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Background: Breast cancer (BRCA) is a malignant tumor with a high mortality rate and
poor prognosis in patients. However, understanding the molecular mechanism of breast
cancer is still a challenge.

Materials and Methods: In this study, we constructed co-expression networks by
weighted gene co-expression network analysis (WGCNA). Gene-expression profiles and
clinical data were integrated to detect breast cancer survival modules and the leading
genes related to prognostic risk. Finally, we introduced machine learning algorithms to
build a predictive model aiming to discover potential key biomarkers.

Results: A total of 42 prognostic modules for breast cancer were identified. The
nomogram analysis showed that 42 modules had good risk assessment performance.
Compared to clinical characteristics, the risk values carried by genes in these modules
could be used to classify the high-risk and low-risk groups of patients. Further, we found
that 16 genes with significant differential expressions and obvious bridging effects might
be considered biological markers related to breast cancer. Single-nucleotide
polymorphisms on the CYP24A1 transcript induced RNA structural heterogeneity,
which affects the molecular regulation of BRCA. In addition, we found for the first time
that ABHD11-AS1 was significantly highly expressed in breast cancer.

Conclusion: We integrated clinical prognosis information, RNA sequencing data, and
drug targets to construct a breast cancer–related risk module. Through bridging effect
measurement and machine learning modeling, we evaluated the risk values of the genes in
the modules and identified potential biomarkers for breast cancer. The protocol provides
new insight into deciphering the molecular mechanism and theoretical basis of BRCA.

Keywords: breast cancer, differential expression, survival analysis, single-nucleotide polymorphisms,
machine learning
December 2021 | Volume 11 | Article 7919431

https://www.frontiersin.org/articles/10.3389/fonc.2021.791943/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.791943/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.791943/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.791943/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.791943/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lihui@ems.hrbmu.edu.cn
https://doi.org/10.3389/fonc.2021.791943
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.791943
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.791943&domain=pdf&date_stamp=2021-12-02


Wang et al. Dysregulation Activation by Essential Gene
INTRODUCTION

BRCA is a highly prevalent malignant tumor that presents
serious threats to life and health around the world. Latest data
show that the global incidence of breast cancer is increasing at a
rate of 3.1% per year, and the rate of mortality from breast cancer
remains high (1). Numerous studies have determined that BRCA
is a heterogeneous disease whose development is linked to
various environmental and genetic risk factors (2). However,
the molecular mechanisms of breast cancer are still unclear, and
further clarification of the molecular interaction and regulatory
pathways, identification of key biological markers, and
characterization of the genetic background of susceptibility
factors are urgent so as to better elucidate the stage, prognosis,
and risk features of this disease.

In recent years, with the continuous development of large-
scale, high-throughput sequencing technologies, as well as the
accumulated massive resources—which can be analyzed through
a series of computational methods, artificial intelligence, and
deep learning algorithms—a novel approach to the exploration
of the molecular mechanism of tumorigenesis and tumor
development has been realized. At present, breast cancer has
been investigated in the fields of genomics (3), epigenetics (2, 4),
metabolomics (5), and proteomics (6, 7). Integration of clinical
prognostic information with whole genome sequencing data is
an effective protocol to explore the molecular mechanism of
breast cancer.

Based on the genomic expression information, module-based
algorithm is one of the commonly used methods to explore the
molecular mechanism of breast cancer by mining the global co-
expression network modules and identifying intracellular
molecular interactions (8, 9). For example, Niemira et al.
identified key modules and genes in non–small-cell lung
cancer through WGCNA. As a result, new hub genes were
identified, including CTLA4, MZB1, NIP7, and BUB1B in
adenocarcinoma as well as GNG11 and CCNB2 in squamous
cell carcinoma (10). Yin et al. indicated that key genes were
crucial bridge molecules for the interaction of intracellular
biomolecules and play a predominant role in the coordination
of co-expression networks because of their high connectivity;
thus, hub genes might serve as vital biological marker or
candidate drug target (11). However, a large number of hub
genes were obtained in the above studies, and it is difficult to
accurately focus on only the molecules with major effect factors
in deciphering the essential regulation pathways. Aiming to
explore the mechanism of the carcinogenesis and progression
of cancer, the construction of a breast cancer risk-prediction
model based on the effects of leading genes is extremely
important (12).

In this study, WGCNA was used to identify co-expression
network modules based on the RNA sequencing (RNA-seq) of
BRCA. According to the hypergeometric test, we further
screened modules enriched with differentially expressed genes.
Next, by combining clinical information and taking advantage of
survival analysis, a total of 42 breast cancer survival–related
modules were identified. Finally, we introduced a machine
learning algorithm to construct a prognostic risk model of
Frontiers in Oncology | www.frontiersin.org 2
breast cancer using the mined module information. The
analysis of the expression of hub gene and single-nucleotide
polymorphism (SNP) allosteric risk in the modules showed that
16 genes might be potential key biomarkers, as well as alternative
drug targets. This study will likely help researchers to further
comprehend the carcinogenesis and progression of breast cancer
and could provide new insight into clinical treatment and
drug research.
MATERIALS AND METHODS

Data Processing
A breast cancer expression profile was downloaded using the
HiSeq platform (Illumina, San Diego, CA, USA) from The
Cancer Genome Atlas (TCGA) (13). A total of 96 tumor
samples and their corresponding 96 adjacent normal samples
in 1216 samples were obtained through sample matching which
ensuring the results from same patients were reliable, and clinical
information was also extracted for survival analysis. In addition,
the remaining 974 samples after sample matching clinical details
about the other breast cancer samples were adopted as a test set
for internal validation. Genes with a read count of 0 in at least
half of the samples were removed, and 30,089 genes were
retained for further analysis. We converted the read count
values of the genes into transcripts per kilobase of exon model
per million mapped reads (TPM) (14) for co-expression network
construction using a formula as follows:

TPMi =

Ni
Li

� �
*1000000

sum( Ni
Li
+…+ Nm

Lm
)

where Ni is the number of reads mapped to gene i, Li is the sum
of the exon lengths of gene i, and m is the total number of
genes, respectively.

Identification of Co-Expression
Network Modules
To explore the co-expression modules, we constructed co-
expression networks as undirected, weighted gene networks by
WGCNA (9). The nodes indicated genes, and edges were
determined by pairwise correlations between any two genes.
The adjacency matrix was constructed to describe the
correlation strength between genes. The value of adjacency
matrix aij was calculated as follows:

aij = jcor(gi, gj)jb

where i and j represented two different genes; gi and gj indicated
their respective expression values (TPM); and b is the parameter
representing the characteristics of scale-free network. In this
study, the adjacency matrix met the scale-free topology criterion
when the soft-threshold b equaled 5.

Then, in order to identify co-expression network modules, a
topological overlap matrix (TOM) was constructed based on the
topological similarity between genes and hierarchical clustering.
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Using the standard R software program (R Foundation for
Statistical Computing, Vienna, Austria) function hclust, we
gathered the genes with high topological similarity and applied
the dynamic branch cut methods to cut off different branches to
obtain co-expression modules. The number of genes contained
in each module was limited to at least 30.

Analysis of Differentially Expressed Genes
The R package DESeq2 was used to identify differentially
expressed genes (DEGs) between BRCA tumor samples and
normal samples. Genes with a count of less than 20 in the
samples were filtered out, and genes with an adjusted P-value
(Bonferroni, p-adj) of less than 0.01 and log2 |fold change (FC)|
of at least 1 were considered to indicate significantly
differential expression.

Selection of Differentially
Co-Expression Modules
In order to acquire differentially co-expressed modules
(DCEMs), we conducted a hypergeometric test using the
following equation:

P   value = SM
i=m

M
i

� �
N −M

n−i

� �

N
n

� � = 1 − Sm−1
i=0

M
i

� �
N −M

n−i

� �

N
n

� � ,

where N is the number of genes in the co-expression network,M
is the number of genes in the co-expression modules, n is the
number of DEGs, and m is the number of intersects of M and n.
Modules with P-values of less than 0.05 were considered to be
differentially co-expressed modules.

Identification of BRCA Survival–Related
Modules
A univariate Cox proportional hazards regression model (15)
was used to analyze the association between the expression of
genes and survival time by coxph. The risk score of a DCEM in
patient i was calculated as follows:

risk   score =o
k

j=1
aj ∗ E(genej)i

where aj is the regression coefficients of gene j in Cox regression
model, k is the number of genes in a candidate module, and E
(genej) is the TPM of gene j.

All of the tumor patients were divided into the following two
groups based on the median of risk scores (MRS) of DCEMs:
high risk (> MRS) and low risk (< MRS). Survival time was
assessed at the Kaplan–Meier plotter (16), where results with a
log-rank P-value of less than 0.05 were considered BRCA
survival–related modules.

Functional Enrichment Analysis
The R package clusterProfiler (17) was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses for BRCA survival–
Frontiers in Oncology | www.frontiersin.org 3
related modules. GO functional annotations, including
biological process (BP), cellular component (CC), and
molecular function (MF), were obtained, which were
considered statistically significant when the P-value was less
than 0.05.

Establishing the Risk Assessment Model
We integrated gene expression; risk scores; and clinical data,
including age, histological type, tumor/lymph node metastasis
(TNM stage), estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2);
constructing models for the one-, three-, and five-year survival
probability prediction. Univariate analysis and hazard rate
calculation were set up by the R package rms. Prediction
model correction curves based on bootstrapping were applied
to illustrate the uniformity between the practical outcomes and
model prediction.

Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)
The experimental BRCA cell line MCF-7 and normal human
breast cell line MCF-10 were obtained from the biometrics cell
bank ofWanlei. DMEM/F12 with 5% horse serum added was used
for the culture of MCF-7 cells. All cells were cultured in a
humidified environment consisting of 95% air and 5% CO2 at
37°C. Total RNA Extraction and qPCR Analysis RNase inhibitor
(Beyotime Shanghai, Shanghai, China) and 10 μL of SYBR Master
Mix (Solarbio, Beijing, China) were used to extract total RNA
according to the protocol provided by the manufacturer (Solarbio,
Beijing, China). qRT-PCR was conducted in triplicate. b-actin was
used as an internal control, and the 2−DDCt values were normalized.
The primer sequences for qPCR used in this study are shown in
Supplementary Table S1.
RESULTS

Exploring WGCNA
We constructed a weighted co-expression network based on
30,089 genes by WGCNA (see Materials and Methods section
for details) Due to the threshold setting principle, when b was set
to 5, the gene-interaction network attributed a scale-free network
to present the optimal network connectivity state (R2 = 0.89;
Figures 1A–D).

The genes with high topological similarity were collected by
hierarchical clustering and a dynamic branch-cutting method to
obtain the co-expression modules. Eventually, we identified 111
co-expression modules with sizes ranging from 32 to 3,156 genes
(Figure 1E). Through differential expression analysis via
DESeq2, we identified 7,629 DEGs, including 3,827 upregulated
genes with log2 FC of at least 1 and 3,802 downregulated genes
with log2 FC of −1 or less. In Figure 1F, the dark blue dots are
downregulated genes, and the red dots are upregulated genes.
GO function and KEGG annotation illustrated that DEGs
potentially associated with cancer-related molecular regulation
pathways, including the PI3K–Akt signaling pathway,
December 2021 | Volume 11 | Article 791943
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Ras signaling pathway, JAK–STAT signaling pathway, and MAP
kinase activity and negative regulation of cell adhesion
(Supplementary Table S2).

Identification of Breast Cancer
Survival–Related Modules
Next, we further aimed to identify survival-associated modules in
breast cancer based on the above differential expression analysis.
After hypergeometric testing (P < 0.05), we retained 45 DCEMs
with enrichment DEGs. Kaplan–Meier survival analysis and log-
rank testing were conducted to evaluate the performance of
prognosis. The modules with P-values of less than 0.05 were
considered as cancer survival–related modules (see the Materials
and Methods section for details). Ultimately, 42 breast cancer
survival–related modules were detected (Supplementary Table
S3). After DrugBank database retrieval, 35 of the 42 (88.33%)
survival-related modules had at least one gene were targets that
approved drugs by the United States Food and Drug
Administration (FDA). The proportion of drug targets in
survival-related modules (8.01%) was significantly larger than
Frontiers in Oncology | www.frontiersin.org 4
that in the total co-expression network (6.20%; Fisher’s exact test,
P = 1.22 × 10−9) and in the co-expression modules (6.27%;
Fisher’s exact test, P = 6.19 × 10−9). These results indicated that
the genes in survival-related modules preferred to be considered
with related targeted drugs.

We analyzed the biological functions and molecular
regulatory pathways of the screened breast cancer survival
modules in detail, finding the top 30 significantly enriched GO
terms and KEGG pathways, which showed these modules were
mainly involved in immune responses (Figure 2). For example,
neutrophil activation is involved in the immune response,
regulation of T-cell activation, cell growth and T-cell
differentiation, which is related to GO terms. Based on
pathway annotation, breast cancer–related modules were
significantly related to drug-related processes, such as the
PI3K–Akt signaling pathway, MAPK signaling pathway, and
breast cancer and drug metabolism cytochrome P450
(Supplementary Table S4). Known breast cancer–related GO
terms and KEGG pathways were collected from the Comparative
Toxicogenomics Database (CTD) (18). Notably, there was
A B D

E F

C

FIGURE 1 | Determination of co-expression modules and differentially expressed genes in the weighted gene co-expression network analysis (WGCNA). (A) Scale-
free index analysis of varying threshold powers (b). (B) The mean connectivity analysis of various soft-threshold powers. (C) The frequency of network connectivity
(K). (D) Checking the scale-free topology when b is equal to 5. The x-axis represents the logarithm of whole network connectivity, and the y-axis shows the logarithm
of the corresponding frequency distribution. The distribution follows an approximately straight line (R2 = 0.89), termed scale-free topology. (E) Modules mined by the
WGCNA algorithm. (F) Differentially expressed genes of BRCA. An adjusted P-value (Bonferroni, p-adj) of less than 0.01 and log2 |fold change (FC)| of at least 1 were
considered to suggest significantly differential expressions.
December 2021 | Volume 11 | Article 791943

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Dysregulation Activation by Essential Gene
considerable overlap between the functions annotated with the
survival-related modules and the breast cancer–related functions
recorded in the CTD. The consistency of enrichment results of
BP, CC, MF, and KEGG with CTD totaled 63.9%, 53.9%, 57.5%,
and 77.8%, respectively (Supplementary Table S4).

Take the salmon2 module as an example (Figure 3A), which
contains 87 genes, of which 17 are upregulated, 21 are
downregulated, 6 can be targeted by FDA-approved drugs, and
58 genes are associated with BRCA in CTD. Using expression
information contained in the genes of salmon2, we conducted
Kaplan–Meier survival analysis on 96 breast cancer samples.
Samples were divided into a low-risk group (n = 48 patients) and
high-risk group (n = 48 patients) based on the median value of
risk scores (see the Materials and Methods section for details).
The results showed that this module covers a favorable
classification and prognostic function, with a log-rank test P-
value of less than 1.0 × 10−4 (Figure 3B). The functional
annotation of salmon2 was enriched by metabolism and
regulation-related paths, such as the estrogen metabolic
process and drug metabolism (Figure 3C). To demonstrate the
potential prognosis effect of the salmon2 module, we collected an
independent verification set with additional 974 cancer samples.
The subsequent Kaplan–Meier survival analysis was performed
by utilizing the identical principle and revealed that the genes in
salmon2 exhibited a dominant prognostic capability, with a log-
Frontiers in Oncology | www.frontiersin.org 5
rank test P-value of less than 0.0001 (Figure 3D). The findings
indicated that the survival-related modules detected by our
pipeline might serve as potential prognostic biomarkers of
breast cancer.

Selection of Biomarkers for Breast Cancer
Hub nodes with a high degree of connection in the modules may
play a crucial role in biological regulation processes.
Subsequently, we screened 42 hub genes with bridging roles in
the survival-related modules as candidate biomarkers, including
12 downregulated (log2FC < −1, p-adj < 0.01) and eight
upregulated (log2FC > 1, p-adj < 0.01) genes. Among these, 28
were confirmed to be related to breast cancer according to CTD
annotation and literature mining (Supplementary Table S5).
After removing pseudogenes and other genes with no
corresponding names, we selected 16 genes for qRT-PCR
expression verification. The expression level of most of the
genes (13, 81.25%) was consistent with the results of data
mining (Figure 4). ABHD11-AS1 was highly expressed in
breast cancer samples, which means that the value of
expression was 2.13 and the P-value was 0.003. These findings
proved that the discovered hub genes are credible biomarkers,
which may contribute to bridging molecular interactions.

Interestingly, the hub gene CYP24A1 in the salmon2 module
mentioned above was downregulated in breast cancer samples,
A B

DC

FIGURE 2 | The top 30 annotations for survival-related modules. (A) Biological process enrichment. (B) Molecular function enrichment. (C) Cellular component
enrichment. (D) Kyoto Encyclopedia of Genes and Genomes enrichment. The red star represents the confirmed function associated with breast cancer in the
Comparative Toxicogenomics Database.
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consistent with numerous previous reports (19). CYP24A1 was
an essential gene in regulation of vitamin D. It had been reported
to play an important role in enhancing immune activity and
inhibiting tumorigenesis (20, 21). In order to further decipher
the molecular mechanism of CYP24A1, we identified three
known breast cancer–related SNPs (rs4909959, rs2209314,
rs22762941) according to the SNP4Disease database (22, 23).
Flanking sequences of SNPs (50 bp upstream and downstream of
mutant alleles) were also obtained using the dbSNP database
(24). Next, RNAsnp (25) was used to compare the RNA
secondary structural changes between wild- and mutant-type
transcripts. The rs4909959 U51C allele (P = 0.0325) substitution
resulted in a minimum free energy (MFE) value range of −23.90
to −24.00 kcal/mol and U51A allele (P = 0.1573) substitution
resulted in an MFE value range of −23.90 to −20.70 kcal/mol.
Green regions in Figure 5 represent wild-type and red represents
mutant-type transcripts, respectively. We could observe the
obvious structural changes in local regions induced by
rs4909959, especially at the U51C allele. The number of
internal loop structures changed, with bulge loops
disappearing. Also, the number of bases contained in hairpin
Frontiers in Oncology | www.frontiersin.org 6
loops increased significantly (Figures 5A, B). In addition, the
base-pairing probability was disturbed visibly from the square
dot plot of Figure 5. The upper triangle for wild-type (green) and
the lower triangle for mutant-type (red) transcripts indicate that
there was a significant allosteric effect on the folding morphology
of wild-type and mutant RNA transcripts, respectively. The other
two substitutions in SNP, the rs2209314 U51C allele (P = 0.3487)
and rs2296241 G51A allele (P = 0.6688), contributed to an MFE
decrease in the range of −24.50 to −26.60 kcal/mol and −15.00 to
−11.60 kcal/mol. Figure 5C exhibited a change from hairpin
loops to stem loops, while the change from stem loops to hairpin
loops was shown in Figure 5D. Structural variants can lead to
phenotypic variation or disease in several ways, which can
indirectly change gene expression through location effect. In
addition to these potentially pathogenic changes in gene
expression, the presence of structural variations may also lead
to further, potentially harmful structural changes (26). So the
dominant structural heterogeneity demonstrated that SNPs
induce changes in the RNA folding, triggering a disturbance in
the ability of molecular interactions, thereby affecting the
network bridging and combining effect with breast cancer–
A B

DC

FIGURE 3 | Network architecture and prognostic analysis of the salmon2 module. (A) Network plot of the salmon2 module. The upregulated, downregulated, and
non–differentially expressed genes are colored with red, blue, and gray, respectively. The rhombus represents the drug target. The size of a node represents the
degree of connectivity in the network. (B) Kaplan–Meier analysis for 96 patients with high-risk or low-risk scores. P-values were calculated using the two-sided log-
rank test. (C) Gene ontology enrichment analysis of the genes in the salmon2 module. (D) Kaplan–Meier analysis for 974 independent verification patients.
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related molecular regulatory pathways, ultimately leading to the
occurrence and progression of the disease. We speculated that
known BRCA-associated SNPs might influence the structure of
CYP24A1, which might be a significant molecular basis of its
potential biomarker.

In addition, ABHD11-AS1 was a key gene with a significantly
high expression status in the breast cancer survival–related
modules, which was identified in a novel fashion by our study.
In previous studies, ABHD11-AS1 has been confirmed as a
prognostic marker for lung, ovarian, thyroid, and pancreatic
cancers and so on, but there was still no evidence to support a
link to breast cancer prognostic. Therefore, we thought it worth
digging deeper into its role in breast cancer.

Construction of the Prognostic Risk
Model of Modules
We next established a risk prediction model based on univariate
and multivariate Cox regression analyses to evaluate the
prognostic performance of the detected modules by integrating
genetic effects and clinical characteristics of BRCA survival
modules. The clinical features included age, histological type,
TNM staging, ER, PR, and HER2 (Table 1). We referred to the
Frontiers in Oncology | www.frontiersin.org 7
risk ratios of 42 modules and the corresponding significant P-
values, along with the importance score of each clinical feature in
the model.

We found that all of the identified survival-related modules
have a potential ability for BRCA risk assessment. The average
value of C-index was 0.793. The lowest C-index of the dark red
module was still 0.7123, which was above the experience
threshold of 0.70 (Supplementary Table S6). Interestingly, we
found a consistent phenomenon by the constructed nomogram
models. In the risk score assessment of the nomogram, a model
with a lower percentage of clinical features and a higher
proportion of the gene risk value maintained a higher C-index.
Furthermore, in univariate and multivariate regression analyses
of all 42 modules, no remarkable risk scores associated with
clinical characteristics were found, but a significant risk score for
gene sets in each module (P < 0.001) was observed. In addition,
the risk ratio of each feature in the nomogram chart can be
broadly divided into three categories. In category 1, the risk
scores of all clinical features were low. However, it is clear that
there was one gene or several genes showing a main effect in the
evaluation of the one-, three-, and five-year prognostic risk of
BRCA (Figure 6A). In the darkolivegreen2 module, including
A

B

FIGURE 4 | Verification of differential expression of hub genes by quantitative real-time polymerase chain reaction (qRT-PCR). (A) Expression of 16 hub genes in 96
cancer samples and 96 adjacent cancer samples, obtained from the Cancer Genome Atlas. (B) Expression of 16 hub genes in the MCF-7 cell line and normal breast
cells by qRT-PCR. *P < 0.05; **P < 0.01; ***P < 0.001.
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A B DC

FIGURE 5 | Allosteric effect analysis of CYP24A1 induced by single-nucleotide polymorphisms (SNPs). (A) RNA structure disturbance deduced by the
rs4909959 UC allele. Changes in structure were identified by RNAsnp. Green represents wild type (WT), red represents mutant type (MT). SNP position is
colored in yellow. Minimum free energy describes the stability of the RNA structure. The base pair probability of the local RNA secondary structure is shown
in the dot plot, with the upper triangle representing wild type (green) and the lower triangle representing mutant type (red). (B) RNA structure disturbance
deduced by the rs4909959 UA allele. (C) RNA structure disturbance deduced by the rs2209314 UC allele. (D) RNA structure disturbance deduced by the
rs2296241 GA allele.
TABLE 1 | Clinical characteristics of 96 samples.

Features Total Alive Dead

Number 96 66 30
Age (median (IQR)) 56.00 (45.00–63.50) 56.00 (43.00–63.00) 60.00 (48.50–75.75)
Histological_type (%)
Infiltrating Ductal Carcinoma 76 (80.0) 52 (80.0) 24 (80.0)
Infiltrating Lobular Carcinoma 5 (5.3) 4 (6.2) 1 (3.3)
Mixed histology 10 (10.5) 8 (12.3) 2 (6.7)
Other 4 (4.2) 1 (1.5) 3 (10.0)

Stage (%)
Stage I 16 (16.8) 10 (15.4) 6 (20.0)
Stage II 58 (61.1) 40 (61.5) 18 (60.0)
Stage III or higher 21 (22.1) 15 (23.1) 6 (20.0)

ER (%)
Negative 16 (16.8) 11 (16.9) 5 (16.7)
Not Evaluated 12 (12.6) 7 (10.8)
Positive 67 (70.5) 47 (72.3) 20 (66.7)

PR (%)
Negative 25 (26.3) 17 (26.2) 8 (26.7)
Not evaluated 11 (11.6) 7 (10.8) 4 (13.3)
Positive 59 (62.1) 41 (63.1) 18 (60.0)

HER2 (%)
Negative 67 (70.5) 52 (80.0) 15 (50.0)
Not evaluated 6 (6.3) 0 (0.0) 6 (20.0)
Positive 22 (23.2) 13 (20.0) 9 (30.0)
Frontiers in Oncology | www.frontiersin.org
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the hub gene of ABHD11-AS1, the Hazard ratio (HR) was 2.1719
[95% confidence interval (CI), 1.5681–3.0081; P < 0.001)] by
univariate Cox regression analysis and 2.9296 (95% CI, 1.7899–
4.7948, P < 0.001) by multivariate Cox regression analysis
(Figure 6B). The findings illustrated that the prognostic
Frontiers in Oncology | www.frontiersin.org 9
module with ABHD11-AS1, in combination with other clinical
indicators, such as ER, PR, HER2, and TNM, have high accuracy
and sensitivity for breast cancer risk-stratification (C-index =
0.868). In addition, the nomogram showed that up to 16.1% of
the risk score was derived from the expression value of the genes
A B

D

E F

C

FIGURE 6 | Assessment of the prognostic risk model for BRCA. (A) Nomogram model of the darkollvereen2 module, with the leading gene being ABHD11-AS1.
(B) Univariate and multivariate regression analyses of the darkollvereen2 module. (C) Nomogram model of the lightsteelblue1 module, with the leading gene being
LINCR-0003. (D) Univariate and multivariate regression analyses of the lightsteelblue1 module. (E) Nomogram model of the firebrick3 module, with the leading gene
being XKR7. (F) Univariate and multivariate regression analyses of the firebrick3 module.
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in the module rather than clinical features. Among gene risk
scores, ABHD11-AS1 has the highest risk score with 23.847. So it
played a completely dominant role in the module, which further
indicated the possibility and necessity of ABHD11-AS1 as a
breast cancer–related risk target or biomarker. The greater the
proportion of risk scores in the prediction model, the greater the
consistency index of the model, indicating that risk scores could
be better at predicting the prognosis of breast cancer, as shown in
Supplementary Figure 1.

Category 2 was similar to category 1. The risk score of clinical
characteristics in the nomogram was low, but the genetic risk
score was relatively high and balanced (Figure 6C). Taking
lightsteelblue1 module as an example, the HR was 1.1291 (95%
CI, 1.0473–1.2174; P = 0.002) in the univariate Cox regression
analysis and 1.1232 (95% CI, 1.0368–1.2167; P = 0.004) in the
multivariate Cox regression analysis (Figure 6D). The C-index
of the module was 0.7820, with the hub gene being LINCR-003.
Category 3 models were slightly different; here, the effect sizes of
clinical factors and genetic risk values were comparative
(Figure 6E). The Firebrick3 module is representative of this
type of module, where the HR was 1.6552 (95% CI, 1.3452–
2.0367; P < 0.001) in the univariate Cox regression analysis and
1.5997 (95% CI, 1.2298–2.0807; P < 0.001) in the multivariate
Cox regression analysis, respectively (Figure 6F). The C-index of
the module was 0.7699, with the hub gene being XKR7. Overall,
our findings indicated that the gene risk score of BRCA survival–
related modules could be an independent feature to predict
breast cancer prognosis.
DISCUSSION

In this study, we constructed co-expression network modules by
WGCNA and identified biomarkers related to breast cancer
prognosis by combining clinical features and RNA-seq data. The
functional annotation of survival-related modules indicated that
these modules were mainly involved in some immune responses,
cancer pathways, and themetabolismof certaindrugs. By analyzing
the function and molecular mechanism of leading genes, we found
that 16 key biomarkers of breast cancer might be related to
prognosis and molecular diagnostics, including CYP24A1 and
ABHD11-AS1. Finally, we established a risk-prediction model
using a machine-learning algorithm. Using univariate and
multivariate regression analyses, we found that the expression
risk carried bya gene canwell predict the prognosis of breast cancer.

This study confirmed that the single nucleotide change of
CYP24A1 could induce the mutation sequence to change the
folded state of the spatial structure. This structural heterogeneity
might be the potential mechanism that caused CYP24A1 to be
significantly downregulated in breast cancer samples and
participated in the specific molecular function of breast cancer.
Therefore, we propose a hypothesis that SNP changes can cause
RNA secondary structure changes, affecting gene expression and
leading to the occurrence of diseases. Certainly, this hypothesis
still needs to be validated by experiments in further studies.

Interestingly, evidence has demonstrated that ABHD11-AS1
is closely correlated with an unfavorable prognosis of patients
Frontiers in Oncology | www.frontiersin.org 10
with non–small-cell lung cancer (27), bladder cancer (28, 29),
ovarian cancer (30), thyroid cancer (31, 32), and other cancers,
but ABHD11-AS1 was first confirmed to have an association with
breast cancer prognosis in this study.

Our analysis only took advantage of RNA-seq data, but a large
number of studies have shown that microRNAs, lncRNAs, and
epigenetic modifications was available for screening prognostic
markers in cancer; thus, we can further integrate multiple omics
data to dig out factors related to the prognosis of breast cancer.
This will be conducive to a more comprehensive exploration of
the factors related to the prognosis of breast cancer, a deeper
understanding of the pathogenesis of breast cancer, and the
provision of new ideas for the treatment of cancer and new
targets for drug development.

In summary, we identified the modules related to breast
survival in combination with expression data and clinical
information and verified the results from different perspectives,
such as functional enrichment, targeted drug enrichment, and
risk model construction, indicating that the key genes in these
modules can be used as biomarkers for breast cancer prognosis.
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