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The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved
system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the
electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D
structure of polarization singularities in terms of Clines and L surfaces embedded in the emerging light. We
visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels
effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission
of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the
connection of polarization singularity dynamics with the accompanying generation of orbital angular
momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved,
the total topological index of C points is conserved.

he study of polarization of light has a long history. Nowadays polarization has been of broad applications in

many areas of science and technology, ranging from physics to biology and chemistry'. Recent interest may

be traced back to the seminal work by Nye who revealed the generic structure of polarization singularities*™.
In the general 3D picture, there are two types of polarization singularities: lines along which the polarization is
purely circular (Clines) and surfaces on which the polarization is purely linear (L surfaces), where the orientation
and handedness of polarization ellipse are indefinite, respectively. In the context of singular optics, polarization
singularities are regularly considered as the vector analog of phase singularities or optical vortices in scalar fields.
Circular polarizations are in essence associated with spin angular momentum of photons, while optical vortices
are often studied with twisted photons carrying quantized orbital angular momentum (OAM)%". It has been
demonstrated that manipulating optical beams with vortex lines in the forms of knots or links holds promise for
future laser technology and optical trapping schemes®°. Beyond the uniform polarization in scalar fields, the
morphology and topology of polarization singularities in vector fields are much richer and subtler, as predicted by
Dennis and later verified by Flossmann et al'"'>. Recent years have witnessed a rapidly growing interest in these
amazing structures, which are found to appear in the skylight'?, isotropic microchip laser', near field nano-
optics'®, and inhomogeneous anisotropic plates'®.

Here we report theoretically a rather fascinating phenomenon that in a uniaxial crystal when undergoing
Pockels effect, the tunable evolution of polarization singularities of emerging light behaves just like the binary
fission, such as in a prokaryotic cell division'”. Under the control of an externally applied electric field, the splitting
of C points and fission of L lines can be depicted vividly in analogy with the cleavage of nucleus and division of
cytoplasm. Polarization singularities in crystals have been indeed studied extensively'®*', but apparently seldom
considering the Pockels effect?>*. Previously, we demonstrated the capability of using Pockels effect to manip-
ulate spin and orbital angular momentum in optically active crystals or electro-optic birefrigent crystals®**. In
contrast, we here aim to show another phenomenon of tunable polarization singularities by electro-optically
breaking the rotational symmetry of a uniaxial crystal, which therefore lends itself to a flexible and real-
time manipulation. Our work can also be connected to those reporting the conservation law of angular
momentum related to the rotational symmetry, such as in isotropic crystals or uniaxial crystals*****'. In contrast,
here the rotational symmetry around the optic axis is slightly broken by the applied electric field, since the specific
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Figure 1| The theoretical scheme. (a) The proposed schematic diagram.
(b) The deformed ellipse of refractive index of KDP when undergoing the
Pockels effect.

second-order susceptibilities y.,, and ., are activated to respond
for the deformation of the refractive index ellipsoid of electro-optic
crystal. Furthermore, we reveal the connection of our observations
with the accompanying generation of OAM sidebands. OAM side-
bands have been found intrinsic to reflection due to Goos-Hanchen
and Imbert-Fedorov shifts®®. But ours is resulted from transverse
angular anisotropy induced by Pockels effect. Surprisingly, total
angular momentum of light is not conserved, whereas total topo-
logical index of C points is conserved.

Our scheme is sketched in Figure 1. We consider a z-cut uniaxial
crystal of potassium dihydrogen phosphate (KDP), which is a typical
electro-optic material belonging to class 42m. The principle refract-
ive indices n, = 1.5074, n, = 1.4669, and the nonvanishing electro-
optic coefficients y4; = 5, = 8, Y63 = 11 (in pm/V), respectively™.
Assume the initial light beam of wavelength A = 1.633 pm is a left-
handed circularly polarized one propagating along the optic axis,
namely, E(r| ,z=0)= exp (—rf_ /25%)é,, where s = 4.59 um is the

1 1
beam waist and &, = 7 [1,i] as well as é_ = 7 [1,—1i] forms the

circular bases. The incident and exit interfaces of KDP are both
coated with transparent electrode in order to apply a longitudinal
electric field Eg =Eye,. When E, is switched on, a nonlinear polar-
ization responsible for the Pockels effect is induced®: P*¢ =
2¢0%?(w, 0): EEy, where ¢ is the permittivity of free space, y®(w,
0) the second-order susceptibility tensor related to the Pockels effect,
and E the light field of frequency w. Starting from Maxwell equations
and considering total electric displacement D = ¢y¢,E+ PO, we have
the following equation governing the complex amplitude of a prop-
agating light,

V2E—V(V-E) + k3¢, E+ p1,0*PE? =0, (1)

where ko = 21/, €, =diag(n?,n2,n2) denotes the relative dielectric
tensor, and y is the magnetic susceptibility in vacuum.

In this paper, we follow Ciattoni’s angular spectrum representa-
tion method™® and our recently developed numerical method based
on asymptotic expansion® to calculate the complex vectorial field
E(r,, z) in the propagating space. As E(r |, z) is obviously position
dependent, it is naturally expected that the emerging polarization
from KDP is also spatially variant. Besides, the polarization should
be electrically tunable by E, via the Pockels effect. In general, the
geometry of polarization ellipse can be completely described in terms
of four Stokes parameters’: Sy=E.E, —l—EyE;, S =E\E, —EyE;,
S, =2Re(E;Ey), and S; =21m(E;E),). Physically, the orientation of
major axis and the ellipticity of polarization ellipse are characterized

1
by 0= 218 (81 +1S,) and & = S3/S,, respectively. In very cross sec-

tion, L lines are those on which S; = 0, C points are defined as the
intercept of the loci S; = 0 and S, = 0. Besides, C points can be
classified into some basic types, such as lemon, monstar and star>''.

Results
We plot in Figure 2 our numerical solution of the 3D polarization
singularities embedded in the emerging light. It is found that when

the KDP crystal is undergoing the Pockels effect, C lines and L sur-
faces attain different morphologies. Figure 2(a) demonstrate the
simple case when Ej is absent. It looks like a right circular cone with
the conical surface being L surface and the axis of the cone being C
line. As the light propagates, the C line is stretching along the pro-
pagation direction coinciding with optical axis. While E, is switched
on, however, the C line is quickly bifurcated into two ones, appearing
like a pair of compasses with both arms being left-handed circular
polarization and deflecting from the optic axis. Besides, the L surface
is then gradually cleaved into two separate sleeves and each encircles
one C line. By a comparison of Figure 2(a)-2(d), we find that apply-
ing a larger E, accelerates the cleavage of L surface. As E, increases
from 5.31 kV/cm to 10.62 kV/cm, the cleavage point is brought
forward from z = 6000 um to 3000 um or so.

Figure 2 shows only the frame of the 3D polarization structures.
One can image that the volume is filled with many polarization
ellipses of various shapes and orientations. For a better view, we also
visualize their 2D fine structures in Figure 3, assuming the length of
KDP crystal is fixed at z = 6000 pm. By tuning E,, we observe a
fascinating phenomenon that the dynamic evolution of polarization
singularities when undergoing the Pockels effect just behaves like the
binary fission of a prokaryote cell'”. In Figure 3(a), the KDP crystal is
pure uniaxial without disturbance (E, = 0). So the central C-point is
simply surrounded by one L circle. Here we use “L cell” to describe
the region that the L line embraces. As E, is increasing, the splitting of
C points and fission of L lines can be animated in analogy with the
cleavage of nucleus and division of membrane in a cell division.
Specifically, the C point first replicates (like a single DNA), then
attaches each copy to a different part of L cell. In Figure 3(b) with
E, = 5.31 kV/cm, the L cell begins to elongate along x direction, and
the original and replicate C points are pulled apart to separate poles.
Then the middle portion of the L cell begins to sink, and a cross wall is
well developed and formed at Ey = 6.90 kV/cm in Figure 3(c). When
Ey = 10.62 kV/cm, the L cell has been completely spit into two
daughters of identical C point, shown in Figure 3(d). Obviously,
present manipulation on polarization singularities could be flexible
and fast, since the electro-optic Pockels effect possesses a responsible
time less than one nanosecond™.

It is crucial for us to reveal the underlying reasons that support the
above interesting features. By analogy between polarization and
phase singularities, we attribute this to the accompanying angular
momentum dynamics. In principle, we can express the transverse
light field in terms of both circular polarizations and spiral harmon-
ics,

+ o0
E (ri.2)= Y [E(ri.2)es +E (r.2)e |exp(il), (2)

I=—
e

1
and W;© = p J 2nr|Eff (r1,2)|*dr (with 1 being the normalized con-

0
stant) can thus be interpreted as the weight of each OAM mode. As
an echo of Figure 3, we show the numerical results of W,* in Figure 4.
In Figure 4(a), the initial left-handed circularly polarized light with [
= 0 is partially converted into right-handed one with I = 2 while
acquires 21 OAM per photon, and therefore conserving total angular
momentum. This is just the case for a pure uniaxial crystal®>*°. When
undergoing Pockels effect, besides the energy transfer from left- to
right-handed circular component, we find that the energy for each
circular component is distributed over several neighboring even
OAM modes, i.e., the OAM sidebands are generated due to mode
coupling. For left-handed component, the main coupling is to the [ =
+2 modes, with a small efficiency of 1.7%, 2.7% and 4.7% in
Figure 4(b), 4(c) and 4(d), respectively; while those to other higher
modes are even weaker, as interfered from insets of Figure 4. For
right-handed component, the significant mode coupling occurs
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Figure 2 \ The 3D structures of Clines (blue) and L surfaces (red). Different electric fields are applied: (a) Ey = 0, (b) Ey = 5.31 kV/cm, (c) Ey = 6.90 kV/
cm and (d) Ey = 10.62 kV/cm. All coordinates are in unit of um. See also the Supplemental information video 1.

8

Figure 3 | The 2D fine structure of C points (blue dots) and L lines (red lines). Green lines denote the streamlines of major axis of polarization
ellipse. Under the control of E,, they behave like the binary fission of a prokaryotic cell, where Ej, is the same as those in Figure 2. See also the
supplementary information video 2.
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Figure 4 | The accompanying generation of OAM sidebands. Green and red bars denote the sidebands for left- and right-handed components,

respectively, where Ej is the same as those in Figures 2 and 3. Insets are the pseudo sidebands of

even OAM of [ = *+4.

between I = 0 and [ = +2. Besides, it is electrically tunable. As has
been revealed by Angelsky et al’’, there is a relationship between
topological characteristics of component vortices and polarization
singularities, namely, C points locate at the vortices of the opposite
circular component. In our case, the left-handed C points are coming
from the vortices of right-handed component. For a pure uniaxial
crystal, only | = +2 vortex exists such that only a left-handed C
points emerges. It is just the superposition of / = 0 and [ = +2 modes
that accounts for the formation of a pair of right-handed component
vortices, and therefore, the formation of a pair of left-handed C
points. As Ej is increasing, the intensity ratio of [ = +2to ] = 0
decreases from 30%, 16% to 5%, shown in Figure 4(b) to 4(d). As a
consequence, two vortices are pushed away, so are the C points, see
Figure 3(b) to 3(d).

Discussion

The above generation of OAM sidebands can be well understood
from the transverse angular anisotropy induced by the Pockels effect.
According to the refractive index ellipsoid theory*, we know that,
with the application of electric field along z direction, the transverse
isotropy of n, = n, = n,cannot hold anymore; instead, 1, =n, —
n3y63E0/2 and n, =n, +n.y¢;Eo /2. Thus we can define the quantity,
A=n,—n,=n2yeEo, to characterize the broken degree of rotational
invariance around the optic axis, which is evidently proportional to
Ey. As is well known, the conservation law of angular momentum is
naturally linked with the rotational symmetry. So here we expect that
applying a larger E, will give rise to a larger nonconservative amount
of angular momentum. Generally, the angular momentum per
photon within emerging light can be expressed as a sum of spin

and orbital parts, namely, /=Y (I+DW," + > (—1)W, .
By calculation, we obtain the angular momentum change (after

W, which “exaggerate” the weak coupling to higher

subtracting % for initial left-handed light): AJ=0h, AJ=
—0.5794h, AJ=—0.9015/ and AJ= —1.6008% for Figure 4(a)-
4(d), respectively, thereby confirming our prediction.

But, surprisingly enough, the total topological index of C points is
preserved. In Figure 3(a), the polarization streamlines make up spiral
branches. As we make a complete circuit clockwise around C point,
note that the polarization ellipse rotates clockwise through a com-
plete revolution. Consequently, the topological index is Ic = +1, and
this corresponds to the double degeneracy of the central C point.
While in Figure 3(b)-3(d), the signed number of turns that the
streamlines makes around each C point is +1/2, and the number
of streamlines that terminate on the C point is 1, so each C point is a
lemon type''. Therefore, the total topological index is preserved,
namely, Ic = 1/2 + 1/2 = 1, despite that E; is changing. A complex
Stokes field, ¢ = S, + iS, = |a|exp(i26) (0 is the orientation of
polarization ellipse), is usefully defined to study the Stokes vortex*’.
It follows that the index of C points I is just half the charge of the
Stokes vortex. As can be seen from Figure 4, only and always the
right-handed vortex of charge 2 dominates in the OAM sidebands
such that Ic = 1 remain preserved in each subfigure.

In conclusion, we have discovered and visualized the interesting
dynamics evolution of polarization singularities for a light field
emerging from a uniaxial crystal undergoing the Pockels effect,
where the splitting of C points and fission of L lines are animated
in analogy with the cleavage of nucleus and division of cytoplasm in
the binary fission. Because of the rotational symmetry breaking, we
find that the total angular momentum of light is not conserved, but
unexpectedly, the total topological index of C points is conserved.
We reveled the connection of these findings with the accompanying
generation of OAM sidebands, as a result of the OAM mode coupling
induced by the Pockels effect. Our results may supply another per-
spective of angular momentum conservation law in the context of
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Figure 5 | The schematic diagram for the domain of integration. (a) The oscillatory integrand cos[zf(k,)] is plotted in the k, direction. (b) Top

view of integrating boundary in two-dimensional Fourier space, where the concentric circles are the oscillating periods of the integrand. In both (a) and
(b), the red point S denotes the stationary point of function f(k,, k,), the gray area centered at point S denotes the domain of integration, and the shading
region with red slant lines denotes one oscillating period where a coarse-grained average is performed.

rotational symmetry breaking, and provide a flexible and fast manip-
ulation on the polarization singularities.

Methods
According to the refractive index ellipsoid theory™, with the application of longit-
udinal electric field Eyé,, the refractive index ellipsoid of KDP is deformed as,
a*/n2+b*/n +* /n +2ygEgab=1, where a, b, and ¢ denote the crystalline axes.
Considering the symmetry of a and b in the ellipsoid equation, we choose a new
coordinate system x, y, and z, where x and y are related to a and b by 45° rotation while
z is parral to ¢, as illustrated in Fig. 1(b). Then the equation of index ellipsoid
becomes™, x*(1/n2 +763E0) +y*(1/n2 —y¢3Eo) + 2% /n? = 1. By considering the
nonlinearity induced by the Pockels effect as a perturbation, namely, 753 Eo < <, 2,
we know that the principle indices of the new index ellipsoid are approximately:
Ny="n,— niy“Eo/Z, ny=Mn,+ niy63Eo/2 and n, = n,, where the electro-optically
induced biaxial anisotropy of n, # n, # n, just accounts for the broken rotational
symmetry, as discussed above. Besides, in light of such an approximation, we are able
to present an efficient numerical solution to Eq. (1) based on the Ciattoni’s theory of
angular spectrum representation and the method of asymptotic expansion.

The key idea of Ciattoni’s angular spectrum representation method is to express the
light field E(r) = E(r , , z) using two-dimensional Fourier transformation®,

E(r,,z)= J k) exp (ik, r) )E(ky ,z), (3)

where r| =xé,+ye, and k; =k.&, +k,e, are vectors in the real and momentum
space, respectively. Along this line, to solve Eq. (1), we expand the light field E(r , , z)
in the coordinate system a, b, ¢ by 2-D Fourier transformation, and similarly the

nonlinear polarization PEO(r, ,z) = JdeL exp (ik r; )PEO(k | ,z), whose compo-

nents in momentum space are: f’fo = —soniy“EoEb, 1350 = —sonzyﬁEoEu, and
PEC =0, Substituting these transformations into Eq. (1), using the above approxi-
mation adopted in the index ellipsoid theory, and making a 45° coordinate rotation
back to x, y, and z, we finally arrive the coupling equations that the light field
components satisfy,

CE: ik OE kek,E, + (K2 V63 Eo/2)" — K2 Ex =
62Z —1 xﬁ"' x Ky y+[ o(nﬂ_n()/63 0/2) - y] =0, (4)
°E OE, - _
7; —iky =+ kecky B+ (k3 (no + n2yss Eo /2)* — K2 E, =0, (5)
. i 0E,  , 0OF,
Ez—m(kxg +ky5)- (6)

The above equations form a complete description of light propagation in the

momentum space. Note that the coefficients of E}, in Eq. (4) and E.in Eq. (5) are both

electrically tunable with E,, which play a key role in our flexible manipulation of

polarization singularities. In our simulation, we consider the incident light is a left-

handed circularly polarized Gaussian one, namely, E(r | ,z=0)= exp (—13 /25*)é, .
2

With the boundary condition of E (0) = Zs—exp ( 7kisz /2)é, the second-order
T ~
partial differential equations (4)-(6) can be solved to obtain the solution for E(k ,z).

By performing a Fourier integral toward E(k | , z), we can finally write the optical field
in real space as,

5] %)
E(rL,Z)=Jd2kL o | exp (v aiz+iki )+ | ¢ | exp(Vigz+ikory) 3, (7)
Cs Co

in which the coefficients 4, 4,, and ¢; ~ ¢4 are given by Egs. (S14) to (S20) in the
supplementary materials. This equation is the starting point of all our calculations.
However, normally, the double Fourier integral in Eq. (7) is difficult to be evaluated
analytically due to the complex forms of ¢; ~ ¢¢. It can be worked out only for several
special inputting fields and in the paraxial limit*. We therefore turn to numerical
method to calculate it in this paper.

In respect of numerical solutions, the main difficulty is that the integrals in Eq. (7)
are highly oscillating, where the traditional quadrature methods are invalid***'. To
overcome this difficulty, we have introduced in Ref. [36] an accurate and numerically
cheap method based on asymptotic expansion theory. Specifically, one need to cal-

ﬂg(kx,ky) explizf (ky.ky )] dkydk,,
where the function g can be ¢; ~ ¢, the function f can be fi ~ f> with
fia=v—412+ gkx + };jky. This double integral can be well approximated by

asymptotic expansion®”*' (or equally the stationary phase method, see the supple-
mentary materials), when the value of z is sufficiently large. The essence of the
asymptotic expansion theory is that the dominated contribution to the highly oscil-
latory integral I(z) only comes from the small regions in the vicinity of certain critical
points®”*!. The most important critical points are the stationary points of function
x_of _,
ok, ok,
The other kinds of critical points are defined on the boundary curve of integration and
thus are unimportant here, for the boundary of Fourier integral of Eq. (7) is actually at
infinity.

Based on this observation, our idea of approximation to Eq. (7) is as follows:
Instead of integrating over the whole Fourier k space, we only numerically integrate
over small (and important) regions near the stationary points of functions f; , and
throw away the contributions from the other oscillatory regions®. The part of the
integral that is thrown away decays exponentially fast as the oscillation increases*'. A
consequent question is how to choose the domain of integration. We have verified
that a square integrating boundary yields the smallest error with respect to the
analytical solution®. We illustrate a schematic domain of integration in Fig. 5, where
the domain is denoted by the gray area centered at the stationary point S. The
accuracy of this method can be further improved by a coarse-grained average treat-
ment. For example, we can choose ten equally spaced values dy in one oscillating
period of integrand, e.g., in the slant-line shading regions between two red vertical
lines in Fig. 5(a) or two red squares in Fig. 5(b), calculate the integral using each dj as
the width of integrating domain, and treat their average as the final result. In this way,
the highly oscillating part far away from the critical point is canceled, leaving the most
important contribution from the small area close to the critical point.

Our calculating procedure is as follows: We first numerically find the stationary
points of functions f; ,, determinate the domains of integration by counting the
periods of exp(izf; ,), perform the numerical integration in small regions using Gauss-
Kronrod quadrature, and finally do average over one oscillating period to get the final
result. More detailed discussions about the validity and accuracy of this numerical
method can be found in the supplementary materials. After computing the optical
fields involving the Pockels effect, we can then explore the dynamics of polarization

culate a typical oscillatory integral in Eq. (7), I(z) =

flk,, k) inside the domain of integration, which satisfy the condition
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singularities. It is noted that our method can be extended to any crystals of arbitrary
point group with the biaxial anisotropy is induced by the Pockels effect, Kerr effect or
other nonlinear optical effects.
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