features in the scene and (ii) a failure to modulate the sensory 
precision to contextualise emotions.

We continually make inferences about the state of the world based on the sensory information available to us. 
However, visual, lexical and semantic obscurities often prevent us from perceiving things for what they are. 
When this occurs, we must seek out additional information to resolve uncertainty about the true state of the 
world. Statistical regularities in the world often provide context that we may use to resolve uncertainty about the 
intrinsically ambiguous observations we make. For example, context resolves uncertainty in the way a sentence 
resolves uncertainty about a word. A word can have multiple meaning by itself, but the sentence in which it is 
used imbues it with a definite meaning.

Contextual information is crucial for mental state attribution. An example of this is the social context appre-
ciation task1, where a target-character with ambiguous emotion is first presented by itself, and later within a 
social context (see Fig. 1A). In the context-embedded case, the characters other than the target-character define 
a social context. As an example, one can infer a target-character that expresses an ambiguous emotion as happy 
if the faces that define the social context express unambiguously happy emotion. Inferring the emotion of the 
target-character requires the participants to make an inference about the social context.

In this work, we will use a similar paradigm to the social context appreciation task and demonstrate how 
context can alter perception. This task involves embedding a target-face with either ambiguous or unambigu-
ous emotion in different social contexts (e.g. happy, sad, etc.). By modulating the agent’s confidence in its visual 
inputs (or sensory precision)2–4, we will show that the emotion of a target-character can be perceived differently 
under different social contexts. In this task, the target-face can be embedded either in an affectively congru-
ent, an incongruent social context or neither. Moreover, the target-face can either have incoherent expressions, 
resulting in an ambiguous emotion, or it can have coherent expressions that cue an unambiguous emotion. We 
will show with simulations how the context congruency and coherency of facial features improve visual search 
performance in terms of decision time and accuracy.

Schizophrenia is a mental disorder that is associated with impairments in several cognitive domains involving 
perception and attention. These impairments have been studied using paradigms involving visual stimuli as well 
as other types of stimuli. Visual exploratory behaviour in schizophrenia is often described in terms of shorter 
scan-paths and fewer fixations5,6. Some studies show that these eye-movement components can be improved 
by intranasally administered oxytocin7. In the social context appreciation task, people with schizophrenia were 
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less accurate at attributing a mental state to the target-character and they paid less attention to the contextual 
cues than healthy controls (see Fig. 1B). Green and colleagues argued that this behaviour represents a tendency 
to local viewing rather than using a global viewing strategy.

Perceptual differences in schizophrenia might in part be attributable to reduced visual exploration as one 
might miss out on contextual information which is crucial for correct perception. However, limited visual 
searches cannot solely explain these differences as perceptual differences have been reported in visual paradigms 
involving even low-level visual stimuli8. For example, patients with schizophrenia demonstrated superior per-
formance, relative to psychiatric controls, at assessing the contrast level of a target object, during a visual illusion 
task, when the same object is surrounded by a high contrast object. The high contrast object causes the contrast 
level of the target object to be perceived as lower than when the target object is presented by itself. This study 
has shown that patients with schizophrenia were less prone to visual illusions as they were not able to utilise 
contextual information9.

In this work, we will simulate visual search patterns to illustrate how the potential belief structures underly-
ing viewing strategies employed in schizophrenia manifest in the social context appreciation task. These belief 
structures induce (i) an inability to utilise contextual information, and (ii) an abnormal allocation of significance 
to local features relative to global features in the scene.

In this work, we use models that are based on the Bayesian brain hypothesis10. Under the Bayesian brain 
hypothesis, the brain uses a model of the world to infer the most likely hidden causes of sensory information. 
Beliefs about these hidden causes are updated through Bayesian inference as new sensory information becomes 
available. The term ‘beliefs’ is used here in the probabilistic ‘Bayesian belief updating’ sense and does not refer 
to propositional beliefs. Bayesian inference transforms the prior beliefs about the causes (or hypotheses) into 
posterior beliefs in the light of new sensory data. In particular, we will simulate active inference11. Active inference 

Figure 1.   Social context appreciation task. (A) This panel shows sample images from the social context 
appreciation task. A target character is first presented against a background with no contextual information (i.e. 
context-free image). The same character is then embedded in a social context (i.e. context embedded image). 
Participants are asked to report their beliefs about what the target-character is feeling or thinking. (B) Sample 
scan-paths of a patient with schizophrenia and healthy participant on a context-embedded image. The panels 
in this figure are used with permission from Journal of Psychiatry & Neuroscience (http://​www.​jpn.​ca/). These 
figures are modified from ‘Visual processing of social context during mental state perception in schizophrenia’ J 
Psychiatry Neurosci 2008;33(1):34–42. Please see1 for the original figure.

http://www.jpn.ca/
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treats the hidden causes of sensory data as hypotheses that can be tested12,13 by taking actions and comparing the 
observed sensations with the sensations expected by the model. Under this framework, perception corresponds to 
inference on the hidden causes of sensory information, whereas attention corresponds to inferring the precision 
(inverse variance or negentropy) of sensory signals14. In our previous work15, we described the computational 
basis of selective attention as downweighing the precision of context-irrelevant stimuli and maximising the 
precision of task-relevant stimuli. In the current work, we aim to provide a computational account of contextual 
perception; using inference about emotional expressions as an illustrative and ecologically important example.

This paper comprises four sections. In the first, we introduce a mental state attribution task, where a target-
face with either ambiguous or unambiguous emotion is embedded in different social contexts. We then describe 
the Markov Decision Process (MDP) model of this task. Subsequently, we introduce a generative model of con-
textual perception and simulate behavioural responses using the mental state attribution task. We then show 
that this model reproduces phenomena such as context congruence and feature coherence effects on behavioural 
measures. We continue with potential computational mechanisms that might account for simulated viewing pat-
terns of schizophrenia and discuss these results in the discussion section. The “Materials and methods” section 
describes our active inference formalism for MDP and the perception and action cycle in terms of variational 
message passing. We conclude by expressing the belief structures of the models used in this work in terms of 
precision matrices.

Mental state attribution task
We now introduce a visual search task inspired by the social context appreciation task1, where a target-face is 
embedded in different social contexts. The target-face can express either a happy or sad emotion. Furthermore, 
the target-face can either have coherent facial expressions that convey emotion unambiguously or incoherent 
facial expressions that convey emotion ambiguously. We describe:

	 (i)	 an unambiguously happy face in terms of narrow eyelids and exposed teeth,
	 (ii)	 an unambiguously sad face in terms of pulled together eyebrows and covered teeth,
	 (iii)	 an ambiguously happy or sad face in terms of pulled together eyebrows and exposed teeth.

Here, we assumed that the ambiguously happy and sad faces share the same facial expressions. Ambiguously 
happy/sad faces share one feature with unambiguously happy and sad faces each. From now on we will refer 
to unambiguously happy and sad faces as happy and sad faces. See Fig. 2A for a visual depiction of each of the 
faces described above.

Previous work in the literature suggests that different sets of facial muscle movements are involved when dif-
ferent emotions are elicited16. For example, a smile with exposed teeth and covered teeth with lowered lip corners 
are often seen when happy and sad emotions are elicited, respectively. It is also true that similar emotions can 
manifest slightly different. For example, a happy face can be expressed with a smile with or without exposed teeth. 
In this work, we used an oversimplified representation of facial expressions of emotions such that narrow eyelids 
and exposed teeth represent happy emotion, whereas pulled-together eyebrows and covered teeth represent sad 
emotion. In this simplistic characterisation of happy emotion, narrow eyelids represent a facial feature where the 
lower eyelids are raised, and exposed teeth represent a smile. Similarly, we use a simplified characterisation of sad 
emotion, where pulled-together eyebrows give rise to noticeable vertical lines between the eyebrows and covered 
teeth represent closed lips16. These features are merely a subset of facial expressions observed when happy and sad 
emotions are elicited. In more complex paradigms, one can include different facial expressions and use systems 
such as the Emotion Facial Action Coding System (EMFACS) to identify facial actions related to emotions17.

In this task, there are two other faces in the scene along with the target-face, and they define the social context. 
These two faces can each express happy and sad emotions.

In our paradigm, there are four types of trials,

	 (i)	 Happy/sad target-faces embedded in affectively congruent contexts, see the green panels in Fig. 2B,
	 (ii)	 Happy/sad target-faces embedded in affectively incongruent contexts, see the red panels,
	 (iii)	 Ambiguously happy/sad target-faces embedded in coherent contexts (coherent context: both faces are 

either happy or sad), see the blue panels.
	 (iv)	 Happy/sad and ambiguous target-faces embedded in incoherent contexts (incoherent context: one face 

expresses happy, whereas the other expresses sad emotions), see the grey panels,

The faces that define the social context will always express happy or sad emotions. However, the target-face 
can express ambiguous emotions as well. The goal in this task is to identify the emotion of the target-face by 
sampling the features of the target-face and the social cues determined by the other faces in the scene.

A coherent social context can resolve uncertainty about the emotion of the target face if the target-face con-
sists of expressions that can be attributed to more than one emotion (e.g. happy and sad). An example of this 
could be seen in the social context appreciation task1, where a target-face is displayed in a scene with and without 
a social context. When the faces that define the social context express happy emotions, the target-face can be 
perceived as happy. However, when the target face is seen by itself it may be perceived as unhappy. In our task, 
social context can resolve uncertainty about the target-face emotion on blue trials (i.e., emotionally ambiguous 
target-face embedded in coherent contexts). We expect that the emotion of the target face would be identified 
more accurately and faster on affectively congruent (green) trials than on affectively incongruent (red) trials. We 
also expect that the happy and sad target-faces would be identified faster than the emotionally ambiguous target 
faces (compare the first two columns with the third column in Fig. 2B). Finally, we expect emotionally ambiguous 
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Figure 2.   Face and trial types. (A)This panel shows the facial expressions of happy, sad and ambiguously happy/
sad faces. A happy face is expressed by narrow eyelids and exposed teeth. A sad face is expressed by pulled 
together eyebrows and covered teeth. Finally, ambiguously happy/sad faces are expressed by pulled together 
eyebrows and exposed teeth. (B) There are four types of trials in the social context attribution task. Trials 
against the green and red backgrounds are affectively congruent trials (e.g., happy target face in a happy context) 
and incongruent trials (e.g. happy target face in a sad context), respectively. We expect the context to shape 
perception when an ambiguously happy/sad target face is embedded in coherent contexts (i.e., faces that define 
the context are both happy or sad). These are shown against a blue background. Finally, the grey trials show that 
the target face is embedded in incoherent contexts (i.e., one of the faces that define the context is happy and the 
other is sad). Photos of faces are used with permission by Generated Photos (https://​gener​ated.​photos/).

https://generated.photos/
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target-faces to be identified faster under coherent contexts (blue trials) than incoherent contexts (rightmost 
grey trial). We will not compare trials with emotionally ambiguous target faces in terms of accuracy because the 
inferred emotion of the ambiguous target-face depends on the context in which it is embedded as we will see later.

Model summary
We used a Markov decision process (MDP) formulation of active inference for the mental state attribution task. 
MDP models describe the statistical nature of an environment in terms of probability distributions. These models 
use discrete states to express how categorical outcomes are generated at each unit time. The state transitions are 
controlled by actions which are chosen from a repertoire of policies. The states at each time step generate out-
comes that can be fed back to the model which can, in turn, be used to infer the most likely states of the world.

Active inference explains the behaviour of self-organising systems in terms of free energy minimisation, 
where free energy is a proxy for surprise. Surprise expresses unexpectedness of an outcome. An outcome can be 
unexpected (i.e., less likely) for several reasons. One reason might be that the model might have made incorrect 
inferences about the states of the world and with these false beliefs, the model can take actions that might risk its 
existence (e.g. approaching a predator that is perceived as friendly). Under the assumption that the living things 
maximise their chances of survival, a mismatch between the inferred state of the predator (i.e., friendly) and the 
true state of the predator (i.e., hostile) is likely to yield an unexpected outcome (i.e. a situation that poses a risk 
to existence). Another reason why surprise may occur is that the model might have false representations of its 
environment (e.g. not appreciating the law of gravity, one can walk off a cliff without fear). Similarly, having a 
false representation of the physics of the world, one might face an unexpected outcome. In the MDP models of 
active inference, the real-world dynamics are described by generative processes, whereas the beliefs about these 
dynamics are described by generative models. In this work, we are going to use different generative models (i.e., 
representations of the statistical structure of the world) to illustrate what types of models might account for the 
visual search patterns in schizophrenia. See Fig. 3A for the graphical representation of the MDP generative model.

In the mental state attribution task, we considered four sets of hidden states, namely, context, target face 
emotion, target face type and where. Each of these sets of hidden states can be on one level. The Context hidden 
state defines the emotion conveyed by the faces that define the context. There are four levels under the context 
hidden state, namely happy, sad, and two incoherent contexts. Under the happy context, the two faces that form 
the social context will express happy emotions. Conversely, the sad context consists of two faces that express sad 
emotions. The two incoherent contexts consist of one happy and one sad face each. The only difference between 
the incoherent contexts is the locations of the happy and sad faces in the top right and lower left cells, which are 
swapped relative to one another. The target face emotion hidden state defines the emotion of the target face which 
can be either happy or sad. The target face type hidden state changes how ambiguously the target face expresses 
happy and sad emotions. This hidden state has two levels, namely unambiguous and ambiguous. The where hid-
den state has nine levels that correspond to the discrete locations that the model can foveate. The first location 
is the central fixation. Locations 2 and 3 are associated with the eyes and the mouth of the target face, whereas 
locations 4 to 7 are associated with the eyes and the mouths of the faces that define the social context. There are 
two additional locations associated with reporting happy and sad emotions, namely 8 and 9. The model samples 
one of these locations to report its beliefs about the emotion of the target face.

There are three outcome modalities, namely facial expressions, feedback and where. The first outcome modal-
ity, facial expressions, signals the facial expressions narrow eyelids, pulled together eyebrows, exposed teeth and 
covered teeth at the locations where facial expressions can be displayed in the scene. There is also a null outcome 
for locations with no facial expressions (e.g. initial fixation). The second outcome modality, where, signals the 
foveated location (i.e. one of nine locations). The third outcome modality, feedback, has three outcomes, namely 
null, correct and incorrect. The correct and incorrect outcomes inform the agent about whether it identified the 
emotion of the target-face correctly or incorrectly, respectively. Sampling other locations would return a null 
feedback (i.e., void of feedback). See Fig. 3B for the hidden states and outcome modalities.

We will now describe the likelihood of outcomes in the generative process using the likelihood matrices. Each 
entry in the likelihood matrix corresponds to the likelihood of an outcome given the hidden states P(ot |st) . In 
the MDP model, context hidden state maps onto the facial expressions (e.g. narrow eyelid, exposed teeth, etc.) 
that can be seen in locations 4 to 7 (see the upper panels of Fig. 4A). The target face emotion and target face 
type hidden states determine the facial expressions of the target-face. For example, if the target face emotion is 
happy and target face type is unambiguous, one would see narrow eyelids and exposed teeth at locations 2 and 
3, respectively (see Fig. 4A left panel). If the target face emotion is sad and the target face type is unambiguous, 
one would see pulled together eyebrows and covered teeth at locations 2 and 3, respectively (see Fig. 4A middle 
panel). However, if the target face type is ambiguous, regardless of the target face emotion (i.e., either happy or 
sad), one would see pulled together eyebrows and exposed teeth at the same locations (see Fig. 4A right panel). 
The co-occurrence of the facial expressions pulled together eyebrows and exposed teeth define ambiguously happy 
and sad faces. This is because pulled together eyebrows are associated more with the sad emotion than happy and 
exposed teeth are associated more with the happy emotion than sad. Clearly, this is a simplification of the complex 
relationship between affective states and their skeletomotor manifestations18. This simplification is deliberate 
such that we have everything we need for the points we seek to make without overcomplicating these issues. 
The left panel of Fig. 4B shows the likelihood of facial expressions for target-faces. These matrices are expressed 
for the locations 2 and 3 (i.e. locations where the target face can appear) and the columns of the matrix are the 
different levels of target face emotion (i.e., happy or sad) and type (i.e., unambiguous or ambiguous). The middle 
panel shows the likelihood of facial expressions but this time for the faces that define the social context. These 
matrices are expressed for the locations 4 to 7 (i.e., the locations where the faces that define the social context 
can appear). Where outcomes depend only on where hidden states and there is an identity mapping from where 
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states to outcomes (not shown for simplicity). Feedback depends on the target face emotion and where (sampled 
location) hidden states. If the target face emotion is happy, visiting location 8 (i.e., the location associated with 
happy emotion) would return a correct feedback regardless of whether the target face type is unambiguous or 
ambiguous. However, visiting location 9 (i.e., the location associated with the sad emotion) would return an 
incorrect feedback for the same setup. Visiting any other location in the scene would return a null feedback (see 
Fig. 4B right panel). As a summary, the sizes of the likelihood matrices are R5×(4×2×2×9) under facial expressions, 

Figure 3.   Generative model of the mental state attribution task. (A) The left panel shows the dependencies 
between different units in the generative model. Hidden states snt  express latent aspects of the world, where n 
indicates the n-th set of hidden states and t  indicates time. The state transition matrices B define how likely 
the states in the next step snt+1 are given the states in the current time step snt  and the action at . A sequence of 
actions one might pursue in the next time steps is referred to as a policy π . MDP model considers a repertoire 
of policies and samples an action from its beliefs about policies at each time step. Active inference describes 
behaviour in terms of free energy minimisation. A component of free energy is the free energy expected in 
the future G . The policy that minimises expected free energy G is more likely to be pursued. Expected free 
energy has both extrinsic (pragmatic) and epistemic (information acquiring) components. Extrinsic value is 
the expected utility under a policy, where the utilities of outcomes are encoded by the prior preference matrix 
C . Epistemic value is the expected information gain about the hidden states. The likelihood matrices A encode 
how likely an outcome at the current time step omt  is given the hidden states in the current time step snt  . (B) This 
panel shows the hidden state dimensions and outcome modalities considered in the mental state attribution 
task. There are four hidden state factors, namely context, target face emotion, target face type and where. Each 
factor is comprised of a fixed number of possible states (e.g., target face emotion can be happy or sad). In the 
simulations, the target face emotion and target face type hidden states were joined (i.e. expressed by a single set 
of hidden states). We opted to express them by two separate sets of hidden states for ease of clarification. There 
are three outcome modalities, namely facial expressions, where and feedback. There are several outcomes under 
each modality (e.g., under the feedback modality, the possible outcomes are null, correct and incorrect). Photos of 
faces are used with permission by Generated Photos (https://​gener​ated.​photos/).

https://generated.photos/
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R
9×(4×2×2×9) under where and R3×(4×2×2×9) under feedback outcome modalities. This means that there are 

4× 2× 2× 9 = 144 state combinations giving rise to outcomes under three separate modalities.
Prior preference matrices express how much the agent prefers one outcome over another. In this task, we only 

defined preferences over the correct (utility of 0.5 relative log probability of 0.5 nats) and incorrect (utility of − 10 ) 
outcomes in the feedback modality. These utilities encourage the agent to report its beliefs about the emotion of 
the target-face once it has accumulated enough evidence.

The state transition matrices for the context, target face emotion and target face type hidden states are all iden-
tity matrices. With these transition matrices, the social context and the facial expressions of the target-face do 
not change in the course of a trial. The only state that the agent can change and has control over is the location 
it can sample. This is enabled by the policy dependent where matrices (which are zero everywhere except for of 

Figure 4.   Likelihood matrices. (A) This panel shows sample scenes where target-faces (top left quadrants) with 
happy, sad and ambiguously happy/sad emotions are embedded in happy contexts (defined by the emotions 
of the faces in the top right and bottom left quadrants). (B) These panels show the likelihood matrices ( A ) in 
the generative process. The likelihood matrices in the left panel show the likelihood of the facial expressions for 
unambiguously and ambiguously happy/sad faces. The facial expressions of the target-face depend on the target 
face emotion and type hidden states. These expressions are displayed in locations 2 (i.e., eyes) and 3 (i.e. mouth). 
The panel in the centre shows the likelihood of facial expressions for the faces that define the social context. 
The expressions of these faces depend on the context. The panel on the right shows the likelihood of feedback 
outcomes. Sampling locations 1 to 7 returns a null feedback (void of feedback), whereas sampling locations 8 
and 9 returns correct and incorrect feedback, respectively, when the target-face is happy. Photos of faces are used 
with permission by Generated Photos (https://​gener​ated.​photos/).

https://generated.photos/
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a row of ones for the corresponding action). As an example, the agent would look at the eyes of the target-face 
if the sampled policy is ‘2’ regardless of where it sampled in the previous time step. A policy is a sequence of 
actions that specifies which action will be chosen in each future time step. In our simulations, we chose the policy 
depth as one, meaning that there was only one (unique) action under each policy. The posterior beliefs about 
the policies depend on expected free energy which has two main components. The first component, epistemic 
value, expresses how much information is expected to be acquired about the hidden states under a given policy. 
Epistemic value expresses how the beliefs about the hidden states would change when expected outcomes (under 
a policy) are considered. As an example, let us assume that we want to find out whether it rains outside. We have 
two options (or policies), namely entering a room with or without a window. Entering a windowless room would 
not afford any information about whether it is raining outside as the visual observations we expect to make there, 
are not relevant to whether it rains outside. The second component, extrinsic value, expresses how likely a given 
policy is to produce the outcomes that the agent prefers. An example is, if we want to have a snack, we will go 
to the kitchen. These two components express how good a policy is. Applying a softmax function to (negative) 
expected free energy yields the posterior beliefs over the policies. In other words, policies are probabilistically 
defined by the expected Free Energy under each scenario. An action is then sampled from the posterior beliefs 
over the policies. Actions can be chosen in one of two ways. The first is sampling an action from the maximum a 
posteriori (MAP) estimate of policies, which corresponds to choosing an action from the policy with the greatest 
posterior probability. The second is sampling an action stochastically. The latter is useful in situations where we 
want to preclude ceiling effects arising from high posterior probability associated with a policy. In this work, we 
used the MAP estimate of policies to choose actions unless otherwise is stated in figure legends.

In the next section, we will introduce precision parameters associated with the mapping from hidden states to 
outcomes in the likelihood matrix. These parameters determine how informative outcomes are about the hidden 
states that generate them. Precision parameters correspond to the inverse temperature parameters of softmax 
functions19. The equation below shows how these precision parameters are applied to likelihood matrices,

Here, omτ = j and snτ = i correspond to the j-th outcome under the m-th outcome modality and i-th hidden state 
under the n-th hidden state factor, respectively. The precision term ζi modulates the likelihood mapping from 
the i-th hidden state under the n-th hidden state factor to the outcomes under the m-th outcome modality. The 
lowest possible precision parameter (e.g., ζi ≈ 0 ) would change the likelihood mapping to outcomes such that 
observing an outcome would not acquire any information about that hidden state. A high precision parameter, 
on the other hand, (e.g., ζi ≫ 0 ) would yield a deterministic mapping from a hidden state to an outcome and 
allow the model to make precise inference about the hidden states. In paradigms involving multiple outcome 
modalities and hidden state factors, it is useful to express the mapping from hidden states to outcome modalities 
in terms of precision matrices. The role of the precision matrix can be demonstrated with the toy ‘rain’ example 
we used when describing epistemic value;

Here, the states correspond to rooms with and without a window. The precision vector above expresses beliefs 
such that in a windowless room, there is no way of finding out whether it rains. However, entering a room with 
a window would give precise information about whether it rains. These beliefs are expressed with the precision 
terms ζwindow = ∞ and ζwindowless = 0 , which are shown above as entries of a vector mapping from hidden states 
to the outcome modality Rain. It is important to note that these precision parameters operate on the generative 
model likelihood matrices in our paradigm. We will use precision parameters to show how they can enable 
contextual perception.

Simulations
In the social context attribution task, social cues resolve uncertainty about the target character’s emotional 
state. An example of this can be seen in Fig. 1A, where the target-character is inferred as happy when the social 
context conveys happy emotion. In this section, we will first simulate visual search patterns with a model that 
can attribute a mental state to the target-face based on the context. We will then show with simulations that 
this model reproduces some of the well-known phenomena such as context congruence and feature coherence 
effect on decision times and accuracy rates. Finally, we will use different models to describe the computational 
mechanisms underlying visual search patterns in schizophrenia.

In our version of the task, we assumed that the emotionally ambiguous target-faces should be inferred as 
happy and sad when the context conveys happy and sad emotions, respectively. In other words, the agent should 
expect the emotion of the target-face to be consistent with the context. Figure 5A shows a set of likelihood matri-
ces for the facial expressions of the target-face given hidden states. These matrices represent the prior beliefs of 
an agent that cannot utilise contextual information to attribute a mental state to target-faces. These matrices are 
identical under all contexts (i.e., happy, sad, incoherent contexts). This means that when the agent sees pulled 
together eyebrows and exposed teeth (i.e. ambiguous emotion), the agent is equally likely to attribute these 
features to happy and sad emotions. However, the likelihood matrices of the agent that can utilise contextual 
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information are context-specific (see Fig. 5B). This agent can attribute the very same features uniquely to happy 
and sad emotions under happy and sad contexts, respectively. From a computational perspective, contextual 
perception can be modelled by adaptively assigning a relatively lower precision ( z ≈ 0 ) to the facial expressions 

Figure 5.   Contextual perception and precision. (A) This panel shows the generative model likelihood matrices 
for an agent that cannot contextualise target-face emotion. The likelihood matrices for the facial expressions 
shown here are identical under all contexts (e.g., happy, sad, etc.) when the precision parameter is high 
( z → ∞ ). Notice that these matrices are identical to the generative process likelihood matrices for the facial 
expressions (see Fig. 4B left panel). (B) These panels show the same likelihood matrices for an agent that can 
contextualise the target-face emotion ( z = 0 ). The agent cannot associate the facial expressions of ambiguously 
sad faces with the sad emotion when the context is happy (see the matrices on the right under happy context). 
Similarly, the agent cannot associate the facial expressions of ambiguously happy faces with the happy emotion 
when the context is sad (see the matrices on the left under sad context). Photos of faces are used with permission 
by Generated Photos (https://​gener​ated.​photos/).
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of ambiguously sad target-faces under the happy context than facial expressions of the ambiguously happy 
target-face in the generative model (compare the uniform distribution, represented by the grey column, with 
the precise distribution under ambiguous hidden states for the happy context in Fig. 5B). A similar mapping can 
be seen under the sad context (see “Materials and methods” for more details).

Now, we will compare an agent that can and cannot utilise contextual information to attribute an emotion 
to the target face. The left panels of Fig. 6A,B show the visual scan-path of these agents. Both agents explore a 
scene where an ambiguously happy target-face is embedded in a happy context (i.e. blue trial in the first row in 
Fig. 2B). The right panels show the agent’s beliefs about the context, target face emotion and target face type hid-
den states. It is worth remembering that, in our paradigm, the faces that define the social context do not express 
ambiguous emotions. This means that seeing only one facial expression (either the expression in the eyes or the 
mouth) is enough to determine the emotion (either happy or sad) of the faces that form the social context. In all 
simulations, the agent starts exploring the scene from the central fixation ( t = 1).

Figure 6A shows the simulated responses of an agent that cannot utilise contextual information. At the second 
time step, the agent visits the face at the top-right cell and finds exposed teeth. After seeing exposed teeth, the 
agent knows that it observed a happy face, and it rules out the possibility of a sad context ( t = 2 ). In the next 
time step, the agent attends to the face at the bottom-left and finds narrow eyelids—a facial expression that is also 
associated with the happy face. The agent has seen two happy faces so far, and it believes that the social context 
is happy ( t = 3 ). Then, the agent visits the target-face (top left), where it finds exposed teeth and pulled together 
eyebrows. Now the agent knows that the target-face expresses an ambiguously happy/sad emotion ( t = 5 ). This 
agent is unable to attribute the happy emotion inferred from contextual cues to the target face. Finally, the agent 
samples one of the locations in the scene randomly, failing to identify the emotion of the target-face ( t = 6).

The agent that can utilise contextual information (see Fig. 6B), similarly explores the faces at the top-right 
and bottom-left cells and infers the social context as happy ( t = 3 ). The agent also starts to believe that the target-
face is happy because it believes the social context is happy. The agent then visits the target-face and infers it as 
emotionally ambiguous. This agent can attribute the happy emotion inferred from the context to the target face 
( t = 5 ). Consequently, the agent reports its beliefs about the emotion of the target-face as happy and receives a 
correct feedback ( t = 6 ). It is worth mentioning that the correct or incorrect feedbacks depend on the target face 
emotion (i.e., happy or sad) and where the agent samples in the scene to report its beliefs about the emotion of 
the target face (i.e., locations 8 and 9 for happy and sad, respectively, akin to ‘pressing the correct button’). The 
hidden state target face type (i.e., ambiguous or unambiguous) is inconsequential for the feedback modality. In 
our model, we assumed that ambiguously happy/sad faces are identical in terms of features. This means that an 
agent can contextualise the emotion of these faces as happy under a happy context and sad under a sad context. 
Importantly, an agent can contextualise an ambiguously sad face incorrectly as happy under a happy context. It is 
plausible that one might incorrectly attribute a happy feeling to someone just because of the context under which 
they interacted. It is also worth acknowledging that ‘correctness’ depends upon the specific choices we have made 
when designing the task, and the simplifications we have made. In a more ethologically valid social setting, it 
might be that the correctness of an inference is judged against other aspects of the other person, including their 
verbal report about how they feel.

In Fig. 6A,B, we opted to show those simulations where the agent samples the same visual cues in a similar 
order to show the difference between agents that can and cannot contextualise, in terms of their behaviour. In 
these simulations, visual search behaviour is initially dominated by epistemic drives to resolve uncertainty about 
the hidden states (i.e., context, target-face emotion, target-face type). Comparing Fig. 6A,B, we see that even 
though these two agents sample the same visual cues in the first five timesteps, they infer the target-face emotion 
differently. The difference between these two agents is expressed in terms of their precision parameters (i.e., z). 
These simulations show that the precision parameter has direct and indirect consequences on agents’ beliefs and 
behaviour. With a low precision parameter (i.e., z ≈ 0 ), the agent that can utilise contextual information infers 
the target-face emotion as happy at t = 5 (see Fig. 6B). Comparing this agent with the one that cannot utilise 
contextual information (see Fig. 6A), we see that the parameter z is directly responsible for the inferred target-face 
emotion in Fig. 6B. Having inferred the target-face emotion as happy (Fig. 6B), extrinsic value (i.e., goal-directed 
behaviour) takes over this agent’s visual search behaviour, and the agent reports the target-face emotion as happy 
at t = 6 . This shows that the parameter z is indirectly responsible for the reported target-face emotion.

Figure 6.   Agents that cannot and that can use contextual information. The left panels show the exploratory 
behaviours of agents that cannot and that can utilise contextual information. The blue curves show the locations 
and the order at which these locations are sampled. The correct emotion of the target-face is happy (location 
8). The panels on the right show the agent’s posterior beliefs about the context, target face emotion and target 
face type at each time step. The beliefs about the two incoherent contexts are summed and reported as one 
incoherent context under the posterior beliefs about context. This is why the incoherent context appears twice 
as likely as happy and sad contexts at the initial time step. (A) This panel shows the exploratory behaviour of an 
agent that cannot use social information to contextualise target-face (i.e. z → ∞ ). Here an ambiguously happy 
target-face is embedded in a happy context. (B) This panel shows the same as panel A but this time for an agent 
that can use social information to contextualise target-face (i.e. z ≈ 0 ). C) This panel shows the responses of an 
agent that can contextualise the target-face emotion (i.e. z ≈ 0 ). This time an ambiguously happy target-face 
is embedded in an incoherent context (i.e. one face is happy the other is sad). We used the MAP estimate of 
policies for the simulations in this figure. Photos of faces are used with permission by Generated Photos (https://​
gener​ated.​photos/).
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In the next simulations, we used the agent that can utilise contextual information. Figure 6C shows the simu-
lated responses when an emotionally ambiguous target-face is embedded in an incoherent context (i.e., one face 
is happy, the other is sad). The agent visits the face at the top-right and finds exposed teeth—a facial expression 
that is associated with a happy face. Then, the agent visits the face at the bottom-left and finds pulled together 
eyebrows—a facial expression that is associated with a sad face. The agent has observed one happy and one sad 
face so far and inferred the context as incoherent. In the next time steps, the agent visits the face at the top left 
and finds a target-face with ambiguous emotion. Although this agent can utilise contextual information under 
coherent contexts (i.e., two faces expressing the same emotion), it is unable to contextualise the target-face emo-
tion because the social context is incoherent (i.e., provides inconsistent information). Comparing Fig. 6B,C shows 
that the agent is faster at attributing an emotion to emotionally ambiguous target-faces when they are embedded 
in coherent contexts (blue trials in Fig. 2B) than in incoherent contexts (rightmost grey trial in Fig. 2B).

The same agent identifies the emotion of the target-face as happy when a happy target-face is embedded in 
happy (congruent) and sad (incongruent) contexts (see Fig. 7A,B, respectively). Notice that the agent believes 
that a happy face is increasingly more likely under a happy context (see Fig. 7A) and increasingly less likely in 
a sad context (see Fig. 7B) as it attends to the social cues. These simulations show how different contexts affect 
the agent’s beliefs about the target-face in the course of a trial. In this section, we opted to show the simulated 
responses when the target-face expresses a happy emotion; however, one can produce similar results when the 
target-face is sad as well.

Figure 7.   Congruent versus incongruent contexts. The simulated responses in this figure is obtained with an 
agent that can utilise contextual information. The target-face expresses an unambiguously happy emotion in 
all panels. (A) In this panel, the context is happy (i.e., congruent with the emotion of the target-face. (B) The 
context in this panel is sad (i.e., incongruent with the emotion of the target-face). We see that the agent is able to 
identify the emotion of the target-face as happy in all panels. Under a congruent context (panel A), the agent’s 
beliefs about the target-face emotion converge to happy emotion faster than in incongruent (panel B) context. 
We used the MAP estimate of policies for the simulations in this figure. Photos of faces are used with permission 
by Generated Photos (https://​gener​ated.​photos/).
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In these simulations, we used the MAP estimate of policies to determine the next location to sample. The 
order of the sampled locations can vary between simulations as multiple policies can afford the same amount 
of information about the hidden states. This means that there could be more than one policy with the greatest 
posterior probability, and in such cases, we randomly choose between these policies. This is why the scan-paths 
in some simulations are different (see Fig. 7A,B).

Effect of context congruence and facial feature coherence.  Next, we examined the agent who can 
utilise contextual information to test whether different stimuli elicit different decision times and accuracies. We 
expect that the agent would attribute emotions to the target-face more accurately and faster when the target-face 
is embedded in affectively congruent contexts. As expected, context congruency improved the agent’s behav-
ioural performance in terms of decision times and accuracy rates (see Fig. 8A). Decision time is the number of 
locations that the agent visits before reporting its beliefs about the emotion of the target-face. Accuracy rate is 
the percentage correct identification of target-face emotion.

Similarly, we expect the agent to perform better when the target-face has coherent facial expressions. Ambigu-
ously happy/sad target-face has incoherent features as it shares one feature with happy and sad faces each (i.e., 
exposed teeth and pulled together eyebrows). However, happy and sad target-faces have coherent facial features 
as they do not share any features. Facial feature coherence improved the agent’s performance in terms of deci-
sion times (see Fig. 8B). We did not compare these two cases in terms of accuracy as the inferred emotion of the 
ambiguous target-face depends on the context in which it is embedded.

Simulating schizophrenia.  In the social context appreciation task, patients with schizophrenia were less 
accurate at attributing a mental state to the target character and their visual search behaviour tended to be more 
localised around the target-character than healthy controls (see Fig. 1B). This behaviour might represent a ten-
dency to local viewing rather than using a global viewing strategy as discussed in Green and colleagues’ work1. 
From a computational perspective, this can be modelled as a decrease in the precision of contextual cues. In 
other words, this is a belief that data from the object of interest is overwhelmingly more informative than data 

Figure 8.   Hypotheses about decision times. (A) This panel compares the agent’s behavioural performance 
between congruent and incongruent trials in terms of decision times and accuracy. (B) This panel compares 
the agent’s performance on trials with ambiguous and unambiguous target-faces. For these simulations, we 
stochastically sampled an action from the posterior distribution over the policies, rather than choosing the 
maximum a posteriori (MAP) estimate as shown in Eq. (22) (see “Materials and methods”). This precludes 
ceiling effects and allows us to see the differences between different conditions. Photos of faces are used with 
permission by Generated Photos (https://​gener​ated.​photos/).
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from other sources. There is a sense in which this is circular, as the most informative data are those that attract 
interest. From this perspective, manipulating the precision of contextual cues can be thought of as limiting the 
focus of attention or the range of interest. In our paradigm, this corresponds to an imbalance between the preci-
sion of the expressions of the target-face ztf  and social cues zsc . Figure 9 shows the likelihood matrices for the 
facial expressions under two models as a function of locations. Locations 2 and 3 are associated with the facial 
features of the target-face, whereas locations 4 to 7 are associated with the facial features of the faces that define 
the social context (see the upper panel in Fig. 9). Figure 9A shows the likelihood matrix for a model that believes 
that the contextual cues are informative. This model has a high precision of contextual cues and as a result, it 
employs a global viewing strategy, (see Fig. 10A). However, the model in Fig. 9B has a low precision of contextual 
cues. This model believes that the contextual cues are non-informative and as a result, the agent employs a local 
viewing strategy, namely a decreased attention to the faces that define the social context (see Fig. 10B).

One can stratify these agents in terms of their prior beliefs, using their employed viewing strategies in Fig. 10. 
In the first simulation (Fig. 10A), the agent is unable to lower the precision of ambiguously happy faces under 
a sad context and vice versa. This agent is described in terms of the likelihood matrix of the generative model 
shown in Fig. 5A. This agent attends to both the target-face and the social cues suggesting that the precision of 
the local (i.e., target-face) and global cues (i.e., contextual cues) are in balance (see Fig. 9A); however, this agent is 
still unable to attribute a mental state to the target-face as it is unable to utilise the acquired contextual informa-
tion. In the second simulation (see Fig. 10B), the fact that the agent does not attend to the social cues suggests 
that there is an imbalance between the precision of local and global cues (see Fig. 9B). These two agents shared 
the same likelihood matrices that are shown in Fig. 5A and only differed in terms of the likelihood matrices that 

Figure 9.   Belief structures underlying global and local viewing strategies. The likelihood matrices in this figure 
are expressed with respect to the locations in the scene. (A) In this panel, the precisions associated with the 
contextual cues and the target-face are both set high ( zsc → ∞, ztf → ∞ ). With these precisions the agent 
values the contextual cues and target-face equally and employs a global viewing strategy. (B) In this panel, the 
precisions associated with the contextual cues is set low relative to the precision associated with the target face 
( zsc ≈ 0, ztf → ∞ ). The imbalance in relative precisions induces a local viewing strategy. Photos of faces are 
used with permission by Generated Photos (https://​gener​ated.​photos/).
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are shown in Fig. 9. The likelihood matrices that are shown in Fig. 5A express the belief structures of agents that 
cannot utilise contextual information to attribute an emotion to the target-face. The likelihood matrices that are 
shown in Fig. 9 express the belief structures underlying global and local viewing strategies. The parameters that 
control the precision of likelihood matrices have the potential to disambiguate between different belief structures 
in clinical conditions such as schizophrenia.

Discussion
In this work, we introduced a model that can change its perception under different contexts and provided a 
computational account of contextual perception under active inference. Being inspired by the social context 
appreciation task1, we introduced a task where a target-face is displayed in different social contexts. The target-face 
can express happy and sad emotions, either unambiguously or ambiguously. Crucially, the facial expressions of 
ambiguously happy/sad target-faces were identical. The objective was to identify the emotion of the target-face. 
There were two additional faces in the scene, other than the target-face. The emotions of these faces defined 
the social context. The social context could be either coherent (i.e., both faces express the same emotions) or 
incoherent (i.e., one face express happy the other sad emotion).

In this paradigm, contextual perception corresponds to attributing the same emotional state to the target-
faces (with ambiguous emotions) as the emotion conveyed by the social context. An example is attributing a 

Figure 10.   Simulating schizophrenia. The visual search patterns in this figure are obtained with agents that are 
unable to contextualise the target-face emotion ( z → ∞ ). For both of the simulations, an ambiguously happy/
sad target-face is embedded in a happy social context. (A) This agent attends to the social cues and the target-
face (i.e., zsc → ∞ and ztf → ∞ ), however it is still unable to identify the emotion of the target-face as it is 
unable to utilise contextual cues ( z → ∞ ). (B) This agent does not attend to the social cues due to an imbalance 
between precisions associated with the target-face and social cues (i.e., zsc ≈ 0 and ztf → ∞ ). We used the MAP 
estimate of policies for the simulations in this figure. Photos of faces are used with permission by Generated 
Photos (https://​gener​ated.​photos/).
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happy emotion to the target face because the social context conveys a happy emotion. Computationally, this 
can be expressed by down-weighting the precision of the mapping from happy context hidden state to the facial 
expressions of ambiguously sad faces. The same relation applies to ambiguously happy faces under a sad context. 
In other words, it allows us to reach an inference about ambiguous faces through ignoring features incongruent 
with that inference when the social context is in its favour.

Context congruency has been shown to improve performance in object identification tasks. These studies 
generally show that the objects are identified more accurately and faster when they are embedded in a congruent 
context20–22. Context congruence has been shown to improve reaction times in paradigms that involve threat of 
shock as well23. This study has shown that people identify fearful faces faster when there is a threat of shock than 
when there is no threat of shock (i.e., safe). Here, the congruence between the emotion of the face (i.e. fearful) 
and the context (i.e., threat) in which the face is observed improved the reaction times. In our paradigm, embed-
ding the target-face in emotionally congruent contexts improved accuracy and decision times (see Fig. 8A).

Mismatch in stimuli has been shown to impair performance. An example of this is the Stroop task24. The 
Stroop task involves identifying the ink colour of a colour-word when the colour-word is written in the ink of 
either the same as the colour-word or another colour (e.g., the word ‘red’ written in red vs the word ‘red’ writ-
ten in blue). The mismatch between the ink colour and the colour-word has a profound effect on behaviour, 
namely an increase in the time it takes to identify the ink colour of the word and a decrease in accuracy. This 
task involves two modalities that are competing to explain the ink colour of the word, namely the colour-word 
and the ink colour of the word. Correct identification of the colour only depends on the ink colour modality, but 
an inability to discounting the task-irrelevant colour-word modality gives inconsistent information about the 
ink colour and impairs performance. Computationally, this corresponds to an inability to decrease the precision 
of task-irrelevant modalities15. The Stroop effect has been replicated in paradigms involving affective stimuli as 
well25. In our paradigm, we compared the decision times when the target-face that consisted of incoherent facial 
expressions (i.e., ambiguous emotion) with when the target-face consisted of coherent facial expressions (i.e., 
unambiguous emotion). Consistent with the Stroop effect, the agent identified faces with coherent expressions 
faster (see Fig. 8B). The association between frontal lobe dysfunction and impairment at the Stroop task hints 
at the functional anatomy that might underwrite contextualisation of the sort outlined here. The involvement 
of the frontal cortices and their subcortical connections (e.g., to thalamus) is further endorsed by studies dem-
onstrating the ability of these networks to differentially weight various sources of sensory data and their role in 
attention. In a mice study, the mediodorsal thalamus (MD) has been shown to sustain representations of task 
rules in the prefrontal cortex by amplifying local prefrontal cortex connectivity26. Another study revealed the 
role of the thalamic reticular nucleus (TRN) in attention in a 2-AFC task, where the mice were supposed to select 
between task-relevant (either auditory or visual) stimuli. Optogenetic manipulation of visual parts of the TRN 
caused a decline in the appropriate selection of stimuli27. These results highlight the role of thalamic nuclei in 
context-sensitive gain control. The role of the thalamus in these processes is not restricted to mouse research. 
A primate study involving pulvinar inactivation showed increased gaze shift to the ipsilesional hemifield, even 
though the saccades to the contralesional hemifield were intact in a visual task where targets can appear both 
ipsa- and contra- lesional hemifield28. Taken together, there is enough evidence that indicates that thalamus does 
more than merely relay information to the cortex, and that several thalamic nuclei are involved in attentional 
processes29,30. Abnormalities in fronto-thalamic networks, therefore, might contribute to attentional deficits in 
a way that prevents contextualisation of sensory input.

These neurobiological observations, concerning gain control, are central in theories of psychotic disorders. 
Specifically, the dysconnection hypothesis suggests that schizophrenia is due to aberrant synaptic gain control, 
especially in the circuits involving the prefrontal cortex31. A meta-analysis of diffusion tensor imaging studies 
suggests that white matter tracts connecting various regions such as frontal lobe and thalamus might indeed be 
affected32. Impairments in gain control processes can underly some of the positive symptoms of schizophrenia, 
such as delusions and hallucinations, in terms of an improper weighting of sensory evidence relative to prior 
beliefs about the causes of the sensory inputs31. In our paradigm, faces that express ambiguous emotions may be 
contextualised through attentional modulation. We suggest that this mechanism may be implemented through 
thalamus-dependent prefrontal gain-control. Abnormalities in these networks might explain why patients with 
schizophrenia differ from controls in terms of the perceived affective state in the social context appreciation task1.

There are studies that point out to abnormalities in gain control on tasks involving lower-level visual process-
ing in schizophrenia as well. Dakin and colleagues showed that when a textured disk (target object) is embedded 
in a high contrast background, the controls are more likely to report it lower contrast than it is, while patients 
with schizophrenia reported the contrast levels more accurately9. Patients with schizophrenia seemed to be less 
prone to this contrast-contrast illusion, as well as to other visual illusions33,34. One potential mechanism that 
might cause the target object to appear lower contrast is lateral inhibition35. Under the lateral inhibition account, 
the neurons that respond to high contrast background suppress the neurons that respond to the lower contrast 
target object. Butler and colleagues suggest that there might be a reduced center-surround antagonism and 
contrast gain control in schizophrenia8. A rodent study showed that TRN neurons might be involved in lateral 
inhibition in the thalamus36. A review of TRN in the context of schizophrenia point out to how TRN might be 
involved in lateral inhibition through a cortex-TRN-thalamus circuit37. TRN is known to be GABAergic37, and 
impairments in GABAergic inhibition may underwrite some of the differences in visual processing between 
controls and patients with schizophrenia38.

The dopamine hypothesis of schizophrenia suggests that dysregulation of the dopaminergic system is respon-
sible for some of the positive symptoms of schizophrenia. One of the findings that support this hypothesis is that 
antipsychotic drugs are mainly dopamine antagonists39. Kapur and colleagues proposed that the dysregulated 
dopaminergic system leads to aberrant attribution of salience to stimuli40,41. Some suggested that the process of 
aberrant salience is similar to a loss of signal to noise ratio, where phasic dopamine responses to salient stimuli 
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are overwhelmed by increased noise in the system (e.g. tonic responses)42. This might, in turn, cause difficul-
ties in learning stimuli-reinforcement associations43 and contribute to attentional deficits when the stimuli-
reinforcement associations need to be utilised.

The dopaminergic midbrain (VTA/SN) and its projections to the striatum have been hypothesised to encode 
the precision of beliefs about future actions (or policies)44. The precision of future actions is expressed in terms 
of an inverse temperature parameter of a softmax function in the MDP formulation of active inference. Learning 
environmental contingencies (i.e., structure learning) in terms of Dirichlet parameter accumulation depends 
on the beliefs about the policies and thus also indirectly depend on this precision term45. This means that the 
variables representing dopaminergic signalling in the MDP model have direct consequences on learning and 
their impairment will thus disrupt attentional modulation, or the selective amplification of different sensory 
channels in silico. Although we did not consider a structure learning problem in this study, it would be fairly 
straightforward to incorporate it, as shown elsewhere (see45).

Kapur40 explains that contextually-guided salience attribution is impaired under the aberrant salience hypoth-
esis. This may lead to abnormal beliefs about the internal states that represent the external world. Under the 
active inference framework, these beliefs depend on precision-weighted sensory observations. Contextual per-
ception is a result of up-weighting context-relevant sensory data (or down-weighting context-irrelevant sensory 
data). In other words, contextual perception is a result of modulating sensory channels (via precision terms) 
that provide relevant information, and this process is identical to gain control account of attention. Abnormal 
precision encoding can thus lead to the aberrant assignment of importance to irrelevant stimuli. This might be 
one of the reasons why people with schizophrenia with delusions view face areas without distinguishing features 
more than controls46.

Intranasally administered oxytocin has been shown to increase fixations on the eye-region when healthy 
males view human faces47. A recent study showed that oxytocin not only improves exploratory viewing (e.g., in 
terms of the number of fixations, dispersion, etc.) in schizophrenia in response to images of facial stimuli but also 
images of inanimate objects7. In our work, the agent does not attend to the social cues that are necessary to infer 
the social context due to an imbalance between the precisions of local and global cues (see Fig. 10B). Reduced 
exploratory viewing is consistently reported in visual search studies of schizophrenia5,48. Could oxytocin allevi-
ate the severity of this imbalance and allow for social cues to shape perception? An improvement in emotion 
recognition might be due to enhanced exploratory viewing, which has the potential explain why oxytocin seem 
to have positive effects on social-behavioural tasks49.

In the social context appreciation task1, the fixation duration of people with schizophrenia on contextual 
information was shorter and their perception of the mental state of target characters was less accurate than 
that of healthy participants when the target character was embedded in a social context. In our paradigm, two 
separate prior beliefs can explain these behaviours: (i) Decreased fixation duration on contextual information 
and decreased accuracy can be explained by an imbalance between the precisions associated with the social cues 
and target-character (i.e., zsc ≈ 0 and ztf → ∞ , see “Materials and methods”). In active inference an action is 
more likely if it resolves uncertainty about the state of the world. With a low precision, the agent would not be 
able to resolve uncertainty about the social context and thus would not attend to the social cues. (ii) Decreased 
accuracy about the mental state of target characters can be explained by an inability to contextualise target-face 
emotion even when the social context is inferred correctly. This sort of contextualisation is described in terms 
of a low precision parameter (i.e., z ≈ 0) , see Figs. 5B and 6B. The agent cannot utilise contextual information to 
attribute a mental state to the target-character with ambiguous emotion when the precision parameter is high 
(i.e., z → ∞), see Figs. 5A and 6A. These behavioural responses might be due to an inability to selectively up or 
down weight sensory precisions to acquire reliable information4,50. Studying individual differences in terms of 
prior beliefs has the prospect of disambiguating the distinct causes of abnormal behaviours51.

This work has some limitations. In our model, we considered a very narrow space of facial expressions and 
contexts. The facial features that we consider are merely a subset of those that might be present when expressing 
these emotions. It has been suggested that facial recognition is based on more holistic processing than parts-based 
processing52–54. Configural information seems to be more influential than feature-based information in emotion 
recognition studies as well54. That being said, the study by Chen & Chen supports the idea that there are limited 
interactions between facial features in the upper and lower parts of the face in an emotion judgement paradigm 
when happy and sad facial expressions are presented in the fovea55. In this paradigm, the expressions of faces 
were modulated to create a spectrum between sadness and happiness. The upper and lower halves of happy and 
sad faces were displayed in aligned and misaligned face conditions. In the misaligned condition, the upper and 
lower halves of the faces were shifted laterally. The authors argue that facial expression classification should be 
different between aligned and misaligned conditions under a holistic processing view. This study showed that the 
classification of aligned and misaligned faces did not differ, thus supporting the idea that the local facial features 
are crucial in facial expression classification. The same study also showed that modulating the level of happy 
and sad expressions in the lower face influenced expression classification to a greater extent than the upper face. 
Another study showed that applying noise to the lower half of the face profoundly influenced facial expression 
classification56. The perceived eye expression differed when the expression in the lower half of the face was altered 
with noise. These results support the idea that some facial features might be more influential (i.e., salient) in facial 
expression classification. In our model, the facial expressions of faces that define the social context were equally 
informative about the emotion. This means that sampling either the eye or the mouth location was sufficient to 
infer the emotion of these faces. This is because the faces that define the social context always express an unam-
biguous emotion (i.e., the emotion expressed in the eye and mouth areas are coherent). The target face could 
express either an ambiguous or unambiguous emotion. This means that sampling both the eye and the mouth 
locations are necessary to infer target face emotion. In our model, one can change how informative the facial 
features in the upper and lower halves of the face are by modulating the precision parameters associated with 
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mouth and eye locations. The agent would be less likely to sample the eye locations if the precision parameters 
associated with these locations are reduced. One can use the visual choices of the participants in an eye-tracking 
study and estimate the precision parameters associated with the lower and upper halves of the faces. This can 
reveal which locations are more informative in a paradigm like the one we considered here.

In this work, describing emotions in terms of changes in a set of isolated features was a simplification of how 
affective states might manifest (across the whole image) and considering facial configurations or interactions 
between facial expressions relevant to emotions would be a more accurate way of capturing differences between 
emotions. Moreover, people might be using different facial configurations when expressing similar emotions, 
and there is no one-to-one mapping between facial configurations and affective states57.

Although some of the features we used are commonly observed in happy/sad faces, we acknowledge that 
these features can be found in other emotions, as well as when a combination of emotions gives rise to com-
pound facial expressions58. For example, it is plausible to have covered teeth when sad and angry emotions are 
elicited separately and when a combination of the two is elicited together. Suppose we expand the state space 
to include other emotions such as anger. In that case, the agent will require extra information to disambiguate 
between sad and angry faces, given that it observes covered teeth. There are two ways to improve the inference 
over emotional states. Firstly, the agent can fixate to a face location that is more informative about the emo-
tions. Secondly, we can add different features to consider the differences between sad and angry emotions (e.g., 
covered teeth with lowered lip corners, covered teeth with tightly shut lips16,59). Although we considered a very 
limited space of facial expressions in our model, the model may be extended to facilitate greater complexity in 
the mapping between (combinations of) facial features and emotional categories. To do so one may link the 
MDP with a pre-trained (deep) generative model of facial expressions60, allowing for inference on emotional 
category by way of inference on the latent variables of this deep generative model. This extension would allow 
for this paradigm to be scaled, and for more complex emotions to be considered, but is beyond the scope of the 
simulations considered in this manuscript.

In our model, we expressed the social context in terms of a hidden state that the agent infers by sampling 
the features of the faces other than the target face. A more realistic way to represent the social context would 
be to take into account the temporally dependent interactions between context-specific visual cues. This would 
capture how events unfold over time and give rise to particular contexts. Defining a context in this way—within 
the sensory stream itself—is an alternative to our approach and may afford greater ecological validity to the 
study of context and social context specifically in future work. We assumed that a happy social context causes an 
ambiguous target-face to be perceived as happy (and a sad social context causes an ambiguous target-face to be 
perceived as sad), however, there are many real-life scenarios where the happy emotion conveyed by the social 
context does not warrant the happiness of the target character. In future work, we hope to scale these models up 
to the high dimensional visual data associated with emotional inference in ecologically valid settings.

Materials and methods
Active inference.  The natural exchange of biological systems with their environment requires them to rec-
ognise any environmental changes and possibly take action to keep themselves within the physical boundaries 
that support their existence61. Mathematically, obeying such boundaries can be expressed by minimising the 
Shannon entropy62 of observable outcomes:

Here, õ is the sequence of observations over time ( ̃o = [o1, o2, . . . , oT ]) , m is the model under which model evi-
dence P(õ|m) is evaluated, and H and E correspond to entropy and expectation, respectively.

Model evidence P(õ|m) can be expressed as the marginal of a joint probability distribution,

In Eq. (4), x represents the hidden causes. Model evidence P(õ|m) cannot be evaluated directly as the summa-
tion above is often intractable. Instead, we use a proxy on surprise − ln P(õ |m) , namely variational free energy. 
Variational free energy63 is obtained by applying Jensen’s inequality (for concave functions) to surprise:

Here, the right-hand side of the inequality is the variational free energy and Q(x) is the approximate posterior 
beliefs over hidden causes x . The free energy can be rearranged in different ways to emphasise its properties,

(3)H[P(õ|m)] = −EP(õ|m)[ln P(õ|m)]

(4)P(õ|m) =
∑

x

P(õ, x|m)

(5)

− ln P(õ|m) = − ln
∑

x

P(õ, x|m)

= − ln
∑

x

Q(x)
P(õ, x|m)

Q(x)
≤ −

∑

x

Q(x) ln
P(õ, x|m)

Q(x)
︸ ︷︷ ︸

Variational Free Energy

(6)F = −EQ(x)[ln P(õ, x|m)]−H[Q(x)]

(7)= − ln P(õ|m)+ DKL[Q(x)||P(x|õ,m)]
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The notation DKL[Q||P] indicates the dissimilarity between the distributions Q and P in terms of KL-diver-
gence64—i.e., a relative entropy. Variational free energy is a functional of an approximate posterior distribution 
over the hidden causes Q(x) and the generative model P(õ, x|m) , see Eq. (6). The generative model describes 
the agent’s beliefs about the real-world dynamics in terms of likelihood mappings, state transition matrices and 
prior beliefs. Equation (7) ensures that free energy will always be greater than (or equal to) surprise due to the 
nonnegativity of the KL divergence, providing an upper-bound on surprise. Minimising free energy minimises 
the divergence between Q(x) and P(x|õ,m) , making Q(x) an approximation of the true posterior distribution 
P(x|õ,m) . Optimising the beliefs about hidden causes Q(x) with respect to the free energy, minimises the diver-
gence between surprise −lnP

(
Qo|m

)
 and free energy F , making free energy an approximation to the surprise 

(or negative log model-evidence). Free energy can also be expressed in terms of accuracy and complexity, see 
Eq. (8). Accuracy is a measure of how accurately the observed outcomes can be explained under the current 
posterior beliefs Q(x) whereas complexity measures the dissimilarity between posterior beliefs Q(x) and prior 
beliefs P(x|m).

In this work, we apply the active inference formalism to partially observable Markov decision processes 
(MDP).

MDP generative model.  The generative model is formulated as an MDP that describes the model’s beliefs 
about the world in terms of probability distributions over the hidden states and outcomes. The likelihood matrix 
( A ) describes how likely an outcome is, given the hidden states. The transition matrix ( B ) comprises probabil-
istic mappings from the hidden states in the current time step to the hidden states in the next time step. The 
generative model includes prior beliefs about the initial hidden states ( D ) and outcomes ( C ). See Fig. 11 for the 
Markovian generative model.

We now draw a distinction between two sorts of hidden cause x that were lumped together in Eq. (6). These 
are hidden states s and policies π . We refer to the states of the environment that we cannot directly observe as 
‘hidden’. Hidden states are the latent aspects of the world that give rise to observations and must be inferred. A 
policy is a sequence of actions, or control states, that the model can pursue.

(8)
= −EQ(x)[ln P(õ|x,m)]

︸ ︷︷ ︸

Accuracy

+DKL[Q(x)||P(x|m)]
︸ ︷︷ ︸

Complexity

(9)

F = −EQ(s̃,π)[ln P(õ, s̃,π |m)]−H[Q(s̃,π)]

= EQ(π)
[
−EQ(s̃|π)[ln P(õ, s̃|π)]−H[Q(s̃|π)]

]
+ DKL[Q(π)||P(π)]

= EQ(π)[Fπ ]+ DKL[Q(π)||P(π)]

Figure 11.   Markovian generative model. The generative model is expressed in terms of a joint probability 
distribution over the outcomes ( ̃o ), hidden states ( ̃s ) and policies ( π ). Here, õ and s̃ represent the sequence of 
observations and hidden states over time, respectively. The generative model captures the joint probability of 
three distributions (i) a mapping from hidden states s to outcomes o (expressed by the likelihood matrix A ), 
(ii) a mapping from hidden states in the current time step sτ to the next sτ+1 as a function of actions ( a ), where 
actions are sampled from the beliefs about the policies and (iii) prior beliefs over the policies ( π ), which is 
expressed in terms of a softmax function of (negative) expected free energy ( G ). Prior preference matrix ( C ) 
expresses the prior beliefs over outcomes. Initial state probability vector ( D ) expresses the beliefs about states at 
the initial time step P(s0) . The notation Cat denotes categorical distribution. See the text for details.
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We drop the conditioning on the model in the second line, but this should be assumed to be implicit through-
out. Free energy depends on three terms, (i) Fπ is the free energy under a given policy, (ii) Q(π) is the posterior 
beliefs about the policies and (iii) P(π) is the prior beliefs about the policies.

Fπ may be decomposed into a series of free energies for each time-step,

The term [τ ≤ t] returns ‘1’ only if the condition inside the bracket is true (i.e., the present or past); otherwise 
(i.e., the future), it returns zero. This accounts for the fact that observations that have yet to be obtained are, by 
definition, not available. Under active inference, prior beliefs about policies P(π) are expressed in terms of the 
expected free energy Gπ . Minimizing this quantity ensures that the agent will also minimize its surprise. Setting 
the log probability of policies inversely proportional to the expected free energy ensures that the policies with 
the least expected free energy are more likely to be pursued lnP(π) ∝ −Gπ.

Upon observing an outcome, the MDP model first optimises its beliefs about the hidden states and uses these 
beliefs to make predictions about the future. Crucially, the model can control the transitions of certain states as 
a function of action. An action is sampled from the posterior beliefs about policies at each unit time, where the 
posterior beliefs about the policies depend on their negative expected free energies. The expected free energy is

Here, Q(oτ , sτ |π) = P(oτ |sτ )Q(sτ |π) ≈ P(oτ , sτ |õ,π) . Expected free energy Gπ is obtained by summing Gπτ over 
future time steps τ > t , see Eq. (12). Expected free energy can be expressed in terms of epistemic and extrinsic 
values, see Eq. (13). Epistemic value is the Bayesian surprise65 expected under predicted outcomes for a given 
policy. It expresses how much the beliefs about hidden states diverge from the beliefs about hidden states when 
predicted outcomes under a policy are taken into account66,67. Extrinsic value is the expected log probability 
of outcomes under a policy68. Expected free energy can also be expressed in terms of risk and ambiguity69, see 
Eq. (14). Risk is expressed as a KL divergence between predicted outcomes and outcomes preferred a priori. The 
closer the predicted outcomes (under a policy) are to the preferred outcomes, the more likely that policy will be 
pursued. Ambiguity is an expected entropy over the likelihood term. This term expresses that a policy is more 
likely to be pursued if it leads to more certain outcomes.

Variational updates.  Perception.  The equations below summarise perceptual inference as the optimisa-
tion of posterior beliefs about hidden states with respect to free energy under a given policy Fπ:

Here, sπτ  corresponds to the posterior beliefs about hidden states under a policy Q
(
sπτ |π

)
 . The first equation above 

shows the optimal solution sπ∗τ  to the state estimation problem, see Eq. (15). The difference between (log) optimal 
solution and (log) current beliefs about the hidden states generates a state prediction error see Eq. (16), where 
ε
π
τ = − ∂Fπ

∂sπτ
 . Finally, the beliefs about the hidden states are updated via each iteration of a gradient descent 

algorithm, see Eq. (17). Here σ is a softmax function—ensuring s is confined to a simplex70 (where its elements 
sum to one)—and � is the learning rate. Equations (16) and (17) are repeated until the state prediction error is 
suppressed επτ ≈ 0.

Attention.  The ζ in Eq. (15) is a precision (or inverse temperature) parameter applied to the likelihood matrix 
A . This parameter manipulates the precision of the mapping from hidden states to outcomes19. For each hidden 
state there is a precision term

(10)Fπ =
∑

τ

Fπτ

(11)Fπτ = −EQ(sτ |π)Q(sτ−1|π)[[τ ≤ t] · ln P(oτ |sτ )+ ln P(sτ |sτ−1,π)− lnQ(sτ |π)]

(12)Gπ =
∑

τ

Gπτ

(13)
Gπτ = − EQ(oτ |π)[DKL[Q(sτ |oτ ,π)||Q(sτ |π)]]

︸ ︷︷ ︸
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−EQ(oτ |π)[ln P(oτ )]
︸ ︷︷ ︸

Extrinsic value
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Risk

+EQ(sτ |π)[H[P(oτ |sτ )]]
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Ambiguity

(15)s
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lnBπ
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π
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Here i ∈ I and j ∈ J where I is the space of hidden states in a hidden state dimension and J is the space of out-
comes in a modality. Under active inference, attention corresponds to inferring the precision of sensory observa-
tions and their hidden causes14. This (Gibbs) parameterisation has been widely exploited to simulate phenomena 
from neuronal synchronisation71 through to visual illusions72. In the current work, we use this parameter to 
demonstrate how contextual perception can occur under active inference.

Policy evaluation.  In the policy evaluation phase, the model evaluates the policies in terms of their free energy 
under a given policy Fπ and expected free energy Gπ . A policy is more likely if it minimises both Fπ and Gπ.

where π is the posterior beliefs about the policies Q(π), and Fπ and Gπ are expressed as

Here, oπτ  are the expected outcomes under a policy Q
(
oπτ |π

)
 at a future time step τ. Cτ is the outcomes that 

the model expects a priori and H is the entropy of the outcomes for all possible combinations of hidden states 
H = −EP(oτ |sτ )[ln P(oτ |sτ )].

Action selection (and Bayesian model averaging).  In the action selection phase, an action at is sampled from 
the policies.

The chosen action is the one that is most likely to fulfil the expected outcomes. The model uses the expected 
hidden states to make predictions about the outcomes expected in the future.

Beliefs about hidden states sτ are obtained by weighing the beliefs about the hidden states expected under a 
policy sπτ  with the probability of policies ππ . This corresponds to Bayesian model averaged beliefs about hidden 
states, where each policy is a model, see Eq. (23). Here, the bold π corresponds to the posterior beliefs about the 
policies Q(π) whereas π in normal type corresponds to a policy (or sequence of actions). Expected outcomes are 
obtained by weighing the beliefs about outcomes under each hidden state A = P(oτ |sτ ) with the beliefs about 
hidden states sτ , see Eq. (24).

Contextual perception.  Here, we describe how contextual perception can occur under an MDP model of 
active inference, using the mental state attribution task. We assumed that the social context would influence the 
perceived emotion of emotionally ambiguous target-faces the most. This is because the facial features alone leave 
some uncertainty unresolved. For contextual perception to happen, we assumed the following three conditions:

	 (i)	 the target-face should express an ambiguous emotion,
	 (ii)	 the social context should provide coherent information (i.e. both faces that define the context express 

either happy or sad emotions),
	 (iii)	 The agent should be able to attribute the facial expressions of the target-face to an emotional state that 

is consistent with the social context.

An example is, identifying a target-face with ambiguous emotion as happy when the social context conveys a 
happy emotion (i.e. the other two faces are happy). This requires the agent to dissociate the facial expressions of 
the target-face with the sad emotion when the social context conveys a happy emotion. This can be expressed in 
the agent’s generative model in the following way: (i) under the happy context, the relative precision of the facial 
expressions of ambiguously sad faces is lower compared to the precision of ambiguously happy faces, (ii) under 
the sad context, the precision of the ambiguously happy faces is lower compared to the precision of ambiguously 
sad faces. We can express these mathematically with the equations below,

The likelihood of the outcomes in the generative process is described by Eq. (25). This equation describes the 
probability of the n-th outcome under the m-th modality om = n with m ∈ M and n ∈ N , where M is the space 
of outcome modalities (facial expressions, where, feedback) and N is the space of outcomes under a modality (e.g. 

(19)π = σ(−Fπ − Gπ )
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the outcomes in the feedback modality are null, correct and incorrect). The probability of the outcome om = n 
is expressed as a function of hidden states s1 = i,s2 = j , s3 = k and s4 = l where the superscripts correspond to 
different hidden state dimensions and i ∈ I (i.e., context) , j ∈ J (i.e., target face emotion), k ∈ K (i.e., target face 
type) and l ∈ L (i.e., where). Here the I, J, K and L correspond to the space of hidden states in each dimension 
respectively (e.g., J corresponds to the target face emotion hidden state dimension underwhich the possible states 
are happy and sad). See Fig. 4B for the generative process likelihood matrices in the mental state attribution task.

Equation (26) describes the probability of the outcomes for the generative model, where σ is the softmax func-
tion and ζmijk is a scalar value that corresponds to the precision of the likelihood mapping from the i-th, j-th and 
k-th hidden states to the m-th outcome modality. The probability of outcomes in the generative model is obtained 
by applying a softmax function to the product of the precision term ζmijk and the logarithm of the likelihood map-
ping. Here the bar notation is used (see P and A ) to indicate the likelihood mapping for the generative model.

We now introduce precision matrices. Each entry in these matrices shows the values of the precision terms 
ζmijk for a combination of hidden states and outcomes.

The first matrix in Eq. (27) shows the precision terms when the context and target face emotion are both happy. 
Note that the rows indicate modalities, while the columns are levels of the target-face type state. Similarly, the 
second matrix shows the precision terms when the context is happy and the target-face is sad. In both matrices, 
all precisions are set high (i.e. ∞ ) except for the mapping from the ambiguously sad target-face to facial expres-
sions in the second matrix. The precision of the likelihood mapping from ambiguously sad target-face to facial 
expressions is expressed by z . When the precision z is high (i.e. z → ∞ ), the agent is equally likely to attribute 
happy and sad emotions to target-faces with ambiguous emotion (see Fig. 5A). However, when the precision z 
is set low (i.e. z ≈ 0 ) the agent would no longer be able to associate the facial expressions of an ambiguously sad 
target-face with the sad emotion under a happy context (see Fig. 5B left panel). The agent can only associate an 
emotionally ambiguous target-face with the happy emotion.

(27)
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Similarly, the matrices in Eq. (28) shows the precision terms when the context is sad. Here, the precision of 
the mapping from ambiguously happy target-face to facial expressions (see the first matrix above) is expressed by 
z . When the precision z is high (i.e. z → ∞ ), the agent is equally likely to attribute happy and sad emotions to 
target-faces with ambiguous emotion. However, when the precision z is low (i.e. z ≈ 0 ) the agent can no longer 
associate the facial expressions of an ambiguously happy target-face with the happy emotion under a sad context 
(see Fig. 5B right panel). The agent can only associate an ambiguous target-face with the sad emotion. In the 
precision matrices, we used infinity signs ( ∞ ) and the digit zero ( z ≈ 0) to emphasise the relative difference 
between precisions.

Global versus local viewing.  Here, we will describe the computational mechanisms underlying global 
and local viewing strategies. Mathematically, these strategies can be described using the below precision matrix:

The precision matrix shows the mapping from the hidden state Where to the outcome modalities Facial expres-
sion, Feedback and Where. The columns are associated with the locations in the scene. Locations 2 and 3 are the 
locations associated with the eyes and the mouth of the target-face, respectively. Locations 4 to 7 are associated 
with the eyes and mouths of the faces that define the social context. Here, ztf  is the precision of the target-face 
facial expressions and zsc is the precision of the facial expressions of the faces that define the social context.

When the precision ztf  and zsc are both high, the agent would employ a global viewing strategy (see Fig. 10A). 
When the precision ztf  is high and zsc is low, the agent would employ a local viewing strategy, namely a decreased 
attention to the faces that define the social context (see Fig. 10B).

Data availability
The simulations in this paper were obtained by using a standard software routine, spm_MDP_VB_X.m. This 
code is available in the SPM software for Matlab: http://​www.​fil.​ion.​ucl.​ac.​uk/​spm/.
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