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Abstract: Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regard-
less of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics
(diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment
options as a result of the complications posed by cancerous tumors. In recent years, the applica-
tion of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer
treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in
their environment, which positively impacts theranostic applications in nanomedicine significantly.
MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion re-
gion visualization, and T cell-based radiotherapy because of their interesting features of small size,
high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling
of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of
luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite
Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is
because the combination of Re(I) with MNPs can improve low distribution and cell penetration into
deeper tissues.

Keywords: cancer; nanoparticles; iron oxide; rhenium(I) tricarbonyl; nanotheranostic.

1. Introduction

Cancer is a well-known, complicated and multistage disease caused by an uncontrolled
division of abnormal cells in the body [1]. Regardless of the continuous progress in cancer
diagnosis and therapy, this disease remains the second leading cause of death globally [2].
As much as the conventional cancer treatment approaches (i.e., surgery, radiotherapy,
and chemotherapy) have shown positive impacts on cancer mortality rate, there still exist
several challenges in cancer management. Amongst the stated treatment approaches,
radiotherapy displays an added advantage as patients treated from this approach exhibit
an improved long-term survival. Radiotherapy is a cancer treatment approach, falling
under the umbrella of nuclear medicine, utilizing high doses of radiation to kill cancer cells
and reduce the size of tumors [3]. Nuclear medicine, also known as radiopharmaceuticals,
involves the use of radioisotopes bound to biological molecules that are capable of targeting
specific organs, tissues, or cells. This field of medicine has been broadly studied as an
advanced diagnostic tool where radionuclides are introduced in vivo. This is followed by
the detection of the emitted gamma rays and generation of images which give detailed
radionuclides distribution as well as physiological characterization of targeted areas [4,5].
An emerging area in nuclear medicine incorporates nano-imaging agents (see Figure 1)
with dual behavior as both diagnostic and therapeutic tools [6,7]. However, due to the low
distribution and cell penetration of these nanomaterials, their undesired pharmacokinetics
had to be improved [8]. Thus, different nanotheranostics based on polymeric NPs have
been manufactured and radiolabeled with available radionuclides of choice [9]. Within
these polymeric NPs, various techniques are utilized to diagnose and treat cancerous
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diseases [10–12]. Theranostic nanomedicine, also known as nanotheranostics, involves
treatments with nanosize particles (<100 nm) and has a large number of capabilities such
as targeted delivery, controlled release, greater transport efficiency via endocytosis, stimuli-
responsive systems, and the combination of therapeutic approaches such as multimodality
diagnosis and therapy [13,14].
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Figure 1. A schematic representation of nanotheranostics used for simultaneous release and imaging.

Subsequently, nanotheranostics’ stability has been improved by linking molecules
such as chelator agents that can bind to radionuclides (i.e., 186Re, 188Re, and 99mTc) and
NPs [15]. The radioactive properties of these radionuclides are shown in Table 1.

Table 1. The categories of radionuclides used as therapeutic and diagnostic agents [5].

Radionuclide Half-Life (t1/2) Emission Emax

188Re 89.2 h β,γ 1.07 MeV
186Re 17.0 h β,γ 2.12 MeV
99mTc 6.0 h γ 140 KeV

Radionuclides which solely emit gamma rays (γ) such as 99mTc possess diagnostic
purposes, while radionuclides such as 186Re and 188Re emit beta particles (β) and gamma
rays (γ) for therapeutic and diagnostics purposes, respectively. This ultimately led to the
introduction of the Re(I) tricarbonyl core in the theranostic application by Alberto et al.
(1999) [16] and Top et al. (1995) [17]. In their studies, they participated in the group VIIB
transitional metal chemistry via the synthesis of a facile method to yield the [M(CO)3]+

core, where M = Tc or Re. Most importantly, the low-spin d6 electronic configuration and
the stability of the CO ligands make the substitution in the [Tc or Re(CO)3]+ core useful
in radiopharmaceutical chemistry [18]. From these two metal cores, the Re(I) tricarbonyl
core displays an added advantage, since its chemistry can be studied with this metal
being in a natural state as opposed to the radioisotopic state. Moreover, the biological
application of the relatively small size Re(I) tricarbonyl moiety as compared to the kinetic
stability and inertness, serves as a potential advantage [19,20]. Additionally, the kinet-
ically inert Re(I) tricarbonyl complexes exhibit distinct phosphorescence/luminescence
properties, depending on the nature of the ligands. This is another reason they found a
huge application as photosensitizers and bio-imaging agents [21]. Conversely, the use
of SPION layered material with radionuclides as theranostics provides great potential to
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improve the delivery processes of radionuclides into the targeted tissues. In this review,
the main focus is based on the class of hybrid MRI-OI probes that are made by utilizing
ultra SPION and sensitized luminescence compounds with the d-block element, Re. The
potential applications of the nanoparticles (i.e., magnetite Fe3O4) functionalised with the
Re(I) tricarbonyl complexes as a bimodal contrast agent for MRI and optical imaging of
nanoparticles have been demonstrated by Carron et al., 2015 [22].

2. Magnetic Nanoparticles

Magnetic NPs have brought enormous attention to several biomedical applications,
due to their intrinsic biocompatibility and interaction with externally applied magnetic
fields. This is because magnetic NPs can distort magnetic fields in their surroundings,
which establishes the basis for intensified contrast in MRI. In other uses, the applied
magnetic fields can create magnetic forces and torques on their magnetic dipoles, leading
to particle translation, rotation, and even energy dissipation in the form of heat. This
phenomenon results in applications in magnetic biomarker or cell break-up targeted drug
delivery, magneto-mechanical actuation of cell surface receptors, magnetic hyperther-
mia and triggered drug release as well as biomedical imaging. That is why there has
been fast-growing research based on the synthesis, characterization, and post-synthesis
application-specific to modification of magnetic Fe3O4 and substituted ferrite nanopar-
ticles. This has led to several emerging uses in a broad array of fields such as medical
and biomedical applications [23–26]. Thus, this review focuses on the coordinated Re(I)
tricarbonyl complexes, functionalized with the magnetic Fe3O4 NPs as MRI-OI probes.

2.1. Iron Oxide NPs for Biomedical Applications

Several materials and compositions have been utilized to compose magnetic NPs by
differentiating magnetic and physical properties necessary for the intended use. Still, in
the biomedical arena, the potential biocompatibility and the long-term in vivo fate and
clearance of magnetic NPs must be taken into account. These accountabilities prohibit the
nanoparticle compositions and formulations that can be applied safely without presenting
harm or side effects to living tissue [27,28]. This makes a specific subgroup of ferrite
nanoparticles, MxFe3-xO4 (M = Fe, Mn, Ni, or Zn; x = divalent cation) the best candidates
for biomedical uses [29,30]. The biocompatibility of magnetic iron oxide NPs is less of a
concern because a healthy human body already has mechanisms for handling, storage,
and the use of iron [31]. Iron is an essential nutrient to sustain human health and survival.
Essentially, it participates in the transport and storage of oxygen throughout the body,
DNA synthesis, energy production, and metabolism, and detoxification; thus, it acts as
both an antioxidant and pro-oxidant. Generally, the average human body has about 4 g
of iron, and smaller contents of the other metals, in the form of two highly significant
molecules, ferritin and haemoglobin [32].

Secondly, there has been extensive testing concerning the safety of these nanoparticles
in laboratory, preclinical, and clinical settings; this is why ferrite magnetic NPs are preferred
over others for biomedical applications. Many formulations of iron oxide have been
accepted by regulatory agencies in both the United States and Europe for clinical-stage
examination and use. For instance, the treatment of pancreatic and brain tumors [33,34],
their applications in imaging and diagnostic settings via magnetic resonance imaging
(MRI), and their employment for sentinel lymph node (SLN) mapping [35].

2.2. Magnetic Resonance Imaging (MRI)

MRI is used to investigate the properties of magnetic NPs such as Fe3O4 and Fe2O3.
When magnetic NPs are introduced, they generate a local magnetic field, which results
in the disturbance of the nuclear relaxation of magnetic nuclei in the environment [36].
These NPs can further stimulate the relaxation process and shorten the relaxation time
of neighboring protons, intensifying the signal contrast between the surroundings and
distal background in MR images. Unfortunately, MRI applies contrast agents for imaging
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which can be demanding, because it requires an extra effort to identify and prepare suitable
imaging agents for targeted application. However, the use of magnetic Fe3O4 NPs is
advantageous because they are bio-compatible for in vivo applications [37].

2.3. Clinical Applications of SPIONs

SPIONs are utilized as iron supplements in anaemic patients due to their non-toxic
and bio-compatible nature [38]. They are also being examined for imaging vasculature
and tumors [39], gene therapy, drug delivery [40], tracing of labeled cells [41], thermal
ablation of tumors via magnetic heating [42], and organ preservation [43]. Within the last
decade, the Food and Drug Administration (FDA)’s approval of ferumoxytol (Feraheme)
to nurse patients with iron deficiency and chronic kidney disease highlighted the clinical
applicability of SPIONs in therapy [44]. It was reported that patients tolerated up to 510 mg
Fe/injection, with subsequent growth in haemoglobin level post-injection [45]. No serious
adverse events were observed from the study that was reported in 396 US patients who
received a total of 570 intravenous (IV) injections of SPION therapy.

3. Multimodal Cancer Theranostics

There are several known molecular imaging modalities such as MRI, single-photon
emission computerized tomography (SPECT), and positron emission tomography (PET);
however, none of them are perfect and adequate to acquire all the necessary information
for a particular question [46]. For instance, it is challenging to quantitatively determine
fluorescence signal in vivo, specifically in deep tissues; although the use of MRI would
render high resolution, it suffers from low sensitivity, whereas imaging methods relying
on radionuclide show very high sensitivity but poor resolution. Therefore, the blend of
multiple molecular imaging techniques provides a symbiotic advantage as compared to
separate individual modalities. Thus, this review describes the combination of magnetite
NPs with rhenium(I) tricarbonyl complexes. Due to the inherently low sensitivity of MRI,
exogenous contrast agents such as the magnetic Fe3O4 NPs (induces higher magnetic fields,
4.7–14 T in small animal models) are incorporated to enhance sensitivity and to obtain
data for a much longer period. In this instance, a crystalline Fe3O4 core is commonly
incorporated into a polymer coating material such as dextran or poly(ethylene glycol) PEG
for its use as an MRI contrast agent [47]. As a result, the existence of thousands of iron
atoms in each particle will produce a high T2 relaxivity [48].

Additionally, Fe3O4 NPs can be attached to a radionuclide such as 187/188Re to dra-
matically amplify the signal, enhance receptor-binding affinity, improve the detection
sensitivity and quantify imaging, which is only true if the radioisotope remains bound
to the NP. 187/188Re isotopes form part of the first radionuclides that were put on trial
for NP-based radiotherapy. Amongst them, 188Re has interestingly been examined for
magnetically targeted radiotherapy [49,50]. For instance, when the surface of silica-coated
Fe3O4 NPs is labeled by 188Re with >90% labeling yield and good in vitro stability, the
radioisotope uptake in the tumor is enhanced as a magnetic field is simultaneously applied
above the tumor area [51,52]. Liang et al. (2007) reported the successful attachment of
amino-functionalized superparamagnetic Fe3O4 NPs with a humanized monoclonal anti-
body targeted for liver cancer cells. They then radiolabelled with 188Re and consequently,
due to their size (between 10 and 15 nm in diameter), these NPs were expected to have
high uptake in the reticuloendothelial system (RES), e.g., liver, and to uplift magnetically
targeted radiotherapy for the treatment of liver cancer [53].

Radiolabelling of magnetic NPs creates a potential bimodal contrast agent for MRI
and optical imaging; hence, a few examples attributed to the combination of magnetic
Fe3O4 NPs and Re(I) tricarbonyl complexes are illustrated which are in line with the aim
of this review. However, other general examples concerning the potential application of
Re(I) tricarbonyl complexes functionalized with other types of NPs are also shown. A
siloxane luminophore is normally used to functionalize the surface of magnetite to yield
water-dispersible Fe3O4-NPs (as illustrated in Scheme 1). This is a convenient way because
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it produces a biocompatible, inert, and permanent shell that is commonly known for its
diverse functionalities. Additionally, it creates a thin layer of functionalized siloxanes
around the Fe3O4 NPs which forms an appropriate scaffold for linking Re(I) tricarbonyl
complexes [54,55]. In this instance, oleate functionalized Fe3O4 NPs are treated with N-
(trimethoxysilylpropyl) ethylenediamine triacetic acid trisodium salt to acquire hydrophilic
Fe3O4 NPs with multiple acid functions. This is followed by a multistep preparation with
picolylamine, which reacts with the free acid of the NPs to produce a peptide bond with
the metal.
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Scheme 1. Design of the magnetoluminescent iron oxide nanoparticles. Red and blue circles represent hydrophilic Fe3O4

NPs with multiple acid functions and the luminophore, respectively [22].

Interestingly, the Re(I) tricarbonyl complexes (illustrated in Scheme 2) possess po-
tential luminescent properties between the 590 and 620 nm region of the electromagnetic
spectrum; hence, they have been identified as the best candidates to be used as OI con-
trast agents for cancer theranostics [56,57]. This potential of the Re(I) tricarbonyl complex
antenna structure has been found useful due to its high affinity towards the pyridine
ligands, whilst keeping the Fe3O4 NPs as small as possible so that the benefits of T1 and T2
contributions can be useful for MRI applications [58–60].
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bipyridine (L2), 1 eq. ClRe(CO)5, benzene, 333 K, 5 h. (b) AgOTf, THF/MeCN, 16 h. (c) H2O/THF, HCl, 1-ethyl-3-(3-
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223 K, 17 h [22].

4. Phosphorescence Transition Metal Complexes for Tumor Diagnosis

Several transition metal complexes exhibit different types of excited states depending
on the metal centres, the triplet-state energy levels of the ligand, and the local environment.
These excited states include metal-to-ligand-charge-transfer (MLCT), intraligand-charge-
transfer (ILCT) as well as ligand-to-ligand-charge-transfer (LLCT), and these are mostly
found in heavy-metal complexes. However, the MLCT state is commonly seen in tran-
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sition metal complexes with d6 and d8 configurations; therefore, MLCT is in charge of
phosphorescence emission [61].

Phosphorescence is referred to as the process whereby energy is absorbed by a sub-
stance and subsequently released slowly in the form of light. Phosphorescent transition
metal complexes (PTMCs), such as Ru(II), Re(I), Ir(III), and Au(I) complexes, show po-
tential as phosphorescent imaging agents. Thus, they are versatile and form a dynamic
scaffold for the growth of tumor diagnostic probes due to their advantageous photophys-
ical properties such as large Stokes shifts, long luminescent lifetimes, and resistance to
photo-bleaching [61,62]. Furthermore, by varying the ligands around these types of com-
plexes (PTMCs), their photo-physical properties can be easily tuned [63]. For instance, the
emission spectra will be shifted into the near-infrared radiation when there is an addition
of an extensive electronic system in the co-ligands. This is more favored for biological
imaging because near-infrared rays penetrate through into deeper tissues within the range
of 750–950 nm [64].

Additionally, the triplet-excited state of PTMCs confers a long-lived phosphorescence
(hundreds of nanoseconds (ns) to microseconds (µs), much larger than those of organic
fluorophores) with a greater Stokes shift [65,66]. Stokes shift is the distinction between the
wavelength at which a molecule emits light and the wavelength at which it was excited.
These unique properties permit facile differentiation of the PTMC signal from a highly auto-
fluorescent background and also neglect the self-quenching of fluorescence that is displayed
by some organic dye molecules [67]. This section outlines the use of phosphorescent Re(I)
tricarbonyl complexes for cancer diagnostic applications. The use of α-diimine ligand in the
fac-[Re(CO)3(X)(α-diimine)] (X = halide) structure exerts a powerful influence on the MLCT
properties. The application of fac-[Re(CO)3(X)(α-diimine)] complexes is advantageous
because they allow easy synthesis and give some of the earliest insights into the applications
of molecular metal complexes. The vigorous anticancer activity of the existing metal-based
chemotherapeutic drugs gives rise to a range of unwanted adverse side effects due to their
non-specific distribution throughout the body. Nonetheless, the systematic administration
and pharmacokinetics of anticancer drugs as well as the precision of therapeutic drug
delivery can be enhanced by the combination of therapeutic and diagnostic approaches into
a single “theranostic” modality. The type of therapeutic modality classifies the anticancer
drugs that should be used depending on the kind of therapy, shown in Figure 2.
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PTMC-based theranostic agents generally comprise two main constituents, namely:
metal complex core and a targeting ligand. On the other hand, theranostic agents based
on non-emissive transition metal-based drugs generally need three components, namely:
an imaging luminophore, a metal-based pro-drug as well as a targeting ligand. Most
importantly, a transition metal complex can be thought to comprise separate modules that
each possess different functionalities depending on the type of theranostic method used.
For example, the non-emissive platinum pro-drug, such as cis-platin, can be coordinated
with extended ligands that behave as the signal transducer and targeting moiety for chemo-
theranostic imaging. In contrast, with photodynamic therapy, the complex is emissive
for optical imaging. The metal centre reacts as a scaffold for producing reactive radicals
for therapeutic aim, while the ligands act as the targeting moiety. Therefore, with the
growing interest in organometallic chemistry, several transition metal complexes-based
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theranostic agents, such as fac-[Re(CO)3(X)(α-diimine)] (X = halide), have been synthesized
with enhanced selectivity, permeability, efficacy, retention, and cellular uptake efficacy.

4.1. Luminescent Rhenium(I) Tricarbonyl Complexes

The exploitation of facial rhenium(I) tricarbonyl α-diimine complexes dates back to
the 1970s. Their chemical properties have attracted much attention because of their use-
ful photo-physical attributes. Most recently, they have been widely applied as imaging
agents in human cell lines due to their biological stability [56,62,68–70]. These types
of Re(I) tricarbonyl complexes with the general formula fac-[Re(CO)3(N,N’)X]n+, (where
N,N’ = 1,10-phenanthroline (phen) or 2,2 –bipyridine (bpy) X = anionic or neutral mon-
odentate ligand and n = 0 or 1, respectively), have been widely studied due to their
distinctive luminescent properties [71]. Additionally, the existence of a single electron-
acceptor α-diimine ligand, which negates the problem of localization of the excited electron
normally occurring for polypyridine ruthenium(II) complexes, makes these complexes
extremely interesting also for basic photo-physical studies [72]. The Re(I) tricarbonyl
-diimine complexes display d Re→ *N,N’ MLCT absorptions, which are similar to other
d6 transition metal complexes. These complexes show relatively high molar absorptivity
(ε = 104 cm−1.M−1) and moderately long-lived excited states (typically 0.1–1 s in solution
at room temperature). During optical excitation most of these species exhibit intense and
unstructured emission in solution, centred at approximately 600 nm, which emanates from
the MLCT excited states that are mainly of triplet character. According to Villegas et al.
(2005) [73], very high photoluminescence quantum yields (up to 0.8◦) can be acquired for
cationic species, whereas those of neutral species normally do not surpass 0.05 [74].

The novel Re(I) tricarbonyl complexes 1–18 (see Figure 3) possess favorable photophys-
ical properties (i.e., emission lifetimes (τ), percentage quantum yields (Φ), emission energy
(λmax), as shown in Table 2) at a given maximum wavelength (λmax). Significantly, their
favorable luminescence behavior can be displayed in various solutions such as degassed
acetonitrile, chloroform, and air-equilibrated water, however small these variations are in
the different solvents. These beneficial luminescence properties are further highlighted by
the successful application of the reported complexes (see Table 2) as imaging agents.
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Table 2. Photophysical properties of Re(I) tricarbonyl complexes 1–3 [75], 4–7 [76], 8 (L1–L7) [77] and 9–18 [78].

Complexes Solvent

Emission Absorption

τ (µs) Φ (%) λmax (nm) λmax (nm)/
ε (L.mol−1. cm−1)

1 Acetonitrile 0.46 0.12 ± 0.03 580 310 (13,400); 350 (10,600)
2 Acetonitrile 0.45 0.12 ± 0.01 609 310 (9700); 350 (7300)
3 Acetonitrile 0.58 0.18 ± 0.01 593 310 (13,100), 350 (8200)

4 Air-equilibrated
aqueous 0.31 1.66 ± 0.06 560 225 (31,300 ± 1300) 257 (18,200 ± 800)

5 Air-equilibrated
aqueous 0.52 2.14 ± 0.16 560 24 (30,700 ± 1900)

6 Air-equilibrated
aqueous 0.47 2.38 ± 0.31 560 22 (32,300 ± 1000)

7 Air-equilibrated
aqueous 0.62 3.09 ± 0.30 545 23 (35,300 ± 600)

8 L1 Chloroform 0.170 - 577 276, 362, 410
8 L2 Chloroform 0.153 - 585 277, 339, 423
8 L3 Chloroform 0.143 - 581 277, 338, 423
8 L4 Chloroform 0.141 - 586 277, 337, 423
8 L5 Chloroform 0.158 - 582 282, 349, 423
8 L6 Chloroform 0.162 - 580 279, 352, 419
8 L7 Chloroform 0.185 - 586 288, 342, 423

9
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

1.5 5.1 ± 1.1 528 226 (36,800 ± 1300), 275 (26,800 ± 900),
322 (6400 ± 200), 366 (3600 ± 100)

10
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

1.9 10.7 ± 0.6 516 225 (41,600 ± 7300), 275 (27,200 ± 4900),
323 (5700 ± 900), 367 (3200 ± 400)

11
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

1.0 4.5 ± 0.4 518 228 (34,600 ± 1200), 286 (23,400 ± 800),
308 (11,900 ± 400), 372 (2100 ± 70)

12
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

2.0 7.2 ± 0.2 507 227 (36,800 ± 6800), 285 (23,800 ± 700),
309 (11,500 ± 300), 373 (2100 ± 50)

13
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

0.4 6.1 ± 1.7 536
222 (18,900 ± 200), 249 (20,100 ± 1900),
308 (10,700 ± 400), 318 (12,500 ± 400),

343 (3600 ± 700)

14
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

0.6 9.1 ± 3.0 528 246 (22,600 ± 500), 308 (107,00 ± 200),
319 (13,000 ± 300), 345 (3400 ± 100)

15
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

0.4 6.5 ± 2.0 528 252 (24,000 ± 3000), 304 (11,800 ± 1500),
315 (13,400 ± 1700), 338 (4600 ± 500)

16
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

0.6 11.5 ± 3.9 518 250 (82,00 ± 4300), 305 (12,800 ± 2000),
315 (14,900 ± 2300), 339 (4000 ± 400)

17
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

0.3 3.4 ± 1.1 537 223 (33,900 ± 1000), 251 (30,500 ± 900),
303 (8800 ± 300), 337 (4500 ± 80)

18
Air-equilibrqted

Phosphate-Buffered
Saline (pH 7.40)

0.4 7.1 ± 3.0 527 224 (41,400 ± 2000), 251 (34,100 ± 1900),
303 (9600 ± 500), 332 (4700 ± 300)

4.2. Chemo-Theranostic

Chemotherapy is an effective type of cancer treatment utilizing chemotherapeutic
agents, which mostly function by impairing mitosis (a division of cells into two daughter
cells) in rapidly dividing cancer cells. Transition metal complexes were found to have
greater use in the development of chemotherapeutic agents because of their DNA alkylation
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and/or intercalation abilities. For instance, platinum-based alkylating agents such as
cisplatin are exceptionally effective against different types of cancers, for instance, testicular
and ovarian cancers. However, their small size and square planar geometry result in them
achieving poor site exploitation at the double-helix level. These limitations instigated the
growth of new chemotherapeutic techniques with alternative metals and geometries such
as Tc and Re [79].

4.3. Cellular Imaging

Many photophysical properties of luminescent transition metal complexes, for exam-
ple, large Stokes shifts, long luminescent lifetimes, and resistance to photo-bleaching in
addition to low toxicity and good uptake, make them better candidates to be used as cell
imaging agents [80]. Therefore, several mononuclear rhenium(I) tricarbonyl complexes
with a variety of charges and degrees of hydrophobicity have been synthesized and utilized
as luminophores in fluorescence cell imaging [81]. On the other hand, chemical groups
have been presented in the ligand sphere to interact with or bind to specific biological
targets [82]. Additionally, the localization of the excited state of fac-[Re(CO)3(bpy)(X)],
(X = halide) complexes on the distinctive bipyridine chromophore [83,84] make easier
modifications to permit a response to the environment. The emission from these types of
systems is especially sensitive to the local surrounding [85], that involves hydrophobicity
of the environments; thus, they can be further used as bio-sensing probes [86].

5. Biological Studies

Although cisplatin is a clinically approved drug for cancer therapy, platinum resistance
remains the primary concern due to genetic and epigenetic changes of various cellular
routes [87]. Hence, several studies currently focus on fighting against resistance and
consequently substituting these old drugs. Recently, several studies involving in vitro
testing of Re(I) tricarbonyl complexes with the focus on the development of novel and
target-specific chemotherapeutic drugs have been reported [87,88]. Herein, the cytotoxicity
of a variety of biologically active Re(I) tricarbonyl complexes is explained in different cell
cultures. To comprehend the extent of cancer drug cytotoxicity, in vitro applications in
different cell lines are performed [89]. Cytotoxicity in cells is described as the inhibitory
concentration (IC50) needed for a specimen or complex to kill 50% of the cell population.
IC50 values are used to express cytotoxicity, which is determined as the mean percentage
increase in comparison to the untreated control. Furthermore, to evaluate the cytotoxic
ability of a complex, selectivity index (SI) is applied by measuring the ratio of IC50 of
normal cells to the IC50 of cell death population in cancer cells [90,91]. The SI values are
indicative of whether a complex is noncytotoxic or not (i.e., the greater the SI value, the
more selective a compound is). An SI value of > 2 shows that a compound has selective
cytotoxic activity; however, an SI value of < 2 indicates the general cytotoxicity towards
cells [89]. Additionally, cellular systems obtained from cancerous tissues are frequently
utilized to examine the cytotoxicity of new complexes, which is done by comparing the
effect of the compounds on the tissues. Most importantly, the right concentration (µM)
of test materials determines whether a particular compound is an active anticancer agent
or inactive antiproliferation of cancer cells [92]. Table 3 shows different Re(I) tricarbonyl
complexes 19–24 that have been tested and found to possess some cytotoxic activity
against their respective cell lines: HeLa, HT-29, PT-45, HepG2, U-2 OS, A2780, CP70, etc.
However, according to Knopf et al. (2017), the use of different cell lines may result in
inconsistencies in some observed biological properties of complexes [93]. Furthermore, the
review by Haase et al. (2019), emphasized that ligands may also play a significant role in
the cytotoxicity of Re(I) tricarbonyl complexes [94]. A comparative Table 3 illustrates the
active concentrations of the Re(I) tricarbonyl complexes to that of cisplatin (see Figure 4) as
the reference active anticancer drug.
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Table 3. IC50 values of Re(I) tricarbonyl complexes 4–7 [76], 8 (L1–L7) [77], 9–18 [78], 19–22 [93], 23 [95], as compared to the
cisplatin drug 24 [96–100].

Complex Cell Lines Cell Line Target
Description IC50 (µM) Cytotoxicity (IC50)

4 HeLa Cervical cancer cell >164 Inactive (<100 µM)
5 HeLa Cervical cancer cell >185 Inactive (<100 µM)
6 HeLa Cervical cancer cell 36 ± 3 Modest activity (51 µM)
7 HeLa Cervical cancer cell 51 ± 5 Modest activity (36 µM)
9 HeLa Cervical cancer cell 26.4 ± 9.2 Active
10 HeLa Cervical cancer cell 5.9 ± 1.4 Active
11 HeLa Cervical cancer cell 9.6 ± 4.2 Active
12 HeLa Cervical cancer cell 19.2 ± 2.9 Active
14 HeLa Cervical cancer cell 14.9 ± 3.2 Active
16 HeLa Cervical cancer cell 60.3 ± 18.2 Active
17 HeLa Cervical cancer cell 68.0 ± 4.3 Active
18 HeLa Cervical cancer cell 24.3 ± 9.1 Active

19 A2780
Human ovary epithelial cell,

ovarian endometrioid
adenocarcinoma.

3.5 ± 2.8 Active

20 A2780
Human ovary epithelial cell,

ovarian endometrioid
adenocarcinoma.

2.2 ± 1.8 Active

21 A2780
Human ovary epithelial cell,

ovarian endometrioid
adenocarcinoma.

2.2 ± 0.2 Active

22 HT-29 Human colon epithelial cell,
adenocarcinoma. <250 Active

PT-45 Human pancreas epithelial
cell, adenocarcinoma. <250 Active

23 T98G Human brain fibroblast,
glioblastoma. >50 Active

PC3 Human prostate epithelial
cell, adenocarcinoma. >50 Active

24 HT-29 Human colon epithelial cell,
adenocarcinoma. 32.6 ± 0.7 Active

PT-45 Human pancreas epithelial
cell, adenocarcinoma. 2.2 ± 0.3 Active

HepG2 Human liver epithelial cell,
hepatocellular carcinoma. 10.5 ± 0.5 Active

T98G Human brain fibroblast,
glioblastoma. 6.45 ± 1.64 Active

PC3 Human prostate epithelial
cell, adenocarcinoma. 2.19 ± 0.11 Active

A2780
Human ovary epithelial cell,

ovarian endometrioid
adenocarcinoma.

0.23 ± 0.07 Active

HeLa Cervical cancer 6.6 ± 0.7 Active
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6. Concluding Remarks

Magnetic NPs, particularly SPION crystals, have been a field of active research for
pharmaceutical application. The successful clinical translation of these NPs for use in
magnetic resonance (MR) contrast imaging, cancer treatment through hyperthermia, and
sentinel lymph node (SLN) mapping stand as clear examples of the promise of nanotech-
nology to modify clinical practice and lead to enhanced patient care. Furthermore, the
presence of d-block metal centres, specifically Re(I) tricarbonyl complexes, enables transi-
tion metals to set up new electronic states, which result in characteristic photophysical and
photochemical properties that are essentially different from those of fluorescent substances
such as organic dyes, lanthanide chelates, and quantum dots. Thus, the high photostability,
long emission lifetimes, large Stokes shifts, inter/intramolecular energy/electron transfer,
and the photogeneration of reactive oxygen species, make Re(I) tricarbonyl complexes
promising candidates for the design of specific cell imaging reagents for biological applica-
tions. This review outlined the synergistic effect arising from the combination of magnetic
NPs with luminescent Re(I) tricarbonyl complexes which results in excellent MRI-OI probes
for nanomedicine in cancer theranostics.
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Fe3O4 Ferric Oxide or Magnetite
Fe2O3 Ferrous oxide or Hematite
DNA Deoxyribonucleic Acid
DMSO Dimethylsulfoxide
MCF-7 Michigan Cancer Foundation-7
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Ir Iridium
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MRI Magnetic Resonance Imaging
FM Fluorescence Microscopy
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HeLa Henrietta Lacks
N Nitrogen
LED Light Emission Diode
O Oxygen
M Metals
XRD X-ray Diffraction
SLN Sentinel Lymph Node
TEM Transmission Electron Microscopy
L Ligand
OI Optical Imaging
T1 Longitudinal Relation Time
T2 Transverse Relation Time
SPION Superparamagnetic Iron Oxide Nanoparticles
OI Optical Imaging
Br− Bromide
Cl− Chloride
H2O Dihydrogen Monoxide
ILCT Intraligand-Charge-Transfer
MLCT Metal-to-Ligand-Charge-Transfer
LLCT Ligand-to-Ligand-Charge-Transfer
H Hour(s)
PTMCs Phosphorescent Transition Metal Complexes
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