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Abstract

Understanding how organelles interact, exchange materials, assemble, disassemble, and evolve as 

a function of space, time, and environment is an exciting area at the very forefront of chemical 

and cell biology. Here, we bring attention to recent progress in the design and application of 

lipid-based tools to visualize and interrogate organelles in live cells, especially at super resolution. 

We highlight strategies that rely on modification of natural lipids or lipid-like small molecules ex 
cellula, where organelle specificity is provided by the structure of the chemically modified lipid, 

or in cellula using cellular machinery, where an enzyme labels the lipid in situ. We also describe 

recent improvements to the chemistry upon which lipid probes rely, many of which have already 

begun to broaden the scope of biological questions that can be addressed by imaging organelle 

membranes at the nanoscale.
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Introduction

Organelles are how the cell segregates biochemistry. Alone and together, organelles 

drive eukaryotic cell biology. Many cellular functions are marked by dynamic changes 

in organelle structure and interaction, and organelle dysfunction underlies a plethora 

of metabolic and neurologic diseases. Understanding how organelles interact, exchange 

materials, assemble, disassemble, and evolve as a function of space, time, and environment 

is an exciting area at the very forefront of chemical and cell biology.
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Historically, changes in organelle structure, function, and interaction have been visualized 

using fluorescence microscopy and organelle-specific proteins tagged with a fluorescent 

protein or small-molecule dye. Recently, lipids and lipid-like small molecules have been 

shown to offer distinct and unique advantages for imaging organelle structure, function, and 

interaction, especially at the nanoscale.

Besides demarking a more continuous organelle boundary, one advantage of labeling an 

organelle membrane with a lipid probe, as opposed to a membrane-embedded protein, is 

labeling density [1]. Excepting polymeric proteins such as actin and tubulin, the density of 

lipids in a membrane exceeds that of protein by more than 100-fold [2]. This increase in 

density facilitates super-resolution microscopy (SRM), as resolution depends integrally on 

the number of detectable molecules. The Nyquist-Shannon sampling criterion demands that 

the labeling density be greater than the desired resolution by at least a factor of two [3]. 

Additionally, the increase in labelling density also results in an almost equivalent increase 

in imaging time, even at super resolution. Moreover, as lipids and lipid-like small molecules 

(or their precursors) are often cell-permeant, they permit experimentation with primary or 

patient-derived cells as well as cultured cell lines that are notoriously difficult to genetically 

manipulate.

In this current opinion, we bring attention to recent progress in the design and application 

of tools that visualize organelles — predominantly in live cells — at super resolution using 

stimulated emission depletion (STED) [4,5] and single-molecule localization microscopy 

(SMLM) [6–9]. For those interested in tools suitable for predominantly confocal methods, 

the reader is referred to several excellent recent reviews: [10–12]. We focus broadly on 

three approaches: (1) modification of natural lipids ex cellula, where organelle specificity is 

provided by the structure of the chemically modified lipid (Figure 1a), (2) modification of 

lipids in cellula using cellular machinery, where an enzyme labels the lipid in situ (Figure 

1b), and (3) the design of lipid-like small molecules that localize selectively within specific 

organelle membranes (Figure 1c). We also highlight improvements to the chemistry upon 

which lipid probes rely, including strategies to encode high fluorogenicity, and new, bright, 

versatile fluorophores and bioorthogonal reactions, many of which have already begun 

to broaden the scope of biological questions that can be addressed by imaging organelle 

membranes at the nanoscale.

Imaging organelles at the nanoscale with lipid probes

One way to image organelles selectively for nanoscopy is to fluorescently tag the molecules 

that comprise the membranes themselves — the lipids. This strategy exploits the fact 

that different organelles are often enriched in different lipids [13]. Pioneering work by 

Pagano [14,15] demonstrated over thirty years ago that ceramide-like lipids tagged with 

a boron dipyrromethene difluoride (BODIPY) or nitrobenzoxadiazole (NBD) fluorophore 

could visualize the Golgi apparatus and interrogate Golgi–plasma membrane trafficking. The 

utility of BODIPY-Cer and NBD-Cer catalyzed the development of commercially available 

ceramide-derived fluorescent probes to interrogate Golgi trafficking and sphingolipid 

transport/metabolism. Although the commercially available probes are used widely, their 
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reliance on relatively nonphotostable NBD and BODIPY fluorophores limits their utility for 

super-resolution methods such as STED and SMLM.

One strategy [16,17] to expand the utility of ceramide-like probes for super-resolution 

imaging uses bespoke analogs that carry photostable fluorophores such as SiR [18] (useful 

for STED) and HMSiR [19] (useful for SMLM). These super-resolution lipid probes are 

assembled in cellula: a ceramide-derivative such as Cer-TCO (Figure 2a(i)) is added to cells, 

whereupon it localizes to the Golgi or the ER depending on temperature [20–22]. Next, 

a tetrazine-tagged fluorophore such as SiR-Tz or HMSiR-Tz is added, tetrazine ligation 

[23,24] ensues, and the organelle membrane is labeled selectively (Figure 2b). In this 

case, organelle selectivity is provided by the inherent trafficking/localization properties of 

the lipid (Figure 1a); subsequent reaction with the fluorophore enables three-dimensional 

(3D) live-cell nanoscopy [16,17]. In the case of the probe assembled from Cer-TCO and 

HMSiR-Tz, SMLM is achieved without toxic additives or laser-induced photoswitching.

A less obvious advantage of labeling an organelle membrane directly is a truly significant 

increase in imaging time [17]. In a particularly dramatic example, labeling the ER with the 

lipid probe generated by reaction of Cer-TCO and HMSiR-Tz generates SMLM images that 

last almost 30 min; when the ER is labeled with HMSiR attached to a HaloTag-Sec61β 
fusion protein, the images last for only a minute [17]. The extended imaging times also 

influence image quality for SMLM images, allowing a user to coalesce more blinking 

events over multiple frames for improved reconstruction. The increase in imaging time 

is due to the fact that dyes such as HMSiR and SiR exist in two states, only one of 

which is fluorescent (Figure 2a(ii)), and the nonfluorescent form is favored within the 

membrane environment. Thus, the membrane holds an excess reservoir of dye molecules 

that are ‘hiding’ in the lipid and can be used to replenish dyes that are bleached over time. 

This modular two-component approach using HIDE (HIgh Density Environment-Sensitive) 

probes demonstrates outstanding SRM imaging when compared with previous ceramide 

derivatives and protein-based labeling techniques.

Enzymatically modifying lipids for super-resolution imaging

A conceptually related approach to image organelles was reported recently by Hamachi 

[25**] (Figure 2c). In this case, azido-choline is enzymatically incorporated in cellula, 
to modify a choline-containing phospholipid. This modified phospholipid is then capable 

of a bioorthogonal click (SPAAC, Strain-Promoted Azide-Alkyne Cycloaddition) [26–28] 

reaction for subsequent fluorophore labelling.

Coincubation with a click-compatible dye fused to an organelle-targeting small molecule 

results in selective localization of the labeled lipid to the organelle of interest. This strategy 

is effectively the inverse of the HIDE strategy — rather than using the lipid to localize the 

dye, in this case, the dye is used to localize the lipid (Figure 1b). This strategy enabled 

structured illumination microscopy (SIM) of the mitochondria and confocal studies of 

interorganelle translocation of phosphatidyl-choline (PC).
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Baskin et al. also recently reported a third creative way to selectively image organelle lipids, 

in this case by exploiting the promiscuity of phospholipase D (PLD) [29,30**]] (Figure 

2d). PLD hydrolyzes phospholipids but can make use of alcohols as substrates in place 

of water — the result is a trans-phosphatidylation reaction, not hydrolysis. If the alcohol 

carries a trans-cyclooctene, the newly synthesized phospholipid can react with a fluorogenic 

tetrazine dye. Using this enzymatic tool, Baskin et al. achieved adequate temporal resolution 

to directly observe PLD activity and subsequent trafficking of its lipid substrates. Although 

this work did not report super-resolution experiments, the chemistry described could easily 

be adapted for this purpose. Lipid biosynthesis offers many potential avenues to selectively 

label lipids in cellula to observe their trafficking and metabolism [31–35].

Imaging organelle membranes at the nanoscale with lipid-like small 

molecules

Another versatile method for super-resolution imaging of organelle membranes exploits 

lipid-like small molecules that interact selectively with organelle membranes. Indeed, some 

of the earliest examples of live-cell super-resolution microscopy described by Zhuang 

exploited small-molecule fluorophores such as DiI, MitoTracker Red, ER-Tracker Red, and 

LysoTracker Red. These molecules could be induced to blink by strong laser excitation and 

subsequent reactivation by ultraviolet light to visualize the plasma membrane, mitochondrial 

inner membrane, endoplasmic reticulum, and lysosome, respectively, using Stochastic 

Optical Reconstruction Microscopy (STORM) [1].

One strategy to avoid the need for multiple lasers or additives to induce photoswitching 

makes use of the spontaneously blinking fluorophore HMSiR [19] paired with some of the 

small-molecule fluorophores described earlier, but tagged with trans-cyclooctene to enable 

in cellula tetrazine ligation [17,36**,37]. This strategy has been used to image multiple 

different organelles using SMLM methods, including the plasma membrane (HMSiR-DiI) 

(Figure 3b) and mitochondria (HMSiR-RhoB), both of which are assembled in cellula 
via a tetrazine ligation. Analogous experiments using DiI-C16-SiR, a lipid-like small 

molecule that localizes to endolysosomes, could detect both subtle and dramatic endosome 

motility defects in samples of patients with Niemann Pick disease using STED (Figure 

3a). In all of these cases, because HMSiR and SiR exist in two states, imaging times are 

exceptionally long [36**,38**]. It should be noted that the membrane-targeting molecules 

in the aforementioned examples are intrinsically fluorescent and thereby occupy an imaging 

channel. For multicolor experiments targeting multiple organelles, this limits the number of 

channels that can be acquired simultaneously.

More recent examples of small molecules that enable plasma membrane–specific super 

resolution include multicolored, fluorogenic MemBright dyes [39*] (Figure 3c). These 

cyanine-derived molecules are amphiphilic and form non–fluorescent-soluble aggregates 

under cell culture conditions; the dyes light up when they distribute throughout the 

membrane. MemBright Cy3.5 supported the use of 3D STORM to dynamically image a 

synapse coiling around a dendrite, and in combination with immunostaining, multicolor 

STORM revealed the accumulation of glutamate receptors at axon–dendritic junctions 
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in fixed cells. Styryl dyes were also recently improved for enhanced brightness and 

photostability and shown to support imaging of hippocampal neurons via STED [40*].

A unique and enabling attribute of certain fluorophores, such as Nile Red (Figure 3d), is 

solvatochromism, in which the emission spectrum varies as a function of solvent polarity. 

In early work, Xu et al. used Nile Red to image spatially resolved polarity changes 

across the plasma membrane and the membranes of nanoscale intracellular organelles in 

an unbiased manner [41]. More recently, Nile Red derivatives carrying lipid chains were 

shown to localize the dye to only the plasma membrane. Short-chain and long-chain 

derivatives with improved photophysical properties that display reversible and irreversible 

membrane binding have been designed, respectively [42*]. Irreversible binding is desirable 

for traditional confocal microscopy, and reversible labeling was utilized in Super Resolution-

Points Accumulation for Imaging in Nanoscale Topography (SR-PAINT) microscopy to 

image nanoscale heterogeneity in lipid order within the plasma membrane. This kind of 

reversible binding shows promise for time-lapse STED microscopy [43], as new molecules 

are available to replace photobleached molecules over time.

A naphthophosphole fluorophore demonstrating remarkable photostability (MitoPB Yellow) 

was developed with a mitochondria-targeting triphenylphosphine moiety and a protein-

cross-linking epoxide, facilitating STED imaging (Figure 3c) even after membrane potential 

loss due to fixation [44*]. Cyanine- and coumarin-based derivatives have also been reported 

for imaging lipid droplets with two-photon excitation microscopy and STED [45,46], and 

3D STED has enabled the quantification of lipid droplet count and size in cells. All the 

probes that have been discussed earlier have been categorized and listed in a supplementary 

table (Fig. S1).

Looking to the future: enabling chemistry for more sophisticated 

experimentation

There has also been excellent recent progress in technologies that increase the sophistication 

of experiments possible with lipid and lipid-like small-molecule probes. One big issue is 

labeling specificity, which can be improved with dyes whose emission intensity increases 

only when properly localized or assembled. Several groups have reported fluorogenic 

tetrazine and azide probes whose fluorescence is quenched until bound by its target [47–52]. 

A particularly creative approach to improved fluorogenicity was reported by Wombacher 

et al., yielding a spontaneously blinking HMSiR analog (f-HM-SiR) useful for live-cell 

SMLM whose fluorescence increases 10-fold upon reaction with bicyclo [6.1.0]non-4-yne 

(BCN). f-HM-SiR allows for no-wash imaging and reduces unwanted background signal to 

improve localization precision [53**] (Figure 4a).

Another potentially useful approach utilizes polarity-dependent photoactivation, which leads 

to a fluorescent product only within apolar media. A probe based on this molecular logic 

gate was demonstrated to label lipid droplets with very high specificity [54].

All of the experiments described earlier would be impossible without photostable 

fluorophores whose physical properties — absorption and emission maxima, quantum yield, 
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spirocyclization equilibria (pKcycle), dielectric constant, fluorogenicity — are appropriate 

for the super-resolution modality (STED, SMLM, SIM, etc.), cell environment (pH), and 

optical setup of the commercial or custom instrument used. Lavis et al. developed a 

number of azetidine-containing Janelia dyes with improved brightness, photostability, and 

fluorogenicity relative to classical tetramethyl-rhodamines such as the commonly used SiR 

and tetramethyl rhodamine (TMR) [55,56]. In particular, JF646 and JF635 (Figure 4b) 

exhibit higher quantum yields (0.54 and 0.56, respectively) [55] than SiR (0.41) but emit at 

approximately the same wavelength [56].

Despite these advances, real challenges remain, most notably the lack of fluorophores that 

satisfy all the criteria cited earlier but also emit at a wavelength that does not overlap 

with widely used silicon-rhodamine dyes such as SiR-COOH (for STED/SIM), JF646 (for 

STED) or HMSiR (for SMLM). Such dyes are essential for multicolor experiments needed 

to reveal organelle interactions in both space and time. Notable progress includes the recent 

report of Yale595, an azetidine dye whose electron-withdrawing substituents have been 

tuned to promote high brightness even within a nonpolar lipid environment [38**]. Yale595 

(Figure 4c) was used alongside SiR to enable two-color super resolution (STED) and 3D 

confocal imaging of the plasma membrane and either the ER or mitochondria. In more 

recent progress, Tyson et al. judiciously balanced the pKcycle and emission wavelength 

of a spontaneously blinking silicon-rhodamine fluorophore to develop Yale676sb, which 

was paired with HMSiR to enable two-color SMLM of the ER and mitochondria using a 

single far-red laser [57**]. Yale676sb (Figure 4d) is distinguished not only by its emission 

wavelength (694 nm) and pKcycle but also by an exceptional quantum yield (0.59).

Several improvements have also been made to expand the bioorthogonal ligation toolkit 

to include new, mutually orthogonal chemistries. Franzini et al. described an isonitrile-

tetrazine ligation [58**] (Figure 4e) that is promoted by dispersion forces. In addition 

to favorable reaction kinetics, this new reaction is mutually orthogonal to both SPAAC 

[26–28] and TCO-tetrazine ligations [23,24]. Similarly, Schomaker et al. demonstrated 

mutual orthogonality between sulfamate-containing cyclooctynes by tuning the electronics 

of the reaction pairs [59]. Using two newly developed reaction partners, and a boronic 

acid/hydrazine ligation, they too demonstrated simultaneous triple labelling (Figure 4e). 

These mutually orthogonal chemistries enable the modular delivery of multiple fluorophore-

probe pairs for multicolor imaging. With the development of additional mutually orthogonal 

chemistries, in tandem with other technologies described earlier [25,29,30], one could easily 

envision experiments that combine different lipid reporters to interrogate time-dependent 

lipid trafficking between multiple organelles, in addition to observing individual organelles 

at subdiffraction resolutions.

Conclusions

The last few years have witnessed great progress in the design and application of lipids 

and lipid-like small molecules for imaging organelle structure, function, and interaction, 

especially at the nanoscale. Multiple approaches have been described for both labeling and 

localizing lipids selectively, and in certain cases, these events have led to new biological 

knowledge that would be impossible to obtain without the lipid probe. There has also been 
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much progress in chemistry upon which lipid probes rely, including strategies to encode high 

fluorogenicity, and new, bright, versatile fluorophores and bioorthogonal reactions. Many of 

these advances have already begun to broaden the scope of biological questions that can be 

addressed by imaging organelle membranes at the nanoscale.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
General strategies to image organelles and/or track lipids selectively, often at the nanoscale, 

which exploit (a) lipid structure; (b) organelle-restricted enzymes; and (c) organelle-

targeting small molecules to limit fluorescence to the organelle of interest.
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Figure 2. Lipid-focused strategies to image organelles and/or study their trafficking.
(a) (i) Cer-TCO, which localizes in a temperature-dependent way to the Golgi or ER 

and reacts and (ii) the environment-dependent spirocyclization equilibria of SiR and 

HMSiR that effectively extends imaging times by ‘hiding’ a reservoir of dark-state dyes 

in the membrane. (b) in cellula with tetrazine-containing fluorophores such as SiR and 

HMSiR to enable STED and SMLM, respectively. (c) Biosynthetic incorporation of 

azido-choline into phospholipids followed by coincubation with a click-compatible dye 

fused to an organelle-targeting small molecule results in selective localization of the 

labeled lipid to the organelle of interest. (d) Incorporation of oxo-TCO handle viaPLD-

mediated transphosphatidylation, followed by fluorogenic Tz-BODIPY results in real-time 

visualization of PLD activity. BODIPY, boron dipyrromethene difluoride; ER, endoplasmic 

reticulum; PLD, phospholipase D; SMLM, single-molecule localization microscopy; STED, 
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stimulated emission depletion; HMSiR, hydroxymethyl silicon rhodamine; SiR, silicon 

rhodamine; DBCO, dibenzocyclooctyne; TCO, trans-cyclooctyne.
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Figure 3. Membrane-targeting small-molecule probes for super-resolution microscopy of 
organelles.
(a) Visualizing endosomal motility defects with DiI-C16-SiR in wild-type fibroblasts from 

patients with Niemann-Pick C disease; scale bar: 1 μm. Reprinted by permission from 

Springer Nature Customer Service Centre GmbH: Nature Chemical Biology, Endosome 

motility defects revealed at super resolution in live cells using HIDE probes, Gupta et 
al., 2020 (b) SMLM time-lapse images of plasma membrane filopodia acquired using DiI-

HMSiR; scale bar: 1 μm. Reprinted by permission from Springer Nature Customer Service 

Centre GmbH: Nature Biotechnology, Long time-lapse nanoscopy with spontaneously 

blinking membrane probes, Takakura et al., 2017 (c) Confocal vs. STED images of the 

mitochondria in HeLa cells using MitoPB Yellow; scale bar: 2 μm. Reprinted from Wang C 

et al.,: A photostable fluorescent marker for the super-resolution live imaging of the dynamic 

structure of the mitochondrial cristae. Proc Natl Acad Sci U S A 2019, 116:15817–15822. 

SMLM, single-molecule localization microscopy; STED, stimulated emission depletion.
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Figure 4. Supporting technologies for super-resolution imaging with lipid-based probes.
(a) Fluorogenic spontaneously blinking fluorophores reported by Wombacher et al. Upon 

reacting with bicyclo [6.1.0]non-4-yne (BCN), the fluorescence intensity of the HM-SiR 

analog increases, thereby enabling no-wash, live-cell SRM. (b) Brighter fluorophores. 

Improvements to SiR by Lavis et al. resulted in near-infrared fluorophores that absorb 

at similar wavelengths to SiR, but with increased brightness and better photophysical 

properties. (c) Tuning dyes for hydrophobic environments. Yale595 was developed by Chu et 
al. to high brightness in hydrophobic environments. (d) Development of a near-infrared, 

spontaneously blinking fluorophore. Yale676sb was developed as a bright, spectrally 

separable fluorophore from HMSiR. The development of this fluorophore has enabled 

two-color ratiometric SMLM, using NIR dyes and a single laser. (e) Mutually orthogonal 

bioorthogonal ligations. Improvements to the isonitrile-tetrazine ligation by Franzini et al., 
and development of the sulfamate-cyclooctyne ligation by Schomaker et al. have led to 
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the development of triply orthogonal biorthogonal reaction pairs. SRM, super-resolution 

microscopy; SMLM, single-molecule localization microscopy; NIR, near-infrared.

Dadina et al. Page 16

Curr Opin Chem Biol. Author manuscript; available in PMC 2023 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Imaging organelles at the nanoscale with lipid probes
	Enzymatically modifying lipids for super-resolution imaging
	Imaging organelle membranes at the nanoscale with lipid-like small molecules
	Looking to the future: enabling chemistry for more sophisticated experimentation
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

