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Background: Network construction and analysis algorithms provide scientists with the
ability to sift through high-throughput biological outputs, such as transcription microarrays,
for small groups of genes (modules) that are relevant for further research. Most of these
algorithms ignore the important role of non-linear interactions in the data, and the ability
for genes to operate in multiple functional groups at once, despite clear evidence for both
of these phenomena in observed biological systems.

Results: We have created a novel co-expression network analysis algorithm that
incorporates both of these principles by combining the information-theoretic association
measure of the maximal information coefficient (MIC) with an Interaction Component
Model. We evaluate the performance of this approach on two datasets collected from
a large panel of mice, one from macrophages and the other from liver by comparing
the two measures based on a measure of module entropy, Gene Ontology (GO)
enrichment, and scale-free topology (SFT) fit. Our algorithm outperforms a widely
used co-expression analysis method, weighted gene co-expression network analysis
(WGCNA), in the macrophage data, while returning comparable results in the liver
dataset when using these criteria. We demonstrate that the macrophage data has
more non-linear interactions than the liver dataset, which may explain the increased
performance of our method, termed Maximal Information Component Analysis (MICA) in
that case.

Conclusions: In making our network algorithm more accurately reflect known biological
principles, we are able to generate modules with improved relevance, particularly in
networks with confounding factors such as gene by environment interactions.
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INTRODUCTION
High throughput biological technologies, such as transcriptome
microarrays, have enabled researchers to query biological net-
works that underlie cellular processes and pathways involved in
diseases. Examination of these pathways has led to the discov-
ery of novel biological targets (Gargalovic et al., 2006; Horvath
et al., 2006; Dewey et al., 2011; Park et al., 2011). A common form
of biological network is the co-expression network, constructed
by analyzing the pairwise relationships between RNA transcripts
across a set of perturbations (Stuart et al., 2003; Zhang and
Horvath, 2005; Keller et al., 2008; Langfelder and Horvath, 2008;
Barabási et al., 2011; Park et al., 2011). In these networks, genes
whose expression patterns are related to one another form the
links or edges of the graph, while the genes themselves form the
nodes or vertices. A common means of analyzing co-expression
networks relies on algorithms that partition the network into

clusters or modules, consisting of genes having strong associa-
tions with each other. These modules assist researchers in the
identification of key genes and interactions in a biological process
by dramatically reducing the overall complexity of the data from
thousands of individual genes to a small number of functional
components.

Many computational methods (Steffen et al., 2002; Schäfer
and Strimmer, 2005; Berger et al., 2007; Langfelder and Horvath,
2008; Parkkinen and Kaski, 2010; Weng et al., 2011) for the analy-
sis of transcriptomes have been developed. A basic assumption
made by many of these co-expression methods is that rela-
tionships in a biological network can be accurately described
using linear dependence measures such as Pearson correlation
or a monotonic dependence measure such as Spearman’s cor-
relation. However, linear or monotonic relationships approxi-
mate only a fraction of the true relationship types observed in
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a biological system (Figure 1). By limiting subsequent analysis
to the linear fraction of the relationships in the biological net-
work, researchers limit their ability to accurately recreate the
network and identify the proper gene modules. One means of
circumventing this problem has been through the use of Mutual
Information (MI), which is capable of identifying non-linear
connections in the data, and has been used in several previ-
ously described algorithms (Butte et al., 2000; Daub et al., 2004;
Margolin et al., 2006; Meyer et al., 2007). A drawback of MI,
which has proven difficult to address in some cases, has been
its sensitivity to bin size and number as well as an unsatisfying
[0-Infinity] range (Reshef et al., 2011). Recently, a modifica-
tion to MI termed Maximal Information-based Non-parametric
Exploration (MINE) has been described that eliminates these two
limitations of MI by identifying the ideal bin size and renormal-
izing the MI measure into a [0,1] state space (Reshef et al., 2011).
We utilize MINE in Maximal Information Component Analysis
(MICA) to construct networks that are based on a more accurate
set of relationships.

Another common assumption made by many module con-
struction algorithms involves the method by which genes are
clustered into modules after the underlying network structure has
been identified. Many methods adopt a strict clustering approach,
where genes are partitioned uniquely into a single module per
gene. In some cases, this is done out of necessity (hierarchical
tree-based methods), but in many cases it is done purely for

computational efficiency. Although convenient and fast, cluster-
ing methods that force genes to uniquely exist in a single module
result in incomplete modules, missing key genes that link the
modules to one another (Parkkinen and Kaski, 2010). An alter-
nate approach assigns “fuzzy” module membership (MM), in
which genes can exist in multiple modules simultaneously (Yang,
1993; Daub et al., 2004; Yang et al., 2004; Parkkinen and Kaski,
2010). In MICA, we apply interaction component modeling for
genes (ICMg), an iterative module identification method that
assigns “fuzzy” MM based on the empirical results of the Latent
Dirichlet Allocation algorithm (Parkkinen and Kaski, 2010). By
not relying on traditional one to one gene-module approaches,
we allow for a more accurate reconstruction of module dynamics
and relationships to clinical traits of interest to the researcher.

In this paper, we describe a novel module identification
method, MICA, which avoids some of the above unlikely assump-
tions made by other network algorithms. We then demonstrate
its functionality over prior methods by analyzing two large gene
expression datasets collected from macrophages and liver from
about 100 inbred strains of mice.

RESULTS
We developed MICA as a means to address what we viewed as
problematic assumptions made by many other network analysis
algorithms. The method relies on the combination of two previ-
ously described methods, each of which addresses a one of our

FIGURE 1 | Example relationships observed between pairs of genes

in the macrophage dataset. We observe many different forms of
relationships, such as (A) linear (B) high threshold (C) logarithmic

(D) complex, where different relationships are observed between treated
and control macrophages. Only interactions of type (A) are preferred by
Pearson correlation, while all interactions are treated equally by MIC.

Frontiers in Genetics | Statistical Genetics and Methodology March 2013 | Volume 4 | Article 28 | 2

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Rau et al. MICA, a network analysis method

primary concerns with current methods. In order to account for
the many non-linear interactions which we have observed in our
data, we utilized a recently described algorithm, MINE, which
can identify and measure both linear and non-linear interactions.
We paired this with the ICMg algorithm, which utilizes the data
generated by MINE to place genes into multiple modules, which
accounts for the multiple interactions in different pathways that
genes may have.

For this paper, we utilize two datasets, one on control and
treated macrophages and the other from livers. Both datasets
were taken from the Hybrid Mouse Diversity Panel (HMDP), a
large mouse panel of over 100 strains of mice (Ghazalpour et al.,
2012). Millions of SNPs and other genetic perturbations exist
between the strains of mice in the HMDP while confounding fac-
tors such as environmental variation are minimized, making these
datasets ideal for network biology and module identification.
Both datasets were verified to have large enough sample sizes to
reliably address issues of non-linearity. We first describe the com-
ponents which make up the MICA algorithm, then compare the
results of MICA to the well-regarded weighted gene co-expression
network analysis (WGCNA) method (Langfelder and Horvath,
2008) on each dataset.

MICA ALLOWS GENES TO EXIST WITHIN MULTIPLE MODULES
Gene modules attempt to represent groups of genes that act
together in a concerted manner. The degree to which a gene
belongs to a particular module, a measure known as MM, is a
powerful tool for determining the relative importance of individ-
ual genes in a given module. In the context of WGCNA, the MM
is defined as the correlation of a gene with the module representa-
tive (eigengene), and is sometimes also referred to as the module
eigengene-based connectivity (kME) (Horvath and Dong, 2008).

While many genes perform only a single role, and would be
expected to reside in a single module (have high MM for one
module, very low MM for all others), there are other genes that
may play roles in multiple pathways. For instance, a transcrip-
tion factor can activate multiple different pathways; Cytochrome
C, which usually is responsible for energy metabolism, also
plays an important role in the activation of apoptosis. These
genes would have high MM in several modules corresponding to
their important roles in each. Therefore, a critical step of net-
work analysis is the calculation of the MM measure. However,
by definition the MM measure in WGCNA and other meth-
ods are defined on already determined modules. As a result,
this approach often produces confusing results. Genes that are
placed in other modules will sometimes have higher MMs than
many genes within a module. The genes with low MM within a
module are counted fully, while those outside are ignored when
summarizing the module in question (Figure 2A). MICA calcu-
lates MMs prior to actual module assignment, which allows all
genes with high MM for a module to affect the module, while
limiting the effects of genes with low MM. Figure 2B shows a
sample set of 20 genes taken from our macrophage dataset after
analysis with MICA. Several distinct patterns of gene expression
can be observed, with most genes showing strong membership
in a single module, while others appear to act across two or
more modules, including several which do not appear to belong

predominantly in any module. By using a weighted PCA algo-
rithm, it is possible to fully incorporate the contributions of
each gene to each module, regardless of the magnitude of that
contribution.

MICA REPRODUCES SCALE-FREE TOPOLOGY
Work by Barabási and others has suggested that the underly-
ing topology of biological networks is approximately “scale-free”
(Langfelder and Horvath, 2008; Barabási et al., 2011; Dewey
et al., 2011). In other words, the distribution of node con-
nectivities approximates a power law distribution. Approximate
scale-free topology (SFT) has been empirically observed in studies
performed on metabolite networks and protein–protein interac-
tion networks (Barabási et al., 2011). Several popular module
construction algorithms, including WGCNA, evaluate the fit of
their preliminary co-expression network against a SFT. These
approaches then systematically modify their co-expression net-
works in order to maximize the goodness-of-fit to the a priori
scale-free assumption prior to module partitioning. In the case of
WGCNA, Zhang and Horvath (2005) observed that the scale-free
fit of a correlation network is highly dependent on the signifi-
cance threshold used for thresholding the correlation coefficient.
They proposed the SFT criterion, which functions by raising
each element of the correlation table to a series of powers and
comparing the resulting correlation distributions to an ideal-
ized SFT distribution. Users are recommended to choose the
smallest exponent that allows the scale-free goodness-of-fit cri-
terion to surpass a given threshold (usually an R2 of 0.9). Raising
the correlation matrix to a user-defined power in this way is a
significant and severe modification to the original network rela-
tionships, with higher powers increasingly distorting the data
to favor only the strongest possible connections while devaluing
weaker connections.

When Pearson correlation is used for constructing a correla-
tion network, the SFT criterion typically requires one to choose a
relatively high power (6 or greater). Using Pearson correlation, we
observed that for the macrophage dataset, SFT was only achieved
after raising the correlation matrix to the power of 7 (Figure 3A).
Likewise, the liver dataset requires a power of 16 (Figure 3C). At a
power of 1 (the original correlation table without modification),
the SFT score is negative for the macrophage data and very close
to zero for the liver data, indicating a profound disagreement
between the raw output of Pearson correlation and an acceptable
SFT fit.

In comparison, Maximal Information is a modified version
of MI that accurately identifies both linear and non-linear rela-
tionships. Strikingly, we find that very low powers are needed
to achieve SFT when MINE is used both for the macrophage
(Figure 3B) and liver (Figure 3D) data. We observe that MINE
gives a nearly ideal fit to a scale-free network at a power of 2
for macrophage and already passes the recommended threshold
at a power of 1 (unmodified) for the liver data. Without mod-
ification, the macrophage dataset nearly passes the threshold as
well. This suggests that the MINE algorithm naturally captures
the hypothesized approximate SFT of biological networks, and
eliminates the need to explicitly soft threshold the data with a
power function.
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FIGURE 2 | Module Memberships are more meaningful in MICA. (A)

Module membership comparisons between all modules and the eigengene
of module 3 for the macrophage dataset as calculated by WGCNA. Many
genes in other modules, notably modules 2 and 9, have stronger correlations

with the eigengene of module 3 than genes in module 3 itself. (B) Sample
output from 20 genes from MICA, which calculates Module Membership
before module analysis and the generation of the eigengene, meaning that all
genes contribute to the calculation of each eigengene.

PRINCIPLE COMPONENT ANALYSIS IS CONSERVED ACROSS A WIDE
RANGE OF POTENTIAL MM CUTOFFS
Two common goals of module construction algorithms are the
identification of enriched pathways, domains, and molecular
functions within modules, and the discovery of modules which
are strongly correlated with disease severity or other phenotypes
of interest (Sharma et al., 2005; Weng et al., 2011). Gene-set
enrichment algorithms calculate the overabundance of a partic-
ular category of genes within a group when compared to that cat-
egory’s presence in the entire dataset (Huang et al., 2009a,b). To
calculate overrepresentation, these methods require strict binary
categorization of genes as either being present or absent from a
given module. Using MICA, any MM cutoff could theoretically
be selected to perform this categorization; however, proper MM
cutoffs should preserve the overall action of the MICA-identified
module. In order to determine the stability of the network at
various MM cutoffs, we calculated the first principle compo-
nent [called an eigengene (Park et al., 2011)] of each module in
our MICA-derived macrophage network at seventeen MM cut-
offs (5% intervals from 10% to 90% MM). We then calculated
the average correlation of eigengenes to one another and to the
weighted PCA which represents the true activity of the module
as a whole without partitioning. This stability measurement was
high across the panel of MM cutoffs, with a significant loss occur-
ring only when MM cutoffs were greater than 70% or less than
20%. Between 35% and 55% MM cutoffs, eigengene correlations

to one another and to the weighted PCA were greater than 0.99
(Figure 4). This near perfect correlation implies that within this
range of cutoffs, any binary partitioning of the modules is equally
capable of describing the action of the network as a whole.

STABILITY OF EIGENGENES ALLOWS FOR SELECTION OF OPTIMAL
MODULES IN TERMS OF SIZE AND GENE-SET ENRICHMENT
Ideally, network analysis and module construction should prior-
itize specific pathways and genes for further analysis by targeted
approaches. To achieve that goal, ideal modules should be both
highly enriched for specific gene categories, and also small enough
to reasonably examine all the genes in the module for interest-
ing candidates and drivers without eliminating large numbers
of genes from consideration. In MICA, average module size is
inversely correlated with MM cutoff, but the relationship between
MM cutoff and gene-set enrichment is significantly more com-
plex. We observe near perfect correlation (greater than 0.99) in
the MICA modules for cutoffs that lie between 35% and 55%.
This implies that we may select any cutoff within this range for
gene enrichment analysis and remain confident that the mod-
ules selected accurately represent the entire network as a whole.
To determine this ideal cutoff and identify the optimal modules
for further analysis, we calculated DAVID enrichment scores for
each set of modules (Dennis et al., 2003; Huang et al., 2009b).
We then applied a metric that incorporates both module sizes
and enrichment significances while penalizing the network for
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FIGURE 3 | MINE returns a scale-free network structure. Scale-free
topology fits at various powers of the relationship matrix. (A) Macrophage
and Pearson correlation. (B) Macrophage and MINE. (C) Liver and Pearson

correlation. (D) Liver and MINE. At a power of 1, Pearson correlation shows
no indication of scale-free topology, while MINE shows strong evidence of
scale-free topology.

the number of genes not included in the overall network in order
to determine the optimal MM cutoff to use for further analysis
(Figure 5A). For example, in the macrophage dataset, the optimal
MM cutoff is 35% a point where the binary partitioned model
represents the network as a whole and possesses several small but
highly enriched modules.

COMPARISON OF MICA TO WGCNA
WGCNA is an extensively used module identification and net-
work analysis method (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008; Dewey et al., 2011; Park et al., 2011). We com-
pared the MICA method to WGCNA using two recently described
gene expression microarray datasets from a large mouse panel,
one from control and OxPAPC-treated macrophages (Orozco
et al., 2012) and another from liver (Bennett et al., 2010). We con-
structed modules in WGCNA using the standard methodology
described in Langfelder et al. (2008). WGCNA infers the number
of modules in a co-expression network automatically based on

dynamic branch cutting of a hierarchical cluster tree (Langfelder
et al., 2008). Additional modules can create bias due to additional
degrees of freedom. In order to prevent bias, we fixed the number
of modules for MICA to the same number that was inferred
through WGCNA.

In comparing WGCNA to MICA, we rely on several measures
of network fitness. The first measure of network fitness is the
SFT criterion defined by comparing the observed distribution
of edge connections across the inferred network to the power-
law distribution of an ideal scale-free system. WGNCA suggests
raising the correlation matrix to a power in order to reach an
appropriate approximation to SFT. We use this method when
comparing MICA to WGCNA, observing at which power each
method reaches an appropriate approximation to a scale-free
system. A method that better captures the SFT of the under-
lying network is the one that reaches this scale-free criterion
threshold at the power closest to unity. The next comparison
metric is perplexity, a measure of the entropy of a system,
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FIGURE 4 | Eigengene values are preserved over a large range of MM

cutoffs in MICA. Eigengene correlations at 5% cutoffs from 10% to
90% MM and also the weighted eigengene for the macrophage dataset.

The black box indicates the region of preserved module eigengenes
where correlation to one another and to the weighted PCA was greater
than 0.99.

FIGURE 5 | MICA displays equal or higher “usefulness” than WGCNA.

“Usefulness” score of data for the (A) macrophage and (B) liver datasets.
The blue bar is the score received by WGCNA, while the yellow bar is the
score returned for MICA at the optimal MM cutoff. A higher score indicates
a more desirable result. We observe an improvement in the macrophage
and conservation in the liver datasets.

and equivalent to a misclassification rate (Brown et al., 1992;
Parkkinen and Kaski, 2010). We constructed standard gene classes
as described in Shiga et al. (2007) and calculated the ability of
either WGCNA or MICA to recapture these classes in their mod-
ules. Network analysis methods are often used, particularly in

datasets which only vary due to biological variability to determine
Gene Ontology (GO) categories for further study (Gargalovic
et al., 2006; Horvath et al., 2006; Dewey et al., 2011; Yee et al.,
2011; Xiao et al., 2012). We utilized differences in GO enrich-
ments as one measure of network fitness, but felt that a strict
comparison of GO enrichment values only captured part of the
overall “usefulness” of the constructed modules. To address this
issue, the final measure of network fitness compares modules
identified through MICA and WGCNA by their “usefulness” as
determined by a combination of DAVID gene-set enrichment,
module size and number of genes unplaced in modules (Huang
et al., 2009b). Ideally, as many modules as possible in a network
should be highly enriched and reasonably small to assist in further
study.

MACROPHAGE DATASET
We examined a dataset consisting of the 5070 most variably
expressed genes in a panel of macrophages isolated from inbred
mouse strains before and after treatment with OxPAPC, an oxi-
dized phospholipid. MICA strongly captures the SFT in the
system, crossing the recommended threshold at a power of 2 and
attaining a nearly perfect fit to an ideal scale-free system with an
R2 of 0.97 (Figure 2B). At a power of 1 (the raw relationship val-
ues), the scale-free fit is very high at 0.84. By comparison, the
Pearson correlation used by WGCNA does not reach the scale-
free threshold until a power of 6 (Figure 2A). At the power of 1,
it is clear that the Pearson correlation is not an accurate means by
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which one may capture the SFT of this system, as the signed R2

value of the degree distributions is less than 0.
The perplexity of the MICA-derived modules varied signifi-

cantly based on the MM cutoff selected. In comparing WGCNA
and MICA, we chose to compare WGCNA to the ideal MM cut-
off selected by our “usefulness” measure, which combines gene
enrichment and module sizes. WGCNA returned a perplexity
score of 193.44 based on 256 standard GO categories included in
the analysis (Figure 6A). The ideal MM cutoff for the macrophage
dataset is 35%. At that cutoff, the MICA modules have a per-
plexity score of 171.77, a 11.2% improvement over WGCNA. We
also calculated perplexities at 5% intervals across the stable range
of MICA (35–60%) (Figure 6A). In terms of our module “use-
fulness” measure, we saw improvement (3.43 vs. 3.20) between
the 35% MM cutoff MICA modules and the WGCNA modules.
Comparable improvement was observed at 40%, while equiva-
lent enrichment was observed at 50%. (Figure 5A). Also observed
were increases in average GO enrichment at 35 and 40% cutoffs
compared to WGCNA (5.457 and 5.384 vs. 5.264, Figure 7A).

Orozco et al. (2012) describe a set of genes and GO terms
which are involved in the OxPAPC response. In order to deter-
mine the ability of MICA and WGCNA to return relevant mod-
ules, we examined each set of modules and compared them to
the results of Orozco et al. Terms of interest included regulation
of kinase activity, cytokine production, genes containing a SH2
domain, glutathione biosynthesis, and oxidative stress response.
We compiled lists of all enriched GO terms in both WGCNA
and MICA modules. We observed that the MICA-analyzed net-
work contained more modules that were significantly enriched
for these GO terms, with six modules being enriched for one
or more term of interest as opposed to four in WGCNA. Both
methods were able to identify modules involved in oxidative

FIGURE 6 | MICA returns a small improvement in module entropy over

WGCNA. Perplexity measures for (A) macrophage and (B) liver. The blue
bar is the score received by WGCNA, while the yellow bar is the score
returned for MICA at the optimal MM cutoff. As perplexity is a measure
of entropy, a lower score is more desirable. In both cases, a small
improvement in perplexity is observed in the optimal MICA modules vs. the
WGCNA modules.

response, regulation of kinase activity and cytokine production,
while WGCNA identified an additional module involved in glu-
tathione metabolism and MICA identified two modules associ-
ated with SH2 domain and an additional module for regulation
of kinase activity. We also observed that MICA segregated all
identified OxPAPC-related genes (Hmox1, Ifi205, and Il1a) into
a single module, while WGCNA split these genes into multi-
ple modules. The identification of a core “OxPAPC response”
module, as defined as the module which contains all the OxPAPC-
related genes, represents a significant improvement for MICA
over WGCNA, which was unable to find such a module.

LIVER DATASET
We also examined a dataset consisting of 7000 highly expressed
genes from livers taken from a large panel of mouse strains. In
these data we observed MICA strongly capturing the SFT of the
network, reaching an R2 fit of 0.93 without any modification
and an R2 greater than 0.99 at a power of 2 (Figure 3D). By
comparison, Pearson correlation did not reach the recommended
cutoff of R2 = 0.9 until a power of 16, representing a substan-
tial modification of the co-expression data in order to fit the
underlying hypothesis (Figure 3C). As in the macrophage data,
the unmodified Pearson correlation data showed no relationship
to a scale-free network, with an R2 close to 0.

Unlike the macrophage dataset, we do not observe the same
level of conservation of eigengenes across MM cutoffs in the
liver dataset. We selected for further analysis a set of MM cutoffs
(35–65%) in which eigengene correlations were over 0.9
(Figure A1). We also observe that the GO enrichment terms gen-
erally improve rather than decrease over the range of conserved
MM cutoffs, and our ideal MM cutoff occurs at 65%. At 65%,
MICA returns a perplexity score of 105.38, while WGCNA returns
a perplexity score of 121.02 (Figure 6B). MICA shows a 12.9%

FIGURE 7 | MICA has higher average GO enrichment in the

macrophage dataset. Average GO enrichments for modules derived from
(A) macrophage and (B) liver datasets. The blue bar is the score received
by WGCNA, while the yellow bar is the score returned for MICA at the
optimal MM cutoff. A higher score is more desirable, and we observe
improved average GO enrichment for MICA in the macrophage data, and
improved average GO enrichment for WGCNA in the liver data.
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improvement over WGCNA in terms of perplexity for the liver
dataset.

WGNCA was unable to place 66.5% of genes into mod-
ules, which affected its “usefulness” score compared to MICA,
which was unable to place 10.9%. However, WGCNA returned
higher average GO enrichments (3.67 vs. 3.51, Figure 7B) when
compared to MICA. Modules were indistinguishable from one
another in terms of overall module usefulness (−1.10201 vs.
−1.10213, Figure 5B).

MODULE STABILITY
In order to determine the overall stability of the modules observed
in both WGCNA and MICA, we randomly partitioned the
macrophage dataset into two equal parts and ran both MICA and
WGCNA on each half. No universally accepted means of compar-
ing two sets of modules to one another exists, particularly in the
case of modules with non-binary gene-module occurrence. We
adopt a method previously used to compare modules created by
WGCNA (Langfelder and Horvath, 2008) to compare the MICA
and WGCNA modules to one another. We note that this method
was designed for network methods which place genes into single
modules, and that forcing our MICA results to conform to this
requirement will inevitably weaken the network stability observed
via MICA.

We observed that when run through the soft thresholding
function, both MICA runs return a power of 3, while the two runs
of WGCNA differ, with one returning 4 and the other 6. This sug-
gests that MICA is capturing similar levels of SFT for each portion
of the data while WGCNA is unable to do so. The hard threshold-
ing criteria for both MICA runs is also identical at a cutoff of 0.45.
We further observe that WGCNA returns differing numbers of
modules (13 vs. 14) for the two halves of the macrophage dataset.

We observe broadly similar levels of stability in both WGCNA-
and MICA-derived modules (Figure 8), with the majority of
modules in both methods showing strong preservation between
the halves of the macrophage dataset. A notable exception is the
salmon module from part 1 of the WGCNA data (Figure 8A),
which is not preserved at all in the part 2 WGCNA network. The
salmon module of part 2 of WGCNA also shows relatively weak
preservation as well.

EFFECTS OF DATASET ON MICA
We find that MICA appears to show an overall improvement
in module construction when compared to WGCNA in the
macrophage dataset, but is comparable to WGCNA in the liver
dataset. To evaluate whether underlying differences in the net-
work architecture between the two datasets led to the differences
in improvement, we returned to the original data to look for
differences in the number of non-linear interactions captured
by MINE vs. Pearson correlation. If there are more non-linear
interactions in a dataset, then MICA should perform better than
WGCNA, which does not take into account the non-linear inter-
actions in the data. On the other hand, if a network has very few
non-linear interactions, then both MINE and Pearson correlation
should return comparable results to one another.

In order to determine whether we were seeing more non-
linear interactions in the macrophage dataset, we selected all

relationships from both the macrophage and liver datasets that
had a high (greater than 0.9) maximal information coefficient
(MIC) score. Our first observation was that the macrophage
dataset had significantly more strong MIC scores than the liver
dataset (1274 vs. 360 interactions). We then examined the dis-
tribution of the Pearson correlation values measured for these
strong MIC interactions, after sampling the macrophage dataset
such that it had an equal number of observations as the liver
data (Figure 9A). Compared to the liver data, the macrophage
data showed enrichment for both very high (greater than 0.9)
and low (less than 0.6) Pearson correlations. This suggests that
the macrophage dataset both contains more non-linear interac-
tions, and also a greater fraction of interactions that are very close
to perfectly linear. While the linear interactions will be picked
up by Pearson correlation, the increased number of non-linear
interactions can only be detected appropriately through MINE.

There are two possible explanations for the differences
between the two datasets. The first is that the macrophage dataset
is an in vitro system containing a single cell type, while the
liver samples contain multiple cell types. The second possible
explanation is that the improvement comes because we ana-
lyzed both treated and untreated data together, rather than sepa-
rately. Accordingly, we separated the control and OxPAPC-treated
macrophages and compared each separately to the liver dataset
(Figures 9B,C). We observed slightly increased numbers of strong
MIC interactions for the control (448) and treated (549) data
compared to the liver data (360). However, although we con-
tinued to observe enrichment of very high correlations in both
the control and treated OxPAPC datasets compared to the liver
data, and we no longer observed enrichment of low correla-
tions in either data (with the exception of a single interaction
in the OxPAPC-treated dataset). This is an example of gene by
environment interactions where a treatment or environmental
perturbation interacts with underlying genetic variation to result
in different relationships between genes in different environmen-
tal conditions. These observations suggest that the improvement
observed when using MICA on the macrophage dataset is a
result of MICA’s ability to capture gene by environment interac-
tions between the treated and control samples. It further suggests
that Pearson correlation and WGCNA are less successful in the
macrophage dataset because they are incapable of using these
interactions.

DISCUSSION
We report a novel network analysis method, MICA, which com-
bines two previously published methods: MINE, a modification
of MI which accounts for non-linear interactions in datasets with-
out many of the shortcomings of the canonical methods, and
ICMg, which relies on an iterative process to assign distributed
MMs as opposed to a rigid in-or-out dichotomy. Together, this
combination is less restrictive than module construction algo-
rithms that include linear but exclude non-linear co-expression
relationships and allow only single-MM. Thus, MICA has the
advantage that it embraces concepts that are better rooted in
actual biological observations.

To validate the MICA approach, we analyzed datasets from
macrophages treated with OxPAPC and from livers, which in
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FIGURE 8 | MICA and WGCNA have comparable module

preservation statistics. Module preservation between even
partitionings of the macrophage dataset for (A) WGCNA and

(B) MICA. Preservation significances are calculated using a
Fisher’s exact test and are represented by the depth of the
red color as indicated.

one case revealed distinct advantages of MICA over WGNCA, a
benchmark correlation network approach, and yielded compara-
ble results in the other case. Specifically, MICA may be partic-
ularly well suited for the analysis of networks in which gene by
environment interactions are expected to occur, which traditional
module construction methods are ill-equipped to detect. In the

case of macrophages treated with OxPAPC, analysis with MICA
resulted in modules that are more highly enriched in pathways
of interest, and better able to place genes with similar functions
into the same modules compared to other methods. In both
macrophage and liver datasets, there is a dramatic improvement
in the ability for MICA to detect an overall network structure
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FIGURE 9 | The entire macrophage dataset has a greater number of

non-linear interactions. Histograms comparing distributions of Pearson
correlations for interactions with high (>0.9) MIC scores. All distributions
were sampled such that there were 360 entries for each entry. The blue
border in each part of the figure is the liver dataset. (A) Full macrophage

dataset vs. liver dataset. (B) Control macrophage vs. liver. (C) Treated
macrophage vs. liver. We observe an enrichment for low Pearson correlation
data with high MIC scores (implying significant non-linearity) in the full
macrophage set which is not observed in either the control, treated, or liver
datasets.

that better approximates the hypothesized topology underlying
the biological network.

We have further observed that in contrast to MICA, which
utilizes MINE and ICMg, no significant improvements were
achieved when WGCNA was modified by using ICMg on Pearson
correlations, or topological overlap and hierarchical clustering on

Maximal Information scores (Figure 10). Thus, both MINE and
ICMg each provide partial solutions that are synergistic when
combined.

As an attempt to incorporate known biological principles such
as feedback loops and multi-functional proteins into a transcrip-
tome co-expression network analysis method, MICA shows initial
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FIGURE 10 | MINE or ICMg used separately do not improve network

analysis. Module “usefulness” measure for macrophage data when using
either MINE plus hierarchical clustering, Pearson correlation plus ICMg,
WGCNA, or MICA. Higher usefulness is more desirable, and we observe
significantly reduced usefulness scores when either MINE or ICMg are
used separately from one another.

promise, but will undoubtedly benefit from further refinement.
A major drawback is that MICA lacks the ability to indepen-
dently determine the number of modules in a network; i.e., an
arbitrary number of modules must be specified. Additionally, it
is not straightforward to calculate p-values (significance) for the
MICA measure, in contrast to the many approaches that have
been developed (e.g., regression models) to calculate p-values
for correlation measures. Finally, MICA is significantly more
computationally intensive than correlation-based methods such
as WGCNA. Such improvements may allow MICA to identify
smaller, more enriched and more relevant modules for further
analysis and discovery of novel genes with roles in important
phenotypes.

In conclusion, MICA is an attractive network analysis method
because (1) it does not discard non-linear interactions; (2) it
removes the need for soft thresholding; (3) employs a fuzzy
clustering algorithm for module detection; and (4) shows
improvements over correlation algorithms in certain cases, par-
ticularly those involving gene by environment interactions.

METHODS
MAXIMAL INFORMATION NON-PARAMETRIC EXPLORATION (MINE)
We utilize the recently described MINE algorithm to determine
a normalized relationship matrix which incorporates non-linear
interactions (Reshef et al., 2011). MINE relies on a modified
version of MI called the MIC. MIC calculates normalized MI
values for all partitions of a finite set of ordered pairs with the
x-values going into x bins and the y-values partitioned into y
bins, such that x × y < n0.6, as recommended by the authors and
where n is the number of arrays. The algorithm then normalizes
across partitions with the same number of bins, but different bin
sizes, by dividing the data by log(min{x, y}), which is the max-
imum possible score for any MI query with x horizontal and y
vertical bins. The MIC of an interaction is then defined as the

maximum normalized value across the set of partitions. MINE
is implemented in a Java environment. MIC scores are calcu-
lated for all pairs of expression data and compiled into a matrix
format.

SCALE-FREE TOPOLOGY
The soft thresholding SFT function of the WGCNA R package
(Langfelder and Horvath, 2008) was used to determine the fit of
all datasets and relationship generating methods (either Pearson
correlation or MIC) to an idealized SFT. Briefly, the function acts
by calculating the sum of the link strengths for each gene in the
data, and finds an R2 between the distribution of total node link
strengths and a power-law distribution. It then repeats this pro-
cess, raising the original relationships to a power of n = 1 – 20.
The ideal soft thresholding criterion is defined as the first power
which passes the recommended R2 threshold of 0.9.

ICMg
ICMg (Parkkinen and Kaski, 2010) relies on an iterative com-
ponent model to calculate MMs. As ICMg does not allow for
weighted edges, network edges were trimmed using the hard
thresholding function of the WGCNA R package, which calcu-
lates an R2 fit between the degree of node connectivity in a
dataset based on a thresholding function at increasing intervals
of 0.05 and a power-law distribution. The ideal hard threshold-
ing criterion is the lowest cutoff which passes a recommended R2

threshold of 0.9. ICMg allows users to select an arbitrary num-
ber of modules. As WGCNA automatically selects the number of
modules it will return, we selected a number of modules equal to
that observed with WGNCA for ICMg in order to avoid biasing
the results toward the method with more modules and therefore
more degrees of freedom. Module assignments were then initially
assigned to the network using a Dirichlet distribution.

ICMg is an iterative process. In each iteration, each edge is
independently interrogated utilizing Gibbs sampling with the
following equation:

p
(
z0|{z}′, {L}′, α, β

) ∝ n′
z0 + α

N ′ + Cα

×
(q′

z0i0
+ β)(q′

z0j0
+ β)

(2n′
z0

+ 1 + Mβ)(2n′
z0

+ Mβ)

where {L}′ is the set of all links excluding the one being interro-
gated, {z}′ is the set of module assignments for the links excluding
the link being interrogated, nz is the count of links assigned to
component z, i, and j represent the genes linked by edge z0 and
qzi counts the module-node co-occurrences between module z
and node i. C is the total number of modules, and M is the total
number of nodes. α and β are control parameters which mod-
ify the overall distribution of module sizes and the average MM
per gene per module, however, these were not modified and the
default values (α = 10, β = 0.1) found in (Parkkinen and Kaski,
2010) were used. 40,000 burn-in rounds were performed to elim-
inate any dependence on initial conditions and to allow values of
q/M to reach steady-state values at which point MM of each node
was sampled every 10 iterations for another 10,000 iterations of
the network to determine proportional MM in each module for
each gene.
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DETERMINING THE ABILITY OF MICA TO ADDRESS NON-LINEARITY
IN DATASETS
In order to determine whether the sample sizes of the macrophage
and liver datasets were large enough to reliably address
non-linearity, we utilized pre-computed bootstrapped tables of
p-values for arrays of varying sample sizes from MINE avail-
able at http://www.exploredata.net/Downloads/P-Value-Tables.
We observe that at our hard thresholding cutoff of 0.45, this
means that for all edges in the liver MICA network, p-values are
less than 2.72E-6, while for the macrophage dataset, all edges have
p-values less than 2.74E-7, far over the nominal significance value
of 0.05 or the Bonferroni corrected values of 7.1E-6 and 9.8E-6.

CALCULATING “EIGENGENES” VIA WEIGHTED PRINCIPLE
COMPONENT ANALYSIS
We borrow the concept of the eigengene from WGCNA
(Langfelder and Horvath, 2008) to describe the overall behavior
of a set of genes. As in WGCNA, we define an eigengene of a mod-
ule to be the first principal component of the transcript levels of
the genes contained within the module, however, we utilize the
dudi.pca function of the ade4 R package to implement a weighted
PCA which utilizes the MMs from ICMg to weight the contri-
bution of each gene to the eigengene (Chessel et al., 2004). We
also calculate the unweighted eigengene for each module at 5%
intervals across the genome in which genes whose MM for that
module passes the current threshold are included in the eigengene
calculation.

OPTIMAL MM CUTOFF SELECTION
While there are methods to compare networks to one another
(Langfelder et al., 2011), these typically are concerned with deter-
mining preservation of modules and comparing individual genes
to one another and not asking which module is objectively “bet-
ter.” In order to compare MICA networks to one another and to
WGCNA-derived networks, we define a parameter “usefulness”
(U), which incorporates both GO enrichment scores, the number
of genes present in a given module and the number of genes not
placed in any module. We define “usefulness” as follows:

U =
1,...,n∑

i

(
DAVIDi

log2Ni

)
− log10M,

where DAVIDi is the maximum DAVID (Dennis et al., 2003;
Huang et al., 2009b) enrichment score for module i (equivalently,
the negative log of a GO enrichment score could be used), Ni is
the number of genes in module i, and M is the number of genes
not included in any module for the current method.

WGCNA
We followed the network analysis methods described in
Langfelder et al. (Langfelder and Horvath, 2008) and the param-
eters found in the online WGCNA tutorials at http://labs.genetics.
ucla.edu/horvath/htdocs/CoexpressionNetwork/Rpackages/WGC
NA/Tutorials/. Pearson correlations were determined for each
pair of genes, and after performing a soft thresholding SFT
fit, the correlations were raised to the recommended power.
Adjusted correlations are then converted into Topological

Overlap measures by the following equation:

TOMij =
∑

u {AiuAuj} + Aij

min(ki, kj) + 1 − Aij

where i and j are the pair of genes to be analyzed, u is the set of
all other genes, A is the adjusted correlation matrix, and k is the
degree of the node. TOM scores are then converted to DistTOM
scores by subtracting TOM from 1. The DistTOM array under-
goes hierarchical clustering, and modules are determined using
the dynamic tree cut algorithm and eigengenes are determined
from the first principle component of the genes in each module.
Modules whose eigengenes have a Pearson correlation of greater
than 0.8 are merged.

The WGCNA method is implemented in the freely avail-
able WGCNA R package (Langfelder and Horvath, 2008). Here
we used many of the R functions from this package (e.g., for
evaluating SFT and the creation of Figures 4, A1).

STANDARD GENE CLASSES
The GO database is organized into three distinct directed acyclic
graphs. We derived standard gene classes for our data in a method
similar to Shiga et al. (2007). Starting at the root of the Biological
Process GO graph, we proceeded from parent node to child nodes,
checking the number of genes in that GO category that also
appear in any module in our gene networks. As we progress away
from the root, the number of genes in each category decreases and
the number of categories increases. We used the parameters uti-
lized in Shiga et al. for our analysis. When a GO category contains
less than 30 genes present in our network, we stop progressing
down that branch and add its parent GO category to the standard
gene-set, unless there are more than 300 included genes in that
category, in which case it was omitted as being too broad for log-
ical compartmentalization into a single module. In this way, we
generate a set of reasonably sized functionally-related gene-sets
with which to explore the accuracy of the module construction
method using perplexity.

PERPLEXITY
Perplexity represents a measure of the entropy in a system, and
has been used extensively in fields as diverse as natural lan-
guage processing (Brown et al., 1992) to previous clustering
algorithms (Parkkinen and Kaski, 2010). In this case perplexity
represents the ability of a module creation algorithm to accurately
recover underlying functional gene categories as determined by
our standard gene classes. We applied perplexity to the confusion
matrix formed of the frequency of co-occurrence between stan-
dard classes on the columns (c) and the modules as the rows (r).
From this confusion matrix, perplexity is defined as

perplexity = 2−
∑

l logP̂(cl |rl)
N

where N is the total number of non-zero samples, l is an indexing
variable for all such entries in the confusion matrix, and the prob-
abilities p̂ are empirically determined by normalizing the rows of
the confusion matrix. Perplexity is proportional to the size of the
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overall dataset. To compare perplexities between network meth-
ods, we normalize the data by multiplying each perplexity value
by the proportion of genes initially included in the dataset and
the genes actually placed by each method. A lower perplex-
ity score represents a more accurate capture of the functional
categories.

MODULE STABILITY
Module stability was calculated using the method described
by (Langfelder and Horvath, 2008) and documented at http://
labs .genetics .ucla . edu / horvath / htdocs / CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/Consensus-RelateToFemMods.pdf.
Briefly, the macrophage dataset was randomly divided into two
halves. Each half was independently processed using MICA and
WGCNA. MICA genes were forced into the module in which it
had the highest MM to allow for the use of the method. In order
to determine module preservation, each half was compared to
one another by creating a table of gene-overlaps between genes in
modules of the first half and genes in modules of the first half. A
Fisher’s exact test was applied to each overlap to calculate a signif-
icance of preservation for each module–module pairing. Overall
module preservation was then visually determined based on the
significance of preservation for each module in the other half of
the dataset.

MICA
Code for MICA is available from systems.genetics.ucla.edu

DATASETS
The macrophage dataset was obtained from Orozco et al, which
isolated primary macrophages from a large panel of inbred mouse
strains (Orozco et al., 2012). The macrophage dataset includes
80 strains of control macrophages and macrophages treated
with 50 ug/ml oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphatidylcholine (OxPAPC) for 4 h.

The liver dataset was taken from Bennett et al. and includes
livers taken from 97 strains of mice (Bennett et al., 2010).
Transcriptome data was obtained using the Affymetrix HT MOE-
430A microarray platform, and normalized using the robust
multichip average (RMA) method.

A major limitation of MICA is the time involved in the
generation of the MIC scores using MINE, which has a large
O(n2) computation time. In order to run MICA in a reasonable
amount of time, it is important to limit the genes selected to the
smallest informative set. As such, we selected for genes which were
expressed in the dataset and which showed variation across the
dataset (as genes which do not vary are generally uninformative
for network analysis). We calculated average signal intensity and
coefficient of variation (CV) for each probeset. We then reduced
our dataset to relevant genes by first selecting probes with above
average intensity, and then selecting probes with greater than 5%
CV, resulting in 5070 genes for the Macrophage dataset. For the
liver dataset, we selected the 7000 most highly expressed genes for
analysis.

Both datasets are available at http://systems.genetics.ucla.edu/
data/
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APPENDIX

FIGURE A1 | MICA shows strong preservation of eigengenes in the liver dataset. Eigengene correlations at 5% cutoffs from 10% to 90% MM and also
the weighted eigengene for the liver dataset. The black box indicates the region of preserved module eigengenes.
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