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Dual oscillator model of the respiratory neuronal network
generating quantal slowing of respiratory rhythm
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Abstract We developed a dual oscillator model to fa-
cilitate the understanding of dynamic interactions be-
tween the parafacial respiratory group (pFRG) and
the preBötzinger complex (preBötC) neurons in the
respiratory rhythm generation. Both neuronal groups
were modeled as groups of 81 interconnected pace-
maker neurons; the bursting cell model described by
Butera and others [model 1 in Butera et al. (J Neu-
rophysiol 81:382–397, 1999a)] were used to model
the pacemaker neurons. We assumed (1) both pFRG
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and preBötC networks are rhythm generators, (2)
preBötC receives excitatory inputs from pFRG, and
pFRG receives inhibitory inputs from preBötC, and
(3) persistent Na+ current conductance and synaptic
current conductances are randomly distributed within
each population. Our model could reproduce 1:1 cou-
pling of bursting rhythms between pFRG and pre-
BötC with the characteristic biphasic firing pattern of
pFRG neurons, i.e., firings during pre-inspiratory and
post-inspiratory phases. Compatible with experimen-
tal results, the model predicted the changes in firing
pattern of pFRG neurons from biphasic expiratory
to monophasic inspiratory, synchronous with preBötC
neurons. Quantal slowing, a phenomena of prolonged
respiratory period that jumps non-deterministically to
integer multiples of the control period, was observed
when the excitability of preBötC network decreased
while strengths of synaptic connections between the
two groups remained unchanged, suggesting that, in
contrast to the earlier suggestions (Mellen et al., Neu-
ron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad
Sci USA 105(46):18000–18005, 2008), quantal slowing
could occur without suppressed or stochastic excita-
tory synaptic transmission. With a reduced excitability
of preBötC network, the breakdown of synchronous
bursting of preBötC neurons was predicted by simu-
lation. We suggest that quantal slowing could result
from a breakdown of synchronized bursting within the
preBötC.

Keywords Rhythm coupling · Neuronal networks ·
Respiratory rhythm generation · Quantal slowing ·
Numerical simulation



226 J Comput Neurosci (2011) 30:225–240

1 Introduction

Two putative respiratory rhythm generators, the
parafacial respiratory group (pFRG) (Onimaru et al.
1988; Onimaru and Homma 2003) and the preBötzinger
complex (preBötC) (Smith et al. 1991), exist in the
mammalian brainstem. The two neuronal groups, sepa-
rately identified, are thought to play important roles in
the generation and maintenance of respiratory rhythm
(Feldman and Janczewski 2006; Onimaru and Homma
2006; Oku et al. 2007) at least in the neonatal period,
although the primary site of the respiratory rhythm
generation is still controversial (Feldman and Del
Negro 2006). There are a number of neuronal behaviors
that characterize the respiratory network in brainstem
spinal cord preparations of neonatal rodents. First,
the firing pattern of preinspiratory (Pre-I) neurons,
a subset of neurons within pFRG, typically consists
of three phases: (1) firing preceding the inspiratory
phase, (2) suppression of firing during the inspiratory
phase, originally referred to as inspiration-related in-
hibition of the Pre-I firing (IIPI), and (3) firing dur-
ing the post-inspiratory phase, which is not seen in
preBötC preinspiratory neurons (Smith et al. 2007).
Second, IIPI consistently disappears after removing
chloride-mediated inhibition, resulting in overlapping
of Pre-I neuronal firing and inspiratory neuronal firing
(Onimaru et al. 1990). Third, opioids do not affect
Pre-I neurons but depress preBötC inspiratory neu-
rons (Gray et al. 1999). As a consequence of dynamic
interactions between pFRG and preBötC, respiratory
periods jump non-deterministically to integer multiples
of the control period, and the phenomenon was re-
ferred to as quantal slowing (Mellen et al. 2003; Barnes
et al. 2007). Synaptic connections and interactions be-
tween the neuronal groups to explain the characteristic
behaviors have been proposed (Onimaru et al. 1990;
Ballanyi et al. 1999). Specifically, the observation of
quantal slowing has led to a hypothesis that two rhyth-
mically active networks interact to generate respiratory
rhythm and quantal slowing results from transmission
failure from pFRG to preBötC networks (Mellen et al.
2003). However, in such a complex dynamic system,
it is imperative to evaluate descriptive assumptions by
simulating phenomena using a computational model.

In the present study, we demonstrate a compu-
tational model consisting of two groups of bursting
neurons, representing pFRG and preBötC neuronal
groups. We assume that pFRG provides excitatory in-
puts to preBötC and preBötC provides inhibitory con-
nections to pFRG (Onimaru et al. 1990; Ballanyi et al.
1999). We then analyzed the influences of changes in
strengths of excitatory and inhibitory synaptic connec-

tions between the two neuronal groups on the coupling
pattern of bursting activities in these groups. Finally,
we evaluated the effects of reducing excitability of
preBötC neurons on the respiratory period, and consid-
ered the mechanism that causes non-deterministic jump
of respiratory period to integer multiples of the con-
trol periods. Interestingly, we found that the quantal
slowing occurs without assuming suppressed excitatory
synaptic transmission.

Similar attempts to simulate quantal slowing phe-
nomenon by dynamic interactions between the two
rhythm generating networks has been made by Joseph
and Butera (2005) and Wittmeier et al. (2008) earlier.
In both studies, pFRG and preBötC were repre-
sented by only a pair of pacemaker neurons, pre-
suming that any ‘lumped’ effects of the interaction
should apply at the full-blown network level (Wittmeier
et al. 2008). Joseph and Butera (2005) used a simple
canonical model of pacemaker neurons to represent
the pFRG and preBötC. However, it is difficult to
correlate cellular properties with model parameters
in such a canonical model. Further, in their result,
quantal slowing accompanied abrupt changes in firing
pattern of Pre-I neurons, i.e., emergence of post-
inspiratory burst that was absent in the control pe-
riod, which is inconsistent with experimental findings
(Mellen et al. 2003). Wittmeier et al. (2008) adopted
a Hodgkin-Huxley type realistic neuronal model de-
scribed by Butera et al. (1999a) and substituted sto-
chastic synaptic transmission for the deterministic
excitatory synaptic inputs to preBötC from pFRG to
simulate quantal slowing. However, there is no phys-
iological basis supporting that opioids cause stochas-
tic synaptic transmission. Moreover, if the stochastic
nature of synaptic transmission is essential for pro-
ducing quantal slowing then the phenomenon is not
entirely a characteristic of the model under consider-
ation but also of a undefined additional mechanism
resulting in stochastic dynamics of the synaptic trans-
mission. In the present study, we have conducted a
large scale simulation by modeling both pFRG and
preBötC as groups of 81 pacemaker neurons to test
whether the essential features of the activity of a
rhythm generating network may be adequately cap-
tured by replacing it by a single pacemaker neuron,
and more specifically, to test whether the quantal slow-
ing phenomenon requires stochastic dynamics of the
synaptic transmission. Our simulation predicted that
the reduction of excitability in preBötC network could
result in intermittent failure of preBötC neurons to
produce synchronized bursting and could cause quantal
slowing even if we did not assume stochastic dynam-
ics of the synaptic transmission. We suggest that the
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quantal slowing phenomenon is an intrinsic character-
istic of the rhythm-generating network and stochas-
tic synaptic transmission is unnecessary to explain the
quantal slowing phenomenon. Our results are in agree-
ment with the general conception that quantal slowing
phenomenon results due to general loss of sensitivity
within the preBötC group but, more importantly, they
suggest towards the possibility of a different mechanism
for its cause.

2 Methods

2.1 Formulation of dual oscillator model

The model consists of two neuronal groups of burst-
ing neurons, NeuronGroup1 and NeuronGroup2; rep-
resenting the pFRG and preBötC rhythm generating
networks, respectively. We assume that both pFRG and
preBötC independently constitute rhythm-generating
networks, and pFRG network excites preBötC net-
work, and preBötC network inhibits pFRG network
(Fig. 1(a)). In our model, we assume that bursting
neurons within each of NeuronGroup1 and Neuron-
Group2 are mutually coupled by excitatory synaptic
connections to form a rhythm generating network.
Therefore, the constituent neurons of NeuronGroup2
are excitatory neurons. It is unrealistic to assume that

Fig. 1 (a) Dual Oscillator Model: NeuronGroup1 (pFRG) pro-
vides excitatory synaptic input to NeuronGroup2 (preBötC) and
NeuronGroup2 provides inhibitory synaptic input directly to
NeuronGroup1. (b) Three neuronal group model: Similar to Dual
Oscillator Model except that an inspiratory interneuron group,
NeuronGroup3 is added. NeuronGroup3 receives excitatory in-
puts from NeuronGroup2 and inhibit NeuronGroup1. Open and
closed circles represent excitatory and inhibitory synaptic connec-
tions, respectively

the excitatory neurons of NeuronGroup2 inhibit Neu-
ronGroup1. A more realistic model would be a three
neuronal group model as depicted in Fig. 1(b); the third
neuronal group, NeuronGroup3, is formed of inhibitory
neurons, which receives excitatory synaptic input from
NeuronGroup2 and provides inhibitory synaptic input
to NeuronGroup1 (Kuwana et al. 2006). However, for
simplicity, if we assume that the bursting dynamics of
NeuronGroup3 follow the bursting activities of Neu-
ronGroup2, then the NeuronGroup3 in Fig. 1(b) essen-
tially becomes a copy of NeuronGroup2. Thus, the need
of explicitly incorporating NeuronGroup3 is eliminated
and computational effort required is minimized. There-
fore, we use the model depicted in Fig. 1(a) as our Dual
Oscillator Model.

2.2 Formulation of neuronal groups

Both neuronal groups, NeuronGroup1 and Neuron-
Group2, were modeled as groups of 81 interconnected
pacemaker neurons. The mathematical model of burst-
ing cells described by Butera and others (model 1 in
Butera et al. 1999a) were used to model the pace-
maker neurons in our model. We assume that each
cell receives excitatory and inhibitory synaptic inputs.
Therefore, the rate of change in membrane potential
(V) of a cell is modified from the original model as:

C
dV
dt

= −INaP − INa − IK − IL − Isyn(e) − Isyn(i) (1)

where C is the whole cell capacitance (pF), V is mem-
brane potential (mV), t is time (ms), INaP is a persistent
Na+ current, INa is a fast Na+ current, IK is a delayed-
rectifier K+ current, IL is a passive leakage current,
Isyn(e) is the sum of excitatory synaptic currents, and
Isyn(i) is the sum of inhibitory synaptic currents. C is
set to 21 pF (Smith et al. 1992; Butera et al. 1999a).
Equations and parameter sets to compute intrinsic
membrane currents (INaP, INa, IK and IL) are those
presented in the previous paper (Butera et al. 1999a)
unless otherwise noted.

We assume that each neuron receives excitatory
synaptic inputs from other neurons belonging to the
same group L as well as from neurons belonging to a
different group M:

Isyn(e) =
(∑

l∈L

gl
syn(int) · sl

int

) (
V − Esyn(e)

)

+
(∑

m∈M

gm
syn(ext) · sm

ext

) (
V − Esyn(e)

)
(2)
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where Esyn(e) (= 0 mV) is the reversal potential of non-
NMDA excitatory amino-acid receptors. gl

syn(int) and
gm

syn(ext) are the synaptic conductances for input from
neurons l ∈ L and m ∈ M, respectively. sl

int and sm
ext are

synaptic gating variables for these synaptic inputs. To
reduce computational costs, we assumed that synaptic
conductances gl

syn(int) and gm
syn(ext) in Eq. (2) are uncorre-

lated to the corresponding synaptic gating variables sl
int

and sm
ext, respectively. Consequently, we simplify Eq. (2)

as:

Isyn(e) = (
ḡsyn(int) · s̄int + ḡsyn(ext) · s̄ext

) (
V − Esyn(e)

)
(3)

where ḡsyn(int) and ḡsyn(ext) are overall synaptic conduc-
tance for inputs from neurons l ∈ L and m ∈ M, respec-
tively. The values of ḡsyn(int) and ḡsyn(ext) were randomly
assigned from a uniformly distributed probability den-
sity function ranging between 0 and 10 nS and be-
tween 0 and ḡsyn(ext) max, respectively. The rationale for
using uniformly distributed probability density function
for synaptic conductance is discussed in Section 4.3. s̄int

and s̄ext are mean synaptic gating variables for these
synaptic inputs, which are expressed as:

s̄int =
∑
l∈L

sl
int , s̄ext =

∑
m∈M

sm
ext (4)

Similarly, synaptic inputs from an inhibitory neuronal
group N are expressed as:

Isyn(i) = ḡsyn(inh) · s̄inh (V − ECl) (5)

where ḡsyn(inh) is the overall synaptic conductance
for inputs from neurons n ∈ N, s̄inh are the mean
synaptic gating variable for inhibitory inputs, and ECl

(= − 90 mV) is the equilibrium potential of Cl−. The
values of ḡsyn(inh) were randomly assigned from a uni-
formly distributed probability density function ranging
between 0 and ḡsyn(inh) max.

Presynaptic action potentials activate synaptic gating
variables. We applied the same, fast (decay time con-
stant τs = 5 ms) kinetics to all synaptic gating variables
(Butera et al. 1999b):

dsi

dt
= [(1 − si) · s∞ (Vi) − si]

τs
(6)

s∞ (Vi) determines the steady-state postsynaptic recep-
tor activation based on the membrane potential of
presynaptic neuron i:

s∞ (Vi) = 1

1 + exp
[

(Vi−θ)

σ

] (7)

where θ = −10 mV and σ = −5 mV.

In the present model, INaP produces a slowly de-
polarizing current and endows cells with a bursting
property. The inherent burst frequency of a single
bursting neuron is changed by the persistent Na+ cur-
rent conductance, ḡNaP, with a fixed value of the rever-
sal potential of passive leakage current EL (−59 mV).
Bursting activity does not occur for ḡNaP ≤ 2.45 nS
(Butera et al. 1999a). In order to simulate an inhomoge-
neous distribution of inherent burst frequency within a
group, the values of ḡNaP were randomly assigned from
a uniformly distributed probability density function
ranging between (ḡNaP max − 0.5 nS) and ḡNaP max. Con-
sequently, the inherent burst frequency of the neuronal
group depends on ḡNaP max. The firing of Pre-I neurons
always precedes the inspiratory burst recorded from the
fourth cervical ventral root of the spinal cord (C4VR),
although Pre-I burst sometimes does not accompany
the inspiratory C4VR burst (Okada et al. 2007). In
order to simulate this situation, the inherent burst fre-
quency of NeuronGroup1 must be greater than that of
NeuronGroup2. Subsequently, in the present model, we
set ḡNaP max = 4.0 nS for NeuronGroup1 and ḡNaP max =
3.0 nS for NeuronGroup2. For these values of ḡNaP max

for NeuronGroup1 and NeuronGroup2, their inter-
burst period was, respectively, found to be 2.69 ±
0.13 s and 4.99 ± 0.42 s (computed from 9 simulation
results).

We set ḡsyn(ext) = 0 nS for NeuronGroup1 and
ḡsyn(inh) = 0 nS for NeuronGroup2. s̄inh of Neuron-
Group1 was calculated from membrane potentials of
NeuronGroup2 neurons and s̄ext of NeuronGroup2
was calculated from membrane potentials of Neuron-
Group1 neurons. To evaluate the effects of changes
in strengths of excitatory and inhibitory synaptic con-
nections on the coupling pattern between pFRG and
preBötC bursting activities, we varied ḡsyn(inh) max of
NeuronGroup1 ranging between 0 and 6 nS and
ḡsyn(ext) max of NeuronGroup2 ranging between 0
and 2 nS.

2.3 Computational details

The differential equations were solved numerically us-
ing the fourth-order Runge-Kutta equation with a step
size of 0.05 ms. However, the neuronal states were
saved at an interval of 0.5 ms, which was sufficient
to capture every action potential spikes of bursting
neurons, to keep the stored files to manageable size.
All algorithms were implemented in double precision
routine in C�.NET language and run on Pentium-based
Windows XP computers. We waited for initial 60 s
of simulation time for the behavior of the network to
stabilize and then the simulated data were saved.
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3 Results

As mentioned earlier, in the dual oscillator model, Neu-
ronGroup1 and NeuronGroup2 represents pFRG and
preBötC, respectively. However, during the presenta-
tion of results and discussion, we restrict the terms Neu-
ronGroup1 and NeuronGroup2 to refer to the modeled
pFRG and preBötC, respectively. Further, throughout
the present model study, we define the period where
preBötC/NeuronGroup2 neurons burst synchronously
as the inspiratory phase, and the rest of period where
a majority of preBötC/NeuronGroup2 neurons are qui-
escent as the expiratory phase.

3.1 Coupling pattern between pFRG and preBötC

We observed different patterns of coupling between
NeuronGroup1 and NeuronGroup2 depending on
strengths of excitatory and inhibitory synaptic con-

nections (ḡsyn(ext) max and ḡsyn(inh) max, respectively).
Figure 2(a) depicts typical raster plots for various cou-
pling modes observed. Horizontal segments in Fig. 2(a)
represent bursting periods of all the 2 × 81 neurons
constituting the NeuronGroup1 and NeuronGroup2.
For each burst of each neuron, the bursting period
is defined as the period beginning from the instant
when the membrane potential of the neuron rises above
−20 mV while delivering the first spike of the burst to
the instant when the membrane potential falls below
−20 mV while delivering the final spike of the burst.
Membrane potential trajectories of a typical neuron
within NeuronGroup1 and NeuronGroup2 for the vari-
ous coupling modes are depicted in Fig. 2(c); averaged
population activities of NeuronGroup1 and Neuron-
Group2 are depicted in Fig. 2(b).

The coupling modes were classified visually based
on the averaged population activity. However, since
the population activity and the individual neuron

Fig. 2 (a) Raster plots of various coupling modes—biphasic
(ḡsyn(ext) max = 0.8 nS, ḡsyn(inh) max = 4.5 nS), monophasic
(ḡsyn(ext) max = 2.0 nS, ḡsyn(inh) max = 5.0 nS), Synchronous
(ḡsyn(ext) max = 1.2 nS, ḡsyn(inh) max = 0.5 nS), 2:1 coupling (with
inhibition: ḡsyn(ext) max = 0.8 nS, ḡsyn(inh) max = 1.5 nS; no
inhibition: ḡsyn(ext) max = 0.4 nS, ḡsyn(inh) max = 0.0 nS), and
intermittent (ḡsyn(ext) max = 2.0 nS, ḡsyn(inh) max = 3.0 nS; inter-
mittent regular also corresponds to the same values of synaptic
strengths)—observed by changing the strengths of excitatory

and inhibitory synaptic conductances. The neurons within
each neuronal groups are ranked in ascending order of their
bursting activity initiation timings for better visualization. (b)
Corresponding averaged population activity of NeuronGroup1
and NeuronGroup2 (top and bottom traces, respectively, in
each panel) and (c) Activity of a typical neuron belonging
to NeuronGroup1 and NeuronGroup2 (top and bottom traces,
respectively, in each panel)
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activity within the neuronal groups are well correlated,
the coupling mode classification could be based on
the activity of a pair of neurons from NeuronGroup1
and NeuronGroup2 as well (Fig. 2(c)). Nomenclatures
used for classifying the different coupling pattern are as
follows:

• The biphasic mode is characterized by activity pat-
tern of NeuronGroup1 neurons resembling Pre-I
neurons—bursting just before inspiratory burst of
NeuronGroup2 neurons, inhibition during inspi-
ratory phase, and post-inspiratory second burst
(Fig. 2(c), Biphasic).

• The monophasic coupling mode is characterized
by activity of NeuronGroup1 neurons compris-

ing two phases—bursting just before inspiratory
burst of NeuronGroup2 neurons and inhibition dur-
ing inspiratory phase (Fig. 2(c), Monophasic). We
termed this coupling mode as ‘monophasic’ be-
cause it may be thought of as a reduced form of
biphasic coupling where the post-inspiratory sec-
ond burst of NeuronGroup1 neurons is missing.
The bursting frequency of both NeuronGroup1 and
NeuronGroup2 neurons are high in monophasic
coupling mode; note the magnified time scale used
for monophasic coupling in Fig. 2.

• The synchronous coupling mode is characterized
by simultaneous bursting activity of both Neuron-
Group1 and NeuronGroup2 neurons (Fig. 2(c),
Synchronous).

Fig. 3 (a) Domain of occurrence of coupling modes as a function
of excitatory and inhibitory synaptic strengths of the dual oscilla-
tor model. For each combination of ḡsyn(ext) max and ḡsyn(inh) max,
seven simulations were performed and the frequency of occur-
rence of various coupling modes are illustrated using the gray

color scale indicated on the right. (b) Representative domain
of various coupling modes based on maximum occurrence fre-
quency. For simplicity, the occurrence frequency of the two types
of intermittent coupling modes were merged together, since their
occurrence domain overlaps
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• The 2:1 coupling mode is the case where Neu-
ronGroup1 and NeuronGroup2 exhibit bursting
activity in 2:1 ratio. 2:1 coupling mode may be
further subclassified as (1) 2:1 with inhibition—
NeuronGroup1 neuron activity is similar to that of
biphasic coupling mode except that its post inspira-
tory burst is significantly delayed (Fig. 2, 2:1 (with
inhibition)), and (2) 2:1 without inhibition—
NeuronGroup2 neurons synchronize their bursting
activity with every alternate bursting activity of
NeuronGroup1 neurons (Fig. 2, 2:1 (no inhibition)).
In both of these 2:1 coupling modes, excitatory
postsynaptic potentials (EPSPs) are observed on
membrane trajectories of NeuronGroup2 neurons
coincident with the NeuronGroup1 burst during the
expiratory phase.

• Intermittent coupling mode shows mixed features
of synchronous and monophasic coupling mode but
with irregular variation in burst duration and inter-
burst interval (Fig. 2, Intermittent). Frequently, we
also obtained a more regular coupling between
NeuronGroup1 and NeuronGroup2 for identical
values of excitatory and inhibitory synaptic connec-
tions, which we termed as Intermittent (regular)—a
pattern in which synchronous and monophasic cou-
pling patterns are alternating (Fig. 2, Intermittent
(regular)). Since the occurrence domain of Inter-
mittent (regular) overlaps with that of the conven-
tional Intermittent coupling (see Fig. 3, explanation
for which is presented in the following paragraph),
we decided to treat these two patterns collectively
so as to gain some simplicity in the presentation of
results.

Figure 3(a) shows the domain of various cou-
pling modes observed as a function of ḡsyn(ext) max and
ḡsyn(inh) max. Seven simulations were done for each com-
bination of ḡsyn(ext) max and ḡsyn(inh) max and the oc-
currence frequencies of each coupling mode are also
shown. The boundaries of various coupling mode do-
mains in Fig. 3(a) cannot be precisely determined, be-
cause the coupling modes changed slightly every time
with the assignment of random initial values for the
various synaptic conductance and ḡNaP conductance.
Figure 3(b) shows the domain of various coupling
modes based on their maximum frequency of occur-
rence. It is remarked that occasionally the coupling
patterns obtained in 2:1 coupling domain could not be
meaningfully classified. The values of ḡsyn(ext) max and
ḡsyn(inh) max are low in this region and thus the burst-
ing behavior of NeuronGroup1 and NeuronGroup2 in
some simulations were largely uncoupled.

3.2 Simulating the effects of decrease in preBötC
neuronal excitability

We simulated the effect of decrease in preBötC neu-
ronal excitability by increasing the leak current conduc-
tance ḡL (used for the computation of leakage current

Fig. 4 Effect of increase in ḡL value on the coupling mode
between NeuronGroup1 and NeuronGroup2. With the successive
increase in ḡL, the coupling mode which is originally biphasic
(Fig. 2(a), biphasic) changes to (a) 2:1 coupling, (b) 3:1 cou-
pling and eventually (c) quantal slowing—NeuronGroup2 ex-
hibits bursting non-deterministically at fourth or fifth phasic
excitations from NeuronGroup1. In raster plots, the neurons
within each neuronal groups are ranked in ascending order of
their bursting activity initiation timings for better visualization.
(d) Averaged population activity of NeuronGroup1 (top trace)
and NeuronGroup2 (bottom trace) corresponding to the quantal
slowing case depicted in (c)
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Fig. 5 (a) Plot depicting the
non-deterministic variation of
interburst interval of
NeuronGroup2 with time.
The vertical separation
between the horizontal grid
lines indicates the interburst
interval of NeuronGroup1.
NeuronGroup2 exhibits
bursts, non-deterministically,
at the third, fourth, fifth,
sixth, seventh and ninth
phasic excitatory drives
from NeuronGroup1.
(b) Population activities
of NeuronGroup1 and
NeuronGroup2 for the time
interval depicted by the thick
gray bar in (a). For the above
simulation, the values of
ḡsyn(ext) max, ḡsyn(inh) max and
ḡL were 0.8 nS, 4.5 nS and
3.89 nS, respectively

IL (Butera et al. 1999a)) for the neurons constituting
NeuronGroup2 and studied its effect on the coupling
pattern using the dual oscillator model. We studied
the case when ḡsyn(ext) max = 0.8 nS and ḡsyn(inh) max =
4.5 nS, which consistently produces a biphasic coupling
pattern in our simulation (Figs. 3 and 2(a)). When
ḡL is increased, the number of cells with pacemaker
property in NeuronGroup2 decreases (Fig. 10). When
ḡL is increased beyond 3.4 nS, none of the Neuron-
Group2 neurons show pacemaker property. In this sit-
uation, NeuronGroup1 is the sole rhythm generator,
and NeuronGroup2 is the inspiratory pattern generator
triggered by NeuronGroup1 due to the excitatory
synaptic connection from NeuronGroup1 to Neu-
ronGroup2 (ḡsyn(ext) max = 0.8 nS). We observed 2:1
coupling, 3:1 coupling and eventually quantal slow-
ing of bursting rhythms between NeuronGroup1 and
NeuronGroup2 (Fig. 4), as the value of ḡL was suc-
cessively increased. In Fig. 4(c), NeuronGroup2 non-
deterministically exhibits bursts at the fourth or fifth
phasic excitations from the NeuronGroup1. Figure 5
depicts the non-deterministic variability in the inter-
burst interval of NeuronGroup2 for a long duration
simulation of quantal phenomenon; the quantal distri-
bution of the interburst interval is readily apparent.
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Fig. 6 Interburst interval of NeuronGroup2 as a function of ḡL.
The interburst interval of NeuronGroup2 is non-dimesionlized
to remove the variability in interburst interval of NeurnGroup2
caused by variability in the interburst interval of NeuronGroup1.
A new simulation is performed for each value of ḡL. For
ḡL <3.84 nS, we observed single bursting frequency of Neuron-
Group2. Quantal slowing was observed in the range 3.84 nS ≤
ḡL ≤ 4.0 nS; multiple data points corresponding to the same
value of ḡL in this range depicts the multiple interburst intervals
observed. For example, the two solid squares depicts the the
two interburst interval of NeuronGroup2 obtained for the case
ḡL = 3.88 nS shown in Fig. 4(c)
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Fig. 7 Quantal slowing
observed when ḡNaP max of
NeuronGroup2 was reduced
to 2.09 nS (ḡsyn(ext) max =
0.8 nS, ḡsyn(inh) max = 4.5 nS).
(a) Raster plots depicting the
bursting activity of neurons
within NeuronGroup1 and
NeuronGroup2, and (b)
Averaged population activity
within NeuronGroup1 and
NeuronGroup2 (top and
bottom trace, respectively). In
raster plot, the neurons
within each neuronal groups
are ranked in ascending order
of their bursting activity
initiation timings for better
visualization

Fig. 8 Histograms showing
the number of cells in
NeuronGroup2 exhibiting
simultaneous bursting during
the quantal slowing case
depicted in Fig. 4(c)
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However, the quantal slowing phenomenon was not
observed in every simulation; the occurrence rate was
about 70%; in the rest of the cases we obtained reg-
ular 4:1 or 5:1 coupling between NeuronGroup1 and
NeuronGroup2, similar to the regular 3:1 coupling de-
picted in Fig. 4(b). This was because, for every sim-
ulation, we assigned different random values to ḡNaP,
ḡsyn(int), ḡsyn(ext), and ḡsyn(inh); the occurrence of quan-
tal slowing was sensitive to the variability in bursting
property of constituent neurons and distributions of the
synaptic conductances.

Figure 6 depicts the interburst interval of Neu-
ronGroup2 as a function of ḡL. To make the quan-
tal slowing effect apparent, the interburst interval of
NeuronGroup2 is non-dimensionalized with the in-
terburst interval of NeuronGroup1. There is some
variability in the interburst interval of the Neuron-
Group1 due to their random initialization. Since,
at elevated values of ḡL for neurons in Neuron-
Group2, only NeuronGroup1 is rhythm generator and
NeuronGroup2 bursts under the influence of excitatory
phasic drives from NeuronGroup1, the variability in the
interburst interval of NeuronGroup1 is translated to
variability in the interburst interval of NeuronGroup2.
Non-dimensionlization eliminates this variability de-
pendence and makes the quantal slowing effect
pronounced.

The decrease in preBötC excitability is also sim-
ulated by reducing ḡNaP max value of NeuronGroup2.
When pursued this course, setting ḡsyn(ext) max = 0.8 nS
and ḡsyn(inh) max = 4.5 nS in the dual oscillator model,
we observed similar changes in coupling mode be-
tween NeuronGroup1 and NeuronGroup2 as depicted
in Fig. 4 as the ḡNaP max value was lowered; the coupling
pattern successively changed from initial biphasic mode
to 2:1 coupling, then to 3:1 coupling which eventually
lead to quantal slowing. Figure 7 depicts a typical case
of quantal slowing obtained by reducing ḡNaP max value.

To gain insight into mechanism causing quantal slow-
ing, further investigations were made. The histograms
in Fig. 8 show the number of cells in the Neuron-
Group2 simultaneously bursting during the quantal
slowing case depicted in Fig. 4(c). Almost all cells
in NeuronGroup1 showed synchronized activity and
hence their activity is not shown. Note that a small
fraction of neurons in the NeuronGroup2, variable in
number, exhibited bursting by excitatory phasic drives
from NeuronGroup1 in the interval between succes-
sive synchronized NeuronGroup2 bursting. Next, we
removed the interconnections within NeuronGroup2,
and investigated the number of neurons that exhibit
bursting by phasic drives from NeuronGroup1 under
such condition. To do this, we set ḡsyn(ext) max = 0.8 nS

and ḡsyn(inh) max = 0 nS, and for all NeuronGroup2 cells,
we set ḡsyn(int) = 0.

Consequently, the dual oscillator model was
modified as follows: (1) NeuronGroup1 remains
unchanged, (2) NeuronGroup2 becomes essentially
a group of unconnected 81 neurons, and (3) the
excitatory synaptic connection from NeuronGroup1 to
NeuronGroup2 is present (ḡsyn(ext) max = 0.8 nS) but the
inhibitory synaptic connection from NeuronGroup2
to NeuronGroup1 is absent. Subsequently, we
successively increased the value of ḡL for neurons in
NeuronGroup2 and studied the time history of neurons
exhibiting bursting in NeuronGroup2 quantitatively.
Figure 9 depicts the details of one representative study
when ḡL = 3.85 nS for neurons in NeuronGourp2.
For the elevated value of ḡL = 3.85 nS, none of the
neurons in NeuronGroup2 possess pacemaker property
(Fig. 10). However, under the influence of excitatory
phasic drives from NeuronGroup1, a total of 19 (out
of 81) neurons in NeuronGroup2 exhibit bursting
at various instances. Moreover, not all 19 neurons
in NeuronGroup2 exhibit simultaneous bursting;

Fig. 9 Variability in the number of neurons in NeuronGroup2
exhibiting bursting under the influence of excitatory phasic drive
from NeuronGroup1. The neurons in NeuronGroup2 are uncon-
nected (ḡsyn(int) = 0 nS for all neurons in NeuronGroup2) and
ḡsyn(ext) max = 0.8 nS and ḡsyn(inh) max = 0 nS. In raster plot, the
neurons within NeuronGroup1 are ranked in ascending order of
their bursting activity initiation timings for better visualization
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Fig. 10 Typical decrease in the number of neurons with pace-
maker property in NeuronGroup2 as ḡL value is increased

the histograms in Fig. 9 show the variation in the
number of neurons that exhibit simultaneous bursting
at each excitatory phasic drive from NeuronGroup1.
A maximum of 12 and a minimum of 4 neurons
in NeuronGroup2 exhibit simultaneous bursting,
indicating that there is considerable variability. The
number of neurons in NeuronGroup2 that exhibit
bursting with the influence of excitatory phasic drives
from NeuronGroup1 for different values of ḡL is shown
in Fig. 10.

4 Discussion

4.1 Coupling modes of pFRG and preBötC
rhythm-generating networks

Our model could produce 1:1 coupling of bursting
rhythms between pFRG and preBötC with the char-
acteristic biphasic pre-inspiratory and post-inspiratory
firing pattern of pFRG neurons. Post-inspiratory burst
of NeuronGroup1 neurons during biphasic coupling,
characteristic of Pre-I neurons, is the consequence
of recovery from INaP inactivation during inspiration-
related inhibition of the Pre-I firing in our model
(post-hyperpolarization rebound bursting (Butera et al.
1999a)).

Our results indicated that the coupling modes de-
pend on the strengths of synaptic connections between
the two networks. When we view the coupling modes
as a function of the strengths of excitatory input from
NeuronGroup1 to NeuronGroup2 (ḡsyn(ext) max) and in-
hibitory input from NeuronGroup2 to NeuronGroup1
(ḡsyn(inh) max), three major domains are recognized: (1)
synchronous coupling domain with a low inhibitory

strength, (2) biphasic coupling domain with a high in-
hibitory strength and low/moderate excitatory strength,
and (3) monophasic coupling domain with high ex-
citatory and high inhibitory strengths (Fig. 3). The
changes in coupling mode by the inhibitory synaptic
strength are consistent with experimental results. When
a GABA antagonist (bicuculline or picrotoxin) or a
glycine antagonist (strychnine) is given to the perfusate
of brainstem spinal cord preparations, IIPI becomes
absent or negligible, and the activity of Pre-I neurons
overlaps with the C4VR inspiratory activity (Onimaru
et al. 1990). These findings are in agreement with
the model prediction when the strength of inhibitory
connection from NeuronGroup2 to NeuronGroup1 is
reduced.

Between the synchronous and biphasic major do-
mains, there exists the domain of 2:1 coupling ‘with
inhibition’ for moderate values of ḡsyn(inh) max (Fig. 3).
The 2:1 coupling ‘with inhibition’ may be viewed as a
precursor to biphasic coupling as the coupling mode
transits from synchronous to biphasic with an increase
in inhibitory strength. In the case of 2:1 coupling ‘with
inhibition’, the inhibitory strength is not strong enough
to cause an immediate post hyperpolarization rebound
bursting of NeuronGroup2 as in biphasic coupling;
the bursting of NeuronGroup2 is considerably delayed.
We observed EPSPs in NeuronGroup2 neuronal mem-
brane trajectories coincident with the rebound bursts
of NeuronGroup1. These EPSPs could not evoke Neu-
ronGroup2 burst because of two reasons: (1) low value
of ḡsyn(ext) max, and (2) the timing of excitatory inputs
to NeuronGroup2 from its previous burst is too close.
With an increase in the value of ḡsyn(ext) max, excitatory
inputs to the neurons of NeuronGroup2 increase, caus-
ing it to burst every time the pFRG bursts, thus trans-
forming the 2:1 coupling to the intermittent coupling
mode (Fig. 3).

Likewise, the 2:1 coupling ‘without inhibition’, which
is primarily found to the left of the synchronous cou-
pling domain and for extremely low values of inhibitory
strength, may be viewed as a precursor to synchro-
nous coupling. In 2:1 coupling ‘without inhibition’, the
excitatory strength is not strong enough to cause a
synchronized bursting of NeuronGroup2 at each phasic
excitation from NeuronGroup1; instead it synchro-
nizes at every alternate phasic excitation from Neuron-
Group1. It may be noted that the cases of 2:1 coupling
‘with’ and ‘without inhibition’ presented in Fig. 2 lie at
the two extremities of the 2:1 coupling domain marked
in Fig. 3(b); thus, the difference between them is readily
evident. However, the transition from ‘without inhibi-
tion’ form of 2:1 coupling to ‘with inhibition’ form is
extremely smooth; therefore, we merged the two cases
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together while determining the coupling domains in
Fig. 3.

As 2:1 ‘with inhibition’ coupling mode transits to
intermittent coupling mode with increase in the value
of ḡsyn(ext) max, biphasic mode transits to monopha-
sic coupling mode with increase in the value of
ḡsyn(ext) max. For the biphasic coupling mode, the value
of ḡsyn(ext) max is relatively low. Consequently, the EP-
SPs provided by NeuronGroup1 at the time of its post
inspiratory burst to NeuronGroup2 is not sufficient
to make it burst again. However, for higher values
of ḡsyn(ext) max, as in the case of monophasic coupling,
the post-inspiratory burst of NeuronGroup1 provides
high enough EPSPs to NeuronGroup2, causing it to
burst again (Fig. 2, Monophasic). Since the interval
between pre-inspiratory and post-inspiratory bursts of
NeuronGroup1 is very small, the frequency of bursts
in monophasic coupling mode is high. It may be ob-
served that the excitation-inhibition cycle (excitation
of NeuronGroup2 by NeuronGroup1 and inhibition of
NeuronGroup1 by NeuronGroup2) continues infinitely
in monophasic coupling, whereas in case of intermit-
tent coupling, the excitation-inhibition cycle intermit-
tently breaks and restarts again. This suggests that the
excitation-inhibition cycle is more stable when both
ḡsyn(ext) max and ḡsyn(inh) max are high.

To illustrate the predictive capability of dual oscilla-
tor model, it was remarked earlier in this section that
biphasic and synchronous coupling modes are experi-
mentally observed cases. In the same regard, it may also
be of significance to note that the 2:1 coupling ‘with
inhibition’ as depicted in Fig. 2 and the 2:1 coupling
depicted in Fig. 4(a) are also observed in experimen-
tal conditions (Okada et al. 2007), which adds to the
predictive capability of the model.

4.2 Mechanisms of quantal slowing

During quantal slowing, subthreshold phasic drives to
preBötC inspiratory neurons are observed coincident
with the timing of skipped inspiratory burst. Based on
this observation together with non-deterministic jumps
of the bursting period to integer multiples of the control
period, Mellen et al. (2003) have suggested that opioid-
induced quantal slowing results from transmission
failure from unaffected Pre-I neurons to depressed pre-
BötC networks. In addition, they have also mentioned
that noisy mutual coupling between the rhythmically
active preBötC and the pFRG networks could be an
alternative explanation of quantal slowing. Following
this, Wittmeier et al. (2008) simulated the quantal
slowing phenomenon by incorporating stochastic exci-
tatory synaptic transmission from pFRG to preBötC

and reducing its (mean) conductance by 12.5% of
control. Thereby, they reinforced the suggestion that
quantal slowing results from both transmission fail-
ure and noisy mutual coupling between pFRG and
preBötC.

In the present study, however, quantal slowing was
observed without assuming transmission failure or
noisy interactions. Here we use the term ‘transmission
failure’ specifically as a suppression of excitatory synap-
tic transmission from pFRG to preBötC. The results
of the present study are both new and simple; ‘simple’
in the sense that the basic dual oscillator model by
itself is adequate to simulate quantal slowing without
incorporating any additional hypothesis like transmis-
sion failure or noisy mutual coupling. Nevertheless,
under some experimental conditions, these processes
may contribute secondarily to the primary mecha-
nism of quantal slowing as explained in the following
paragraph.

The quantal slowing phenomena stems from the fact
that the synchronized bursting of NeuronGroup2 is
governed by the states of a small fraction of neurons
in it that exhibit bursting by phasic excitatory drives
from NeuronGroup1 under elevated values of ḡL or
decreased values of ḡNaP max for neurons in Neuron-
Group2 (Fig. 10). These small fraction of neurons pro-
vide excitatory inputs to the other quiescent neurons
of NeuronGroup2 and help them to burst. If the to-
tal number of neurons in NeuronGroup2 exhibiting
bursting exceeds a ‘critical value’, it results in a self-
sustained chain of events where progressively larger
number of neurons of NeuronGroup2 exhibit burst-
ing and eventually all the neurons in NeuronGroup2
exhibit synchronized bursting. On the other hand if
the number of bursting neurons in NeuronGroup2
falls short of the critical value, then the neurons in
NeuronGroup2 do not exhibit synchronized bursting.
Figure 9 depicted variability in the number of neu-
rons in NeuronGroup2 exhibiting bursting by excita-
tory phasic drives from NeuronGroup1. Though, the
case presented in Fig. 9 corresponds to unconnected
neurons in NeuronGroup2, it is likely that similar vari-
ability, albeit to a different degree, exists even when the
neurons in NeuronGroup2 are interconnected through
chemical synapses. This is evident if one compares the
similarity in the bursting activity of a small fraction of
NeuronGroup2 neurons in the interval between syn-
chronized bursting in Fig. 8 (and Fig. 7) with that of
the uncoupled neurons in NeuronGroup2 depicted in
Fig. 9. Consequently, the number of bursting neurons
in NeuronGroup2 exceeds the critical number inter-
mittently and synchronized NeuronGroup2 bursting oc-
curs. This results in quantal slowing of synchronized
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bursting of NeuronGroup2. From our simulation study,
we observed that a maximum of about 15 neurons in
NeuronGroup2 exhibit bursting when NeuronGroup2
fails to exhibit synchronized bursting. Thus, the ‘critical
number’ of bursting neurons that necessarily be sur-
passed for synchronized NeuronGroup2 bursting may
be greater than 15 (out of 81) neurons. The critical
number is expected to be fuzzy rather than precisely
defined. The fuzziness stems from the fact that the
distribution of ḡNaP and ḡsyn(int) among NeuronGroup2
neurons is randomly assigned. Moreover, the critical
number is a function of the network topology as well
(see Section 4.3). For a neuronal group where the
constituent neurons are interconnected in a different
way than what we have considered here, the critical
number is different. However, the qualitative aspects
of the results, such as intermittent failure of Neuron-
Group2 to exhibit synchronized bursting, are generally
expected and could be an underlying mechanism of
quantal slowing.

Quantal slowing was not observed in 30% of the
simulations. In these cases, the distributions of random
values of ḡNaP and ḡsyn(int) within NeuronGroup2 are
such that its constituent neurons are relatively better
synchronized. This was evident from visual observa-
tion of the raster plots obtained for these cases, which
resembled the regular coupling pattern in Fig. 4(b).
Consequently, there is no intermittent failure of
NeuronGroup2 to exhibit synchronized bursting and
hence no quantal slowing is observed. In such cases, the
activity of the neuronal groups, both NeuronGroup1
and NeuronGroup2, may be essentially captured by
replacing each of them with a single pacemaker neuron.
This probably explains why Wittmeier et al. (2008)
could not simulate quantal slowing phenomenon with
their simplified model unless they incorporated sto-
chastic synaptic transmission. The simplified model
lacks the complexity necessary to capture the essen-
tial source of (apparent) non-determinism resulting the
quantal slowing phenomenon (as discussed in the pre-
vious paragraph), which is intrinsic in the neuronal
population model that we have considered. It is im-
portant to realize that the non-determinism associated
with the occurrence of quantal slowing simulation is
an ‘apparent’ one—the dual oscillator model used to
simulate quantal slowing is deterministic; it is the non-
linearity present in the bursting behavior of individual
neurons within the neuronal groups that result in non-
deterministic-like intermittent synchronized bursts of
NeuronGroup2. Thus, our results also hint toward the
fact that quantal slowing may not necessarily be derived
from any stochastic processes but may actually be a
deterministic phenomena.

Figures 5 and 6 suggests that the interburst dura-
tions of NeuronGroup2 while exhibiting quantal slow-
ing are not integer multiples of the control period but
are instead fractional multiples. Interestingly, this was
elucidated by Wittmeier et al. (2008) as well, though
they achieved it by incorporating a stochastic synaptic
transmission. Consequently, it may be inferred that the
fractional nature of quantal slowing is primarily a char-
acteristic of dual oscillator models and is independent
of the mechanism inducing the non-determinism.

4.3 Relation of preBötC neuronal network topology
to quantal slowing

We have assumed that each neuron of Neuron-
Group2 is synaptically connected to every other neuron
within NeuronGroup2 (“all-to-all” connectivity). Con-
sequently, the intra-neuronal group synaptic current
Isyn(int) for individual neurons of NeuronGroup2 (the
first term on the right hand side of Eq. (2)) is:

Isyn(int) =
(∑

l∈L

gl
syn(int) · sl

int

) (
V − Esyn(e)

)
(8)

where L is NeuronGroup2. However, we subsequently
reduced the above equation to

Isyn(int) = ḡsyn(int) · s̄int
(
V − Esyn(e)

)
(9)

(refer Section 2.2, in particular the reduction of Eq. (2)
to Eq. (3)) and then randomly assigned values to ḡsyn(int)

from a uniformly distributed probability density func-
tion ranging between 0 and 10 nS. Since, s̄int is the
same for all the neurons, it is primarily the variability
in the values of ḡsyn(int) across the neurons in Neu-
ronGroup2, which contributes to the variability in the
intra-neuronal synaptic currents for individual neurons
of NeuronGroup2. From synchronization perspective, a
neuron with low value of ḡsyn(int) may be considered as
weakly connected to rest of the neurons within Neuron-
Group2 and vice versa.

It is remarked that the reduction of Eq. (8) to Eq. (9)
modifies the intrinsic homogeneity present in “all-to-
all” network connectivity. If we randomly assign val-
ues to gl

syn(int) from a uniformly distributed probability
density function of any appropriate range, and perform
the summation shown in Eq. (8), the variability in the
individual values of gl

syn(int) will be equalized resulting in
almost homogeneous distribution of Isyn(int) across the
neurons of NeuronGroup2. Homogenous distribution
of Isyn(int) within NeuronGroup2 would imply that each
neuron is connected equally strongly to rest of the
neurons within NeuronGroup2. Since this is unlikely
to be the case in the real preBötC, we presume that
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our way of introducing variability in the distribution of
Isyn(int) across the neurons of NeuronGroup2 is quali-
tatively more realistic. The significance of the usage of
uniformly distributed probability density functions for
randomly assigning the values to ḡsyn(ext) and ḡsyn(inh) in
the model may be interpreted similarly.

Now, since in our simulations, quantal slowing is
observed primarily due to intermittent failure of Neu-
ronGroup2 to exhibit synchronized burst, it is remarked
that the ability of NeuronGroup2 to exhibit synchro-
nized bursts is intrinsically dependent on its network
topology, in particular, the distribution of Isyn(int) across
the neurons of NeuronGroup2. In the quantal slow-
ing simulation, Fig. 4(c) for example, we observe that
NeuronGroup2 mostly exhibits synchronized bursts at
every fourth phasic excitation from NeuronGroup1 but
frequently it skips the fourth phasic excitation from
NeuronGroup1 and bursts at the fifth phasic excita-
tion. Thus, once NeuronGroup2 has exhibited a syn-
chronized burst, there is an element of (apparent)
non-determinism whether it will exhibit its next syn-
chronized bust at the fourth phasic excitation from
Neurongroup1 or not. However, in experimentally
observed quantal slowing, preBötC elucidates non-
determinism in its busting at each phasic excitation of
pFRG (Mellen et al. 2003). We reason that this discrep-
ancy is probably due to the difference in the neuronal
network topology of real preBötC as compared to the
one we have incorporated in NeuronGroup2.

Thus, it is remarked that the highlight of the present
simulation study of quantal slowing is only its essential
qualitative feature—the (apparent) non-determinism
associated with bursting of preBötC—and the po-
tential mechanism causing it. The quantitative fea-
tures of quantal slowing may only be simulated by
incorporating a more realistic network topology for
NeuronGroup2.

4.4 Some additional simulation studies

In the model presented above, we introduced variabil-
ity in bursting frequencies of the constituent neurons of
NeuronGroup1 and NeuronGroup2 by providing vari-
ability in the allocated value of persistent Na+ current
conductance ḡNaP of neurons. The variability in burst-
ing frequencies may also be introduced by providing
variability in the leakage current conductance ḡL of
neurons keeping the ḡNaP value fixed. We pursued
this course too and verified that all the qualitative
features presented above remains unchanged. For this
study, we randomly assigned ḡL to neurons of each
neuronal group from a uniform probability distribution
function ranging from 2.3 to 2.8 nS; we set ḡNaP =

3.5 nS for all neurons of NeuronGroup1 and ḡNaP =
2.5 nS for that of NeuronGroup2, so that the burst-
ing frequency of NeuronGroup1 is higher than that of
NeuronGroup2.

Further, we used a Gaussian distribution (with a
standard deviation of 0.3 nS about the mean values of
ḡNaP = 3.5 nS for NeuronGroup1 and ḡNaP = 2.45 nS
for NeuronGroup2) instead of the uniform distribution,
for allocating the values of ḡNaP to individual neurons.
Again the qualitative features of results obtained were
essentially the same as presented above. Thus, it is sug-
gested that the results presented in the manuscript are
independent of the mode of introducing the variability
in bursting frequencies of the constituent neurons of the
neuronal groups.

5 Model justification

We assumed that the intrinsic bursting frequency of
pFRG is faster than that of preBötC. This is a prereq-
uisite for the consistent firing of pFRG neurons before
the burst of preBötC neurons. To our knowledge, this
assumption has never been tested experimentally. The
intrinsic bursting rhythm of pFRG neurons, separated
from preBötC can be monitored from the facial nerve
rootlet, however, the inherent bursting frequency of
the pFRG is difficult to determine because the rhythm
is suppressed by pons or other brain regions with the
facial nerve attached (Onimaru et al. 2006). In the dual
oscillator model, we simulated by reversing the bursting
frequencies of NeuronGroup1 and NeuronGroup2, that
is by setting ḡNaP max = 3.0 nS for NeuronGroup1 and
ḡNaP max = 4.0 nS for NeuronGroup2. We did not obtain
the characteristic biphasic coupling for any combina-
tion of excitatory and inhibitory synaptic strengths (the
range of synaptic strengths considered for this study
was the same as that in Fig. 3).

We assumed that the persistent Na+ current is re-
sponsible for rhythmic bursts of pFRG and preBötC
neurons. This assumption has been recently contra-
dicted. Pace et al. (2007a) have demonstrated that
INaP does not contribute to inspiratory drive potential
generation in the vast majority of preBötC neurons.
Another intrinsically bursting neuronal group has been
identified in the preBötC, which is dependent on a
calcium-activated nonspecific cationic current (ICAN)
(Peña et al. 2004). However, the relative contribution
of pacemaker properties and synaptic inputs to rhythm
generation is likely to be dynamic (Johnson 2007). For
example, during hypoxia, the respiratory pattern gen-
erator is more dependent on pacemaker properties and
produces gasping behavior (Paton et al. 2006). Further
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recent data of Koizumi et al. (2008) from neonatal
rats contradict the data of Pace et al. (2007b) from
mice, and show that inspiratory rhythm generation can
be INaP-dependent in the isolated preBötC network in
vitro. Therefore, although we did not consider ICAN,
the breakdown of synchronized burst could still be the
underlying mechanism of quantal slowing in certain
conditions.

It has been shown that glutamatergic excitatory
synaptic inputs are required to evoke the ICAN-
dependent inspiratory drive potentials (Pace et al.
2007b), suggesting that the rhythmic burst is generated
by a “group pacemaker” mechanism (Feldman and Del
Negro 2006) in which rhythm generation is an emer-
gent property of the network. Recently, Rubin et al.
(2009) proposed a mathematical model of the neurons
exhibiting “group pacemaker” mechanism. However,
this model lacks the post-hyperpolarization rebound
bursting dynamics which is essential for producing the
post-inspiratory burst of pFRG, and thus we cannot
use this neuronal model to simulate and study quantal
slowing.

We simulated the opioid-induced reduction of ex-
citability in preBötC bursting neurons both by increas-
ing ḡL and by reducing ḡNaP max. However, we do not
know how opioids depress preBötC neurons. Opioids
activate a G-protein-coupled inwardly rectifying potas-
sium conductance known as Girk, resulting in the hyper-
polarization of neurons throughout the central nervous
system (Williams et al. 1982; Wimpey and Chavkin
1991). Therefore, the depressant effect of opioids on
preBötC may be reasonably simulated by an increase
in ḡL. On the other hand, it is unlikely that opioids di-
rectly affect ḡNaP max because pFRG bursting neurons,
which are INaP-dependent (Onimaru et al. 1997), are
not affected by opioids (Takeda et al. 2001; Janczewski
et al. 2002).

Since the two putative rhythm-generating networks
are embedded hierarchically in the central respira-
tory pattern-generating network in more intact animals
(Smith et al. 2007), dynamic interactions among neu-
ronal groups must not be so simple. Opioid-induced
quantal slowing has been observed in juvenile (Mellen
et al. 2003) and adult (Vasilakos et al. 2005) rats in vivo.
These observations can be interpreted as the manifesta-
tion of dynamic interactions between fundamental-level
networks. However, it has been reported that eupnea
of in situ intra-arterially perfused rats persists following
the blockade of the two burst-generating currents, INaP

and ICAN (St.-John 2008). Therefore, whether the dual
oscillator configuration is the fundamental-level net-
work component of eupnea or that of gasping remains
to be clarified.

In summary, we developed a dual oscillator model
to understand the dynamic interactions between pFRG
and preBötC neurons. Our model essentially assumes
(1) both pFRG and preBötC networks are rhythm
generators, (2) preBötC receives excitatory inputs from
pFRG, and pFRG receives inhibitory inputs from pre-
BötC, and (3) persistent Na+ current conductance
and synaptic current conductances are randomly dis-
tributed. Our model could produce the characteristic
behaviors observed experimentally in neonatal brain-
stem spinal cord preparations. The coupling mode de-
pended on the strengths of excitatory and inhibitory
connections of the oscillator. In contrast to the earlier
suggestions, quantal slowing was observed without
transmission failure (suppressed excitatory synaptic
conductance) or noisy mutual interactions between the
neuronal networks of the oscillator. Our study suggests
that quantal slowing may actually be a deterministic
phenomena and the non-determinism associated with
it may only be an ‘apparent’ one. We suggest that
quantal slowing results from inhomogeneous properties
of individual cells within the oscillator and subsequent
breakdown of synchronized bursting within the pre-
BötC oscillator.
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