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Abstract: The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-
dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons.
However, it is now clear that mRNA quality control represents only one face of the multiple functions
of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more
surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD
activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of
lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these
transcripts. In this regard, we describe several examples of functional micropeptides produced from
lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of
lncRNAs, which might be critical for the cell to respond to environmental changes.

Keywords: nonsense-mediated mRNA decay; Upf1; lncRNA; translation; micropeptide

1. Introduction

The accurate transmission of the genetic information is crucial for the cell, and several
surveillance mechanisms have evolved to monitor the distinct steps of gene expression.
RNA surveillance pathways are responsible for detecting and eliminating RNA intermedi-
ates that lack integrity or functionality [1–3]. Such transcripts can arise due to deleterious
or genomic frameshift mutations or inappropriate processing, and the subsequent failure
to produce functional proteins may result in disease.

If an mRNA is devoid of a stop codon (for instance, in the case of truncation or prema-
ture 3′-end cleavage and polyadenylation), it will cause the ribosome to progress to its 3′

extremity and stall. Such aberrant mRNAs are rapidly degraded through a process termed
non-stop decay [4–6]. In contrast, the presence of stable structures or damaged nucleotides
within an open reading frame (ORF) can impede ribosome progression, resulting into
ribosome stalling upstream of the stop codon. In this case, the transcript is targeted to the
degradation by the no-go decay pathway [7,8].

The Nonsense-Mediated mRNA Decay (NMD) is another quality control pathway tar-
geting transcripts that terminate translation prematurely [9,10], such as mRNAs harboring
a premature termination codon (PTC) within the ORF [11], as well as PTC-less mRNAs
displaying long 3′ untranslated regions (UTRs) [12,13] or short upstream ORFs [13–16].
The NMD-targeted mRNAs are rapidly degraded [17,18], thus preventing the production
of truncated, possibly deleterious proteins [19–21].

Here, we review the different mechanisms of NMD activation in yeast and mammals.
We discuss the recent evidence showing that NMD also targets and regulates the expression
of long non-coding (lnc)RNAs, including antisense (as)lncRNAs in yeast, indicating that
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translation is part of the metabolism of transcripts initially thought to be devoid of coding
potential. Supporting this idea, we describe several examples of functional micropeptides
produced from small (sm)ORFs of lncRNAs. We propose that NMD and translation
take part in the metabolism of lncRNAs, regulating their expression and providing the
opportunity to produce micropeptides which might have a role in the cellular response to
environmental changes.

2. Discovery, Conservation and Functions of NMD

NMD is a translation-dependent RNA decay pathway [22–24], which has been
evolutionarily conserved [10,25]. It was originally discovered in the budding yeast
Saccharomyces cerevisiae by Losson and Lacroute, when they observed that the presence of
nonsense mutations reduces the level of a mutant mRNA without affecting its synthesis
rate [26]. It was discovered afterwards in humans in the context of β0-thalassemia, where it
was observed that β-globin mRNAs levels dramatically decrease when carrying nonsense
mutations [27,28].

Upstream frameshift proteins (Upfs) 1, 2 and 3 constitute the conserved core compo-
nents of NMD [29] and were initially identified in S. cerevisiae [30–32].

Upf1 is a monomeric, highly regulated superfamily 1 helicase. Its ATPase and helicase
activities are essential for NMD [33,34]. Upf1 has the ability to translocate slowly but
with high processivity on nucleic acids and to unwind long double-stranded (ds)RNA
structures [35]. Upf2 is the second core NMD factor and functions as a bridge between Upf1
and Upf3 [36–38]. Its interaction with Upf1 is a prerequisite for the phosphorylation of
Upf1 [39]. However, NMD can be activated independently of Upf2 [40,41]. Upf3 is the least
conserved of the three core NMD factors [42]. Vertebrates have two Upf3 paralogs, Upf3A
and Upf3B [37]; in human cells, Upf3B seems to be the main contributor to NMD [43]. Like
Upf2, Upf3 stimulates the ATPase and helicase activity of Upf1 in vitro [36]. In metazoans,
NMD requires four additional factors: Smg1, Smg5, Smg6, and Smg7 [10,20,44,45]. Interest-
ingly, there is a correlation between the organism complexity and the dependency on NMD;
while Upf1 is essential in Arabidopsis, Drosophila and vertebrates [46–49], NMD-deficient
mutants in yeast and C. elegans are viable [20,30,32,50].

At present, it has become clear that the mRNA quality control represents only one
face of the multiple functions of NMD [51–55]. In yeast, almost half of protein-coding
genes can generate NMD-sensitive mRNA isoforms, including truncated mRNAs for which
transcription initiation occurs downstream of the canonical translation initiation site [56].
NMD also targets intron-containing pre-mRNAs that have escaped splicing and were
exported to the cytoplasm [14]. In addition, NMD regulates 3–10% of physiological, non-
mutated mRNAs in yeast, Drosophila and humans, including mRNAs with small upstream
ORFs [13–16,57–61], long 3′ UTRs [12,13], as well as mRNAs displaying low translational
efficiency and average codon optimality [14]; considered together, NMD provides a signifi-
cant contribution to the post-transcriptional regulation of gene expression [55].

Numerous physiological processes rely on the capacity of the cell to adjust NMD
activity at global and/or transcript specific levels. NMD factors are essential for embryonic
development in vertebrates, as disrupted expression of core NMD factors confers lethality
at an early embryonic stage [47,62]. NMD is also crucial for the maintenance of hematopoi-
etic stem and progenitor cells [62], the maturation of T cells [62], as well as for liver
development, function and regeneration in mice [63]. Furthermore, NMD is important for
the response to multiple stresses [64–66], being itself regulated in response to stresses such
as hypoxia [67] and amino acid deprivation [68]. In fact, many stress-related mRNAs are
targeted by NMD under normal physiological conditions but are stabilized upon stress, due
to the inhibition of NMD activity [69]. However, as Upf1 is also involved in diverse RNA
decay pathways distinct from NMD, including staufen-mediated mRNA decay, replication-
dependent histone mRNA decay, glucocorticoid receptor-mediated mRNA decay, regnase
1-mediated mRNA decay, and tudor-staphylococcal/micrococcal-like nuclease-mediated
microRNA decay [70], it remains possible that some of the phenotypes associated with
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mutants of Upf1 do not reflect the loss of NMD per se. Finally, seven NMD factors (Upf1,
Upf2, Upf3B, Smg1, Smg5, Smg6, and Smg7) have been found to be NMD targets in mouse
and human cells, revealing the existence of a regulatory feedback network between NMD
factors, which is critical for the maintenance of physiological NMD activity and RNA
homeostasis [71].

3. Molecular Bases of NMD Activation

In many organisms, NMD has been coupled to pre-mRNA splicing [24,72–77]. The
Exon Junction complex (EJC) is deposited by the spliceosome at the level of the junction
between two exons [78], and it is normally removed from the coding regions by the
translating ribosomes [79]. The EJC is formed around four core components: the DEAD-
box RNA helicase eIF4A3, MLN51, and the Magoh/Y14 heterodimer [80]. The presence of
an EJC downstream of a stop codon is recognized as an abnormal situation and enhances
the association and activity of Upf1 [81]. In the EJC-enhanced NMD model (Figure 1a),
premature translation termination involves the SURF (Smg1–Upf1–eRF1–eRF3) complex,
which consists of the Smg1 kinase, Upf1 and the eukaryotic release factors eRF1 and
eRF3, and associates with the ribosome stalled at the PTC [82]. Upf2 and Upf3 are then
recruited to SURF via the proximal EJC, leading to the formation of the DECID (DECay
InDucing) complex [82]. The interaction with Upf2 induces a conformational change in
Upf1, allowing its phosphorylation by Smg1 and its activation [82]. The activated Upf1
recruits the Smg6 endonuclease [83] and the Smg5–7 heterodimer [84], which in turn
activates RNA deadenylation and decapping. In addition, phosphorylated Upf1 also
prevents new translation initiation events by interacting with the translation initiation
factor eIF3, inhibiting the formation of a competent translation initiation complex [85].
Finally, protein phosphatase 2 (PP2A) dephosphorylates Upf1, allowing it to return to its
unphosphorylated state for another NMD cycle [84].

In addition to the EJC-enhanced NMD, examples of EJC-independent NMD have
been described in human cells [86,87], as well as in fission yeast [88], C. elegans [89],
Drosophila [90] and plants [72], all of which have orthologs of EJC factors. In contrast, in
S. cerevisiae, not only is the proportion of intron-containing genes low (4%) [91], but EJC
factors are absent, with the exception of eIF4A3 (Fal1), which acts in pre-rRNA processing
in yeast [92].

The EJC-independent NMD targets RNAs with extended 3′ UTR but lacking EJC
downstream of the translation termination codon [77,87,93–96]. Indeed, RNAs where
long EJC-free sequences are inserted downstream of a stop codon show reduced levels
due to accelerated degradation by NMD [93,95]. This EJC-independent NMD might
be a vestige of an ancestral NMD mechanism associated with an abnormally long 3′

UTR, referred to as “faux 3′ UTR”, which is still present in S. cerevisiae [97]. In this
model, a compromised interaction between the polyadenylate-binding protein Pab1 and
the prematurely terminating ribosome results in less efficient termination and enhanced
interaction between Upf1 and eRF1/eRF3, triggering NMD (Figure 1b). In this context, a
recent proteomics-based analysis in yeast characterized the composition of two distinct
NMD complexes associated with Upf1 named Upf1-23 (Upf1, Upf2, Upf3) and Upf1-
decapping [98]. The latter contained the decapping enzyme Dcp2 and its co-factor Dcp1,
the decapping activator Ebs3, and two poorly characterized proteins, Nmd4 and Ebs1. The
Upf1-23 complex is recruited and assembled on the RNA substrate, and then a complete
re-organization leads to the replacement of the Upf2/3 heterodimer by Nmd4, Ebs1, Dcp2
and its co-factors (Figure 1b). Nmd4 and Ebs1 are accessory factors for NMD and could be
functional homologues of human Smg6 and Smg5/7, respectively [98,99]. The discovery of
these new factors in yeast suggests that NMD mechanisms could be more conserved than
previously thought. However, how the switch from the “Upf1-23” to an “Upf1-decapping”
complex occurs remains unclear.
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associate with SURF to form the decay-inducing (DECID) complex. Smg1 phosphorylates Upf1 (P), activating it. Phos-
phorylated Upf1 promotes RNA decay via Smg6-dependent endonucleolytic cleavage and the Smg5–Smg7-dependent 
triggering of mRNA deadenylation and decapping. ATP hydrolysis by Upf1 allows the dissociation of the termination 
complex and the release of the transcript, which can be degraded. Upf1 dephosphorylation by protein phosphatase 2A 
(PP2A) allows it to return to a dephosphorylated state. The coding region and the UTRs of the mRNA are represented as 
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Figure 1. Models of NMD activation mechanisms in mammals and yeast. (a) Mammalian EJC-enhanced NMD. When
an EJC remains bound to the RNA downstream of a termination codon, translation termination is inefficient as the
EJC interferes with the interaction between PABPC1 and the eukaryotic release factors (eRF1/eRF3). Instead, a SURF
complex (Smg1–Upf1–eRF1–eRF3) forms at the level of the PTC. Upf2 and Upf3 are then recruited by the downstream
EJC and associate with SURF to form the decay-inducing (DECID) complex. Smg1 phosphorylates Upf1 (P), activating it.
Phosphorylated Upf1 promotes RNA decay via Smg6-dependent endonucleolytic cleavage and the Smg5–Smg7-dependent
triggering of mRNA deadenylation and decapping. ATP hydrolysis by Upf1 allows the dissociation of the termination
complex and the release of the transcript, which can be degraded. Upf1 dephosphorylation by protein phosphatase 2A
(PP2A) allows it to return to a dephosphorylated state. The coding region and the UTRs of the mRNA are represented as a
large blue arrow and thin blue lines, respectively. See the key for the other symbols. (b) “Faux” 3′ UTR model in yeast. A
long 3′ UTR results in inefficient translation termination and Upf1 interaction with eRF1/eRF3, promoting the formation
of the Upf1-23 complex (Upf1, Upf2, Upf3) at the level of the terminating ribosome. The Upf2-Upf3 heterodimer is then
replaced by Nmd4, Ebs1, the decapping enzyme Dcp2 and its co-factors Dcp1 and Edc3 in the Upf1-decapping complex,
leading to RNA decapping. ATP hydrolysis by Upf1 promotes the disassembly of the mRNA/ribosome/Upf1-decapping
complex, leading to the release of the transcript which can finally be degraded by Xrn1.



Non-coding RNA 2021, 7, 44 5 of 17

The polyadenylate-binding protein 1 (PABPC1 in mammals, Pab1 in yeast) is known
to stimulate translation termination efficiency by recruiting the release factors to the ri-
bosome [100]. A long distance between the PTC and Pab1/PABPC1 triggers NMD in
all studied species [87,93,95,101,102], while tethering it close to the PTC suppresses the
NMD sensitivity of the PTC-containing transcripts in yeast [97] and Drosophila cells [101].
Mechanistically, it has been proposed that the long 3′ UTR would act by impeding the
efficient interaction between Pab1/PABPC1 and eRF1/eRF3, favoring the recruitment of
Upf1 by the latter and the formation of a SURF complex at the level of the PTC.

Currently, several questions remain open regarding Upf1 recruitment to the target
transcripts. Until recently, the classical view was that Upf1 is recruited at the level of
the nonsense codon by the stalled ribosome through an interaction with eRF1/eRF3.
However, it has been shown that substrate discrimination by NMD can occur independently
of Pab1/PABPC1 or its interaction with eRF3 [103,104], indicating that other features
contribute to RNA recognition by NMD. In addition, if Upf1 preferentially binds NMD-
targeted transcripts [61,105–107], with a marked enrichment in the 3′ UTR [81,108–111],
it is redistributed into the coding sequence upon translation inhibition [109–111]. This
suggests that Upf1 can bind the RNA independently of translation as well as to NMD non-
targets and is pushed away from the coding region by the elongating ribosomes (Figure 2).
This means that NMD substrate selection occurs after Upf1 association with the RNA. In
this regard, NMD substrate discrimination was shown to rely on a faster dissociation of
Upf1 from non-target mRNAs, and this depends on its ATPase activity [106,112]. ATP
hydrolysis by Upf1 is also required for ribosome release and recycling and efficient RNA
degradation [113,114].
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Figure 2. Model of translation-dependent displacement of Upf1 from the mRNA coding region.
Upf1 binds promiscuously to any accessible RNA (including NMD non-targets), independently
of translation. ATP hydrolysis promotes Upf1 dissociation from non-target RNA regions. Upf1 is
also displaced from the coding region by the translating ribosome. This model implies that NMD
substrate selection occurs after Upf1 associates with the RNA.

4. Long Non-Coding RNAs: An Unexpected Class of NMD Substrates

Unexpectedly, recent transcriptome-wide analyses of RNA binding sites of Upf1 in
human and yeast cells revealed that, in addition to mRNAs, Upf1 can also bind lncR-
NAs [111,115,116].

LncRNAs are a prominent class of transcripts that play important roles in multi-
ple cellular processes, including chromatin modification and regulation of gene expres-
sion [117–120]. They were a priori presumed to be devoid of coding potential [121].
However, this initial assumption has been challenged over recent years by a number
of analyses showing that transcripts produced from non-coding regions of the genome,
including intergenic regions and sequences antisense to protein-coding genes, associate



Non-coding RNA 2021, 7, 44 6 of 17

with the translation machinery in different models, including S. cerevisiae [122–126], fission
yeast [127,128], plant [129], Drosophila [129,130], zebrafish [129,131,132], mouse [129,133]
and human cells [129,131,134–136]. Thus, not only could the ribosome constitute a default
destination for cytoplasmic lncRNAs [136], but the smORFs they carry are likely to be trans-
lated into micropeptides [129]. Furthermore, the observation that translation elongation
inhibitors results in the stabilization of polysomal lncRNAs in human (K562) cells indicates
that translation also determines the degradation of cytoplasmic lncRNAs [136].

In budding and fission yeasts, cytoplasmic lncRNAs are extensively degraded by the 5′-
3′ exoribonuclease Xrn1/Exo2 [124,137–139]. Inactivation of Xrn1 leads to the stabilization
of Xrn1-sensititve Unstable Transcripts (XUTs), the majority of which are antisense to
protein-coding genes [124,138–140]. Strikingly, in S. cerevisiae, 70% of these XUTs are
targeted to Xrn1 through NMD [56,124], indicating that most XUTs are translated and that
translation constitutes a prerequisite for their degradation. In fact, NMD-sensitive XUTs
display ribosome footprints restricted to their 5′ regions, followed by long downstream
ribosome-free regions [124]. Conversely, antisense (as)XUTs were found to form dsRNA
structures with their paired-sense mRNAs, thus modulating their sensitivity to NMD [124].
This suggests that unless blocked by dsRNA structures, ribosomes could rapidly bind
smORFs in the 5′ region of cytoplasmic lncRNAs (Figure 3). The detection of a long 3′

UTR would trigger NMD, leading to the decapping of the transcript and its degradation by
Xrn1. Alternatively, but not exclusively, dsRNA could also interfere with the recruitment
of NMD factors to asXUTs. Given the current view of Upf1 binding to the RNA (Figure 2)
and the observation that Upf1 physically interacts with yeast lncRNAs [115], we propose
that Upf1 binds XUTs in a promiscuous manner, independently of translation, regardless
of whether or not the transcript will be targeted to Xrn1 through NMD. As proposed for
mRNAs, Upf1 would be displaced from the smORF of XUTs by the translating ribosomes
and would accumulate on the 3′ UTR. Since NMD-sensitive XUTs are globally longer than
NMD-insensitive ones [124], we speculate that longer XUTs carry longer 3′ UTRs, which
will be more likely to impede the interaction between eRF1/eRF3 and Pab1. Instead, this
situation would favor the Upf1–eRF1/eRF3 interaction, enclosing the XUT as an NMD
target through a mechanism similar to the “faux 3′ UTR” model. Supporting this idea,
XUTs are poly-adenylated [124,139], and their poly(A) tail is likely to be bound by Pab1.

We speculate that cytoplasmic smORFs-bearing lncRNAs, reminiscent of the yeast
NMD-sensitive XUTs, could be targeted by NMD in other eukaryotic cells. Consistent with
this idea, NMD inactivation in mouse embryonic stem cells results in the stabilization of a
subset of lncRNAs [123]. Moreover, the levels of lncRNAs, including Natural Antisense
Transcripts, are also modulated by NMD in Arabidopsis [141]. Further support comes from
the observation that the growth arrest-specific 5 (GAS5) lncRNA is targeted by NMD and
accumulates in Upf1-depleted human cells [142].
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Figure 3. Model of yeast cytoplasmic aslncRNA degradation by NMD. Once in the cytoplasm, an aslncRNA (red) would
rapidly be bound by ribosomes, unless in a dsRNA structure with its paired-sense mRNA (blue). This dsRNA might also
interfere with Upf1 binding to the aslncRNAs and could be removed by the action of RNA helicases. The detection of a
long 3′ UTR would trigger NMD by a mechanism similar to the “faux 3′ UTR”. A Upf1-23 complex would form at the
level of the termination codon thanks to the interaction between Upf1 and eRF1/eRF3. The subsequent formation of the
Upf1-decapping complex would lead to the decapping of the aslncRNA by Dcp2. Upon ATP-dependent disassembly of
the complex, the decapped aslncRNA is degraded by Xrn1. The mRNA and the aslncRNA are represented in blue and
red, respectively. Large arrows and thin lines represent the coding regions and the UTRs, respectively. The ribosome and
NMD/decapping factors are represented as in Figure 1.

5. Functional Importance of NMD and Translation in lncRNA Metabolism

NMD could be seen as an additional pathway contributing to the clearance of unpro-
ductive and potentially harmful spurious non-coding transcripts. However, we believe
that this view is too reductive and that there might be more behind the involvement of
NMD in the metabolism of lncRNAs (Figure 4). For example, as NMD is a cytoplasmic
process, it could ensure that regulatory lncRNAs exhibit their functions exclusively in the
nucleus by limiting their accumulation outside the nucleus. In addition, NMD could limit
the accumulation of nonfunctional and potentially deleterious peptides from cytoplasmic
lncRNAs during the de novo gene birth [125,126,143]. Additionally, the peptides produced
from NMD-sensitive lncRNAs could be functional and important, despite their low levels.
Even if this remains completely speculative for NMD-sensitive lncRNAs, we note that
antigens of the MHC class I pathway are produced from PTC-containing mRNA [144],
raising the question of how this process might be generalized for “cryptic” lncRNAs.
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NMD could also specifically modulate the levels of regulatory lncRNAs. The apoptotic
lncRNA GAS5 has been proposed to act in an NMD-based circuit, which is critical in
response to serum starvation [142]. In normal conditions, NMD restricts the constitutive
GAS5 expression to low levels. However, in stress conditions associated with NMD
inhibition (such as serum starvation), GAS5 expression is up-regulated and binds the
glucocorticoid receptor, perturbing its function as a transcription activator in the anti-
apoptotic program [142].

More globally, by targeting regulatory cytoplasmic aslncRNAs, NMD could con-
tribute to regulate gene expression. For instance, stabilization of subsets of Xrn1-sensitive
aslncRNAs, most of which are NMD-sensitive [124,128], correlates with the transcriptional
attenuation of the paired-sense genes, in budding and fission yeasts [137,139]. Interestingly,
two independent studies in zebrafish embryos reported that NMD factors cycle to the
nucleus to trigger transcriptional adaptation of genes with a sequence complementarity to
the PTC-containing RNA in a mechanism called genetic compensation [145,146].

Finally, coupling translation to aslncRNA degradation via NMD could be important
for cell recovery upon translation inhibitory stress. In such a condition, NMD-sensitive
aslncRNAs are expected to be stabilized and form duplexes with their paired-sense mRNAs.
By analogy with the protective effect on the aslncRNA [124], this interaction could also
prevent the degradation of the mRNA partner, since local dsRNA formation correlates
with higher mRNA stability [147]. After stress, the protected sense/as transcripts would
be rapidly released upon the action of RNA helicases, thereby providing a pool of mR-
NAs in the cytoplasm that can be translated, while NMD-sensitive aslncRNAs would be
rapidly degraded.

Together, the observations reported above support the idea that NMD is able to target
lncRNAs, and that this might be important for the maintenance of RNA homeostasis, the
regulation of gene expression, and for a robust response to several stress conditions. It also
challenges the initial assumption that such transcripts are devoid of coding potential.

6. Insight into the Coding Potential of “Non-Coding” Transcripts

The accumulating evidence that cytoplasmic lncRNAs interact with the translation
machinery raises the question of their coding potential. Numerous methods have been de-
veloped to assess this possibility [148–150]. Additionally, a growing body of experimental
data indicate that “non-coding” RNAs can indeed be translated [151], including not only
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lncRNAs but also circular RNAs [152–154] and primary microRNAs transcripts [155,156];
moreover, these translation events can produce functional peptides [134,151,157–159].

“Non-coding” RNAs contain one or more smORFs that can be translated into mi-
cropeptides (i.e., peptides not exceeding 100 amino acids in length.) Previously, such
smORFs were ignored as the traditional gene annotation process filtered out ORFs shorter
than 100 codons, considering them as noise or false positives. However, as ribosome
profiling techniques and proteomics are growing in popularity and increasing in sensitivity,
accuracy and efficiency, it is becoming clear that at least a fraction of short ribosome-bound
sequences of (l)ncRNAs represent genuine smORFs.

Importantly, a recent work from Weissman’s lab provided a catalog of smORFs
and functional peptides derived from human lncRNAs, which included the identifica-
tion of >800 novel lncRNA-associated smORFs and the observation that, for 91 of them,
CRISPR-mediated knockout of the smORF resulted in a growth phenotype [134], indicating
that the corresponding peptides are important for cell growth. Other studies previously
showed that lncRNA-derived micropeptides are involved in the regulation of RNA de-
capping [160], in embryonic development [161,162], in muscle development [163–165],
regeneration [166,167] or contraction [168–170], and in tumor development [154,171,172]
(see Table 1).

Table 1. Examples of functional lncRNA-derived micropeptides.

Micropeptide Species Target Function(s) Ref.

NoBoDy Human mRNA decapping factors Regulation of mRNA turnover and
P-body numbers [160]

CASIMO1 Human Squalene epoxidase Carcinogenesis; cell lipid homeostasis [171]

PINT87aa Human Polymerase associated
factor complex (PAF1c)

Oncogene transcriptional inhibition;
tumor suppressive effect [154]

HOXB-AS3 Human hnRNP A1 splicing factor Colon cancer growth suppression [173]

RBRP Human m6A reader IGF2BP1 Regulation of m6A recognition by
IGF2BP1 on c-Myc mRNA; tumorigenesis [172]

Minion/Myomixer Human, mouse Unknown Myoblast fusion; muscle formation
and development [163,164,167]

SPAR Human, mouse Lysosomal v-ATPase Regulation of mTORC1 signaling
pathway; muscle regeneration [166]

TUG1-BOAT Human, mouse Unknown
Unknown; alters mitochondrial
membrane potential
when overexpressed

[174]

Mtln Human, mouse Cardiolipin Increase of mitochondrial functions [175]

DWORF Mouse SERCA
SERCA (sarcoplasmic reticulum
Ca2+-ATPase) activation

[168,169]

MLN Mouse SERCA SERCA inhibition [176]

Toddler Zebrafish Unknown Promoting cell migration during
embryogenesis [174]

Pri Drosophila Ubr3 E3 ubiquitin ligase
Proteasome-dependent processing
of the developmental Svb
transcription factor

[162]

Scl Drosophila Ca-P60A SERCA Calcium transport regulation [170]

Mechanistically, if global information about the mode of action of lncRNA-derived
peptides is still lacking, pioneer studies revealed that they can act by binding other proteins
and regulate their activity [162,168,169,176], or as signaling pathway molecules [177]. We
anticipate that future works will reveal additional modes of action.

In the light of the observations that micropeptides produced from lncRNAs can be
biologically important, it is tempting to speculate that aberrant expression of endogenous
lncRNA-derived peptides could be associated with diseases, including cancer [154,171].
In addition to providing a new perspective on pathogenicity, lncRNA-derived peptides
could also constitute promising targets for targeted therapy [178], including tumor im-
munotherapy [179]. In this respect, it is interesting to note that a recent characterization
of different murine cell lines and cancer patient samples showed that non-coding regions
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constitute the major source of tumor specific neo-antigens [179], which could be pivotal for
the development of future immunological treatments and cancer vaccines [180].

7. Conclusions

Today, NMD is extending far beyond its original definition assigning it only to the
clearance of aberrant “nonsense” transcripts. The current research has revealed that it
provides potent means to regulate the expression of many mRNAs and lncRNAs, as well
as contributes to the establishment of suitable cellular responses to environmental changes,
including adaptation, differentiation or apoptosis. The accumulating biochemical and
transcriptomic evidence showing that NMD targets lncRNAs implores us to reconsider
the idea that lncRNAs are devoid of coding potential, and challenges us to address how
translation of smORFs could not only affect their stability, but also could be used to produce
functional micropeptides. Revealing the possibility for a “dark peptidome” to arise from
the “dark non-coding side of the genome” (i.e., “the dark side of the dark matter”) is one
of the challenges in the RNA field for the coming years and will open exciting perspectives
regarding the roles of lncRNA-derived peptides.
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