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Abstract

c-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy.
GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to
another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors
widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic a4b1d GABAA receptors, where GHB
acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor
current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal
medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 mM) induced any
GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high
concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other
currents. These results suggest either that GHB is not a high affinity agonist at native a4b1d receptors, or that these
receptors do not exist in classical areas associated with extrasynaptic currents.
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Introduction

c-Hydroxybutyric acid (GHB) is a naturally occurring GABA

metabolite, a recreational drug and is used therapeutically as a

treatment for the symptoms of narcolepsy and to treat alcohol

dependence and withdrawal [1]. GHB causes dose-dependent

sedation, ataxia and hypothermia, however, the molecular

mechanism of action is unclear. GHB binds with low micromolar

affinity to GABAB receptors and many of its effects can be directly

ascribed to activation of these receptors. Specifically, pretreatment

with specific GABAB receptor antagonists prevents GHB-induced

hypothermia, ataxia and sedation, effects which GABAB(1)
2/2

mice are also resistant to [2–5]. In vitro, GHB has been shown to

hyperpolarize neurons by opening potassium channels and

decrease neurotransmitter release, by inhibiting calcium channels,

again an effect that is generally reported to be mediated

specifically by GABAB receptors [6–8]. GHB also binds to at

least one other receptor apart from the GABAB receptor, the so-

called ‘‘GHB receptors’’. GHB binds to this site with nano- to

micromolar affinity and is antagonised by the compound NCS-

382. In apparent disagreement with the work already cited, NCS-

382 has been demonstrated to block GHB-induced hypolocomo-

tion and ataxia [9][though see 2]. Similarly, the purported specific

GHB receptor agonist c-hydroxyvaleric acid mimics some of the

effects of GHB (e.g. ataxia, sedation) without binding to the

GABAB receptor [10]. Likewise, one report shows that GHB

reduces GABA release via a presynaptic mechanism that is

blocked by NCS-382 [11]. While a high affinity target of GHB has

been cloned, it is not sensitive to NCS-382 [12]. Therefore, the

exact molecular nature of the GHB receptor is unclear.

Several studies have shown that GHB does not directly affect

the function of cortical synaptic GABAA receptors

[7,13,14][though see 15]. Likewise, there are several reports

showing that neither GHB nor NCS-382 affect the binding of

classical GABAA receptor ligands [16–18][though see 19].

However, a recent study by Absalom et al., (2012) concluded

that GHB binds to extrasynaptic GABAA receptors [20].

Extrasynaptic GABAA receptors are classically high-affinity

a4bd or a6bd receptors expressed in the perisynaptic or

extrasynaptic space, which mediate a tonic inhibitory current

[21]. These receptors are found in the highest density in dentate

gyrus granule cells, the ventrobasal (VB) thalamic neurons and

cerebellar granule cells, but they can also be found in striatal

medium spiny neurons and to a lesser extent in neocortical

pyramidal cells [22]. Using a Xenopus oocytes expression

system, Absalom et al., (2012) demonstrated that GHB was a

high potency partial agonist of a4b1d GABAA receptors

[EC50 = 140 nM], but only activated a4b2/3d GABAA recep-

tors in the millimolar range. Furthermore, they showed that this

effect was absolutely dependent on a4 and d subunits and was

blocked by classical antagonists of the GABAA receptor. In

native tissue, they went on to show that the Bmax of [3H]NCS-

382 binding was significantly reduced in a4 subunit knockout

mice (though not in d subunit knock outs).

Therefore, we sought to investigate where GHB was a

functional agonist of extrasynaptic a4bd receptors in the rat

brain. We elected to examine this in VB thalamocortical neurons,

dentate gyrus granule cells and striatal medium spiny neurons, as

all these cell types express a measurable tonic current mediated by
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a4bd neurons and are believed to express the b1 subunit (though

generally in lower abundance than b2 or b3) [22–25].

Materials and Methods

All experiments were carried out in accordance with the United

Kingdom Animals (Scientific Procedures) Act 1986 and with local

ethical committee (Cardiff University Research Ethics Committee)

approval. All efforts were made to minimize animal suffering and

keep the animal numbers to a minimum. Animals used were

Wistar rats of either sex (postnatal days 20–30), feed ad libitum

and kept on a 12 h light/dark cycle.

Animals were anesthetised with 5% isoflurane/95% O2 and

rapidly decapitated. The brain was dissected out into 4uC sucrose

artificial cerebrospinal fluid (aCSF) bubbled with 95% O2/5%

CO2 of the following composition (in mM) 85 NaCl, 60 sucrose

2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2 MgCl2, 1 CaCl2, 25 D-

glucose, 3 kynurenic acid. The brain was cut using a vibrotome

(Microm HM 650 V, Thermo Fisher Scientific) into 300 mm

horizontal sections of the VB thalamus and dentate gyrus, or

coronal sections for the dorsal striatum. Slices were transferred to a

holding chamber filled with sucrose aCSF where they were

maintained at 35uC for half an hour before being allowed to cool

to room temperature. At that time, the sucrose aCSF was slowly

exchanged with aCSF of the following composition (in mM)

125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2 MgCl2,

1 CaCl2, 25 D-glucose. After a further half hour, slices were

transferred to the recording chamber as needed, and kept for a

maximum of 8 hours.

Brain slices were perfused with aCSF of the following

composition at 2–3 mL min21 (in mM) 125 NaCl, 2.5 KCl,

25 NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 25 D-glucose

which was maintained at ,34uC (TC2-BIP, Cell Microcontrols,

USA). CNQX (10 mM) and D-AP5 (25 mM) were added to the

recording solution at all times to block glutamatergic currents.

Neurons were visualized using either a Nikon Eclipse E600FN

(Tokyo, Japan) or Olympus BX51 (Tokyo, Japan) microscope

equipped with a 40 or 606 immersion lens and a video camera

(Hamamatsu, Hamamatsu City, Japan). To investigate whether

GHB (100 mM) or THIP (1 mM) enhanced the tonic current or

altered synaptic events whole-cell patch-clamp recordings were

made from neurons held at –70 mV using pipettes (resistance, 2–

4 MV) containing the following (in mM): 130 CsCl, 4 Mg-ATP,

0.3 Na-GTP, 10 Na-HEPES, and 0.1 EGTA, pH 7.25 (osmolal-

ity, ,295 mOsm). When GHB (3 mM) was used, to allow the

GABAB receptor mediated effects to be recorded, the pipettes

were filled with the following (in mM): 130 K-MeSO4, 5 NaCl,

4 Mg-ATP, 0.3 Na-GTP, 10 Na-HEPES, and 0.1 EGTA,

pH 7.25 (osmolality, ,295 mOsm) at the cells were held at

250 mV. Experimental data was filtered at 3–6 kHz, digitized at

20 kHz (Digidata 1322A; Axon Instruments) and acquired using

pClamp 10 software (Axon Instruments). Series resistance (Rs) was

measured at the beginning of the recording, and if it was over

20 MV the experiment was ended. Rs was measured again at the

end of the recording and if it had changed by more than 20% since

the experiment had begun, the data was discarded. For VB

neurons the mean initial Rs was 14.460.8 MV and this had

increased to 15.760.8 MV (n = 22) by the end of the recording

session. For dentate gyrus granule cells the mean Rs value was

9.561 MV which increased to 10.361.2 MV (n = 17) by the end

of the experiment. For striatal neurons the initial Rs was

10.760.5 MV and by the end of the experiment this was

11.460.7 MV (n = 23). Nucleated patches were pulled using

standard methods and the CsCl based pipette solution described

above and held at 270 mV [26]. Nucleated patches were

acceptable if they were roughly spherical, had a whole-cell

capacitance of ,3 pF and an input resistance of .500 MV.

Drugs were puff applied onto patches for 2 seconds every 20

seconds using a custom built TTL-driven picospritzer system from

a pipette with a 5–10 mm tip held ,50 mm from the patch. Drugs

were dissolved in standard aCSF. To allow representative images

of cells to be imaged and classical membrane properties to be

recorded, occasionally 25 mM Alexa Fluor 594 was added to K-

MeSO4 pipette solution. Two-photon laser-scanning microscopy

(2P-LSM) was performed using a Prairie Ultima (Prairie Tech-

nologies) microscope powered by a titanium:sapphire pulsed laser

(Chameleon Ultra II; Coherent) tuned to l= 810 nm. Maximum

intensity projections were constructed from Z series of images

taken with 1 mm focal steps using MetaMorph software (Molecular

Devices) and ImageJ (NIH).

GHB was purchased from Sigma-Aldrich. All compounds used

for aCSF and pipette solution were purchased from Fischer

Scientific or Sigma-Aldrich. CNQX, D-AP5, CGP 55845,

Tetrodotoxin (TTX) and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyri-

din-3-ol (THIP) were purchased from Tocris.

To measure the holding current in a way that was not affected

by spontaneous IPSCs, an all points sample of the data was

collected every second, and the mode of this sample was used to

define the holding current. To measure the effect of a drug on the

holding current an average of 10 seconds of these samples just

prior to the application of the drug was used to create the control

value, and 10 seconds of samples at the end of drug application

was used to create the drug value. Miniature IPSCs were detected

using the template function of Axograph X (Axograph Scientific).

Drug induced changes in holding current and drug-puff induced

currents were tested with paired t-tests and one sample t-tests

respectively, using Graphpad Prism. mIPSC amplitude distribu-

tions were tested with Kolmogorov-Smirnov tests using pClamp.

P,0.05 was taken as significant.

Results

To investigate whether GHB activated a4bd receptors we

first performed whole cell voltage clamp recordings from VB

thalamic neurons using a CsCl based internal solution. Under

these conditions ([Cli] = 130 mM, [Clo] = 133.5 mM,

Vhold = 270 mV), if GHB activated any significant population

of GABAA receptors we would expect to see an inward current.

We applied GHB at 10 mM because this is approximately 100

times the EC50 concentration for activating a4b1d receptors but

approximately 100 times less than its EC50 for activating

GABAB receptors or a4b2/3d receptors [20,27]. GHB at this

concentration had no effect on the holding current (control:

2239627 pA, GHB: 2242626 pA; n = 7, P = 0.75; Fig. 1A1–

2). To confirm the validity of our assay, we applied the d
selective agonist THIP (1 mM) [28] and this produced a

significant inward current (n = 6, P = 0.007; Fig. 1A3). We

repeated this experiment in dentate gyrus granule cells and

again saw that GHB (10 mM) had no effect on the holding

current (control: 2129615 pA, GHB 2129613 pA; n = 6,

P = 0.91; Fig. 1B1–2). Again, THIP induced a significant

inward current (n = 7, P = 0.01). Finally, we patched striatal

cells. With our CsCl based patch solutions, we could not

confirm whether all cells we recorded from were medium spiny

neurons, however, we targeted neurons with small somata

(diameter ,15 mm) making it unlikely that we accidentally

recorded from cholinergic interneurons. Likewise, the fact that

medium spiny neurons make up approximately 95% of all

GHB Is Not an Agonist of GABAA Receptors
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striatal cells, makes it further unlikely that we recorded from

other cell types [29]. However, again, GHB (10 mM) had no

effect on the holding current (control: 2293623 pA, GHB:

2294622 pA; P = 0.7, n = 9; Fig. 1C1–2), while THIP

produced a significant inward current (n = 10, P,0.0001).

These results seem to indicated that GHB (10 mM) does not

modulate extrasynaptic receptors in VB thalamic neurons, dentate

gyrus granule cells and striatal medium spiny neurons. However,

because the exact subunit composition of synaptic and extra-

synaptic receptors is unclear (especially when it comes to which b
subunits are involved), and hence there is a chance that GHB

sensitive GABAA receptors are expressed synaptically, we sought

to confirm whether GHB modulates synaptic GABAA receptor

mediated currents. Miniature IPSCs (mIPSCs) were isolated with

TTX (500 nM). In the VB thalamus, mIPSCs had a mean

amplitude of 4064 pA and a mean decay time constant of

4.960.4 ms, however GHB (10 mM) had no effect on these

parameters (3664 pA, 4.760.4 ms; n = 9, P = 0.5, P = 0.4 respec-

tively; Fig. 2A). Furthermore, GHB (10 mM) had no effect on the

distribution of mIPSC amplitude (P = 0.6; Fig. 2A3). Similarly,

GHB (10 mM) had no effect on mIPSCs recorded in dentate gyrus

granule cells (control: 4262 pA, 7.460.1; GHB: 4162 pA,

7.560.1 ms; n = 6, P = 0.5, P = 0.6 respectively; Fig. 2B). Finally,

GHB (10 mM) had no effect on mIPSCs recording from striatal

medium spiny neurons (control: 3964 pA, 9.660.2 ms; GHB:

3964 pA, 9.660.3 ms; n = 11, P = 0.8 P = 0.7 respectively;

Fig. 2C).

Endogenous GHB is found in the CSF at approximately

100 nM (and .1 mM in bulk tissue), and the concentration is

reported to increase after death [30,31], therefore it seems possible

that endogenous GHB is saturating any high affinity GHB

receptors in our brain slices. Therefore, we sought to avoid this

Figure 1. GHB has no effect on the holding current of voltage clamped neurons. A1, Mean holding current over time in response to the
application of GHB in VB thalamic neurons (n = 6). Grey area shows SEM. Left inset, representative image of a VB neuron. Scale bar 50 mm. Right inset,
voltage response of a representative VB neuron to current injection. Scale bar 20 mV 200 ms. A2, Group results showing the mean holding current
before and after GHB. A3, The d-selective GABAA agonist THIP induced a significant inward current (control: 2221633 pA, THIP: 2508653 pA, n = 6,
P = 0.0007). B1, Mean holding current over time in response to the application of GHB in dentate gyrus (DG) granule cell (n = 6). Grey area shows SEM.
Left inset, representative image of a dentate gyrus granule cell. Scale bar 50 mm. Right inset, voltage response of a representative dentate gyrus
granule cell to current injection. Scale bar 20 mV 200 ms. B2, Group results showing the mean holding current before and after GHB. B3, THIP
induced a significant inward current (control: 2131610 pA THIP: 2211622 pA, n = 7, P = 0.01). C1, Mean holding current over time in response to
the application of GHB in striatal medium spiny neurons (MSN) (n = 9). Grey area shows SEM. Left inset, representative image of a medium spiny
neuron. Scale bar 50 mm. Right inset, voltage response of a representative medium spiny neuron to current injection. Scale bar 20 mV 200 ms. C2,
Group results showing the mean holding current before and after GHB. C3, THIP induced a significant inward current (control: 2314626 pA THIP:
2457626 pA, n = 10, P,0.0001).
doi:10.1371/journal.pone.0079062.g001
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problem by puff applying GHB onto nucleated patches drawn

above the surface of the slice (.200 mm). We avoided using

dissociated cell culture, due to the risk of ectopic expression of ion

channels not expressed in native tissue. Likewise, we did not use

outside-out patches, as that would mean we could only sample a

small area of membrane, potentially missing a receptor expressed

at low density. Unfortunately, nucleated patches only allow us to

sample the somatic membrane. As it is known that the a4bd
expressed by dentate gyrus granule cells are restricted to the distal

dendrites, we excluded using these cells for this experiment [32].

Puff application of THIP (1 mM) demonstrated a small bicuculline-

sensitive current in both thalamocortical (29.761.4 pA, n = 5,

P = 0.002) and medium spiny neurons (26.661.7 pA, n = 5,

P = 0.01) (Fig. 3). However, again, low concentrations of GHB

(10 mM), induced no significant current. (VB: 20.160.2 pA,

n = 5, P = 0.5; medium spiny neurons: 20.260.4, n = 5, P = 0.6)

(Fig. 3).

To confirm that the lack of action of GHB was not due to some

alteration in the concentration dependence between expression

systems and brain slices, we applied GHB at 3 mM while using a

K-MeSO4 based pipette solution with [Cl]i = 5 mM and voltage

clamped the cells at 250 mV. Under these conditions chloride

currents have a calculated reversal potential of 284 mV and

hence would be expected to produce outward currents. When

GHB (3 mM) was applied to VB thalamic neurons, a significant

outward current was produced (94624 pA; n = 7, P = 0.008)

(Fig. 4A). However, this current was solely the result of GHB

activating GABAB receptors, as the outward current was abolished

by co-application of the GABAB antagonist CGP 55845 (1 mM)

(065 pA; n = 7, P = 0.96). Likewise, in dentate gyrus granule cells,

Figure 2. GHB has no effect on synaptic GABAA receptors. A1, Representative average mIPSC from a VB thalamic neuron before and after
application of GHB. A2, GHB has no effect on the decay time constants of averaged mIPSCs in VB neurons. A3, Distribution of mIPSCs amplitude
across 9 cells, showing no effect of GHB. B1, Representative average mIPSC from a dentate gyrus (DG) granule cell before and after application of
GHB. B2, GHB has no effect on the decay time constants of averaged mIPSCs in dentate gyrus granule cells. B3, Distribution of mIPSCs amplitude
across 6 cells, showing no effect of GHB. C1, Representative average mIPSC from a striatal medium spiny neuron (MSN) before and after application of
GHB. C2, GHB has no effect on the decay time constants of averaged mIPSCs in medium spiny neurons. C3, Distribution of mIPSCs amplitude across
11 cells, showing no effect of GHB.
doi:10.1371/journal.pone.0079062.g002
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GHB (3 mM) produced a significant outward current that was

completely blocked by CGP 55845 (1 mM) (GHB: 4963 pA,

CGP: 262 pA; n = 6, P,0.0001, P = 0.4 respectively) (Fig. 4B).

However, in medium spiny neurons, GHB (3 mM) did not

produce any significant current and CGP 55845 (1 mM) had no

further effect (GHB 362 pA, CGP: 262 pA; n = 6, P = 0.2,

P = 0.4 respectively) (Fig. 4C). This is in line with previous reports

that the GABAB receptor has no post-synaptic effect on medium

spiny neurons [33].

Discussion

It is well established that GHB is an agonist at GABAB

receptors, however, evidence suggests that it also has some

behavioural effects via another site: the GHB receptor. For

instance, NCS-382, the GHB receptor antagonist has been

demonstrated to block GHB-induced hypolocomotion and ataxia

[9]. A recent study by Absalom et al., (2012) suggests that the

GHB receptor is in fact the a4b1d GABAA receptor, and that

GHB is a direct agonist at these receptors [20]. We recorded from

three cell types that express the mRNA for these subunits, and

express a GABAA mediated current with the pharmacological hall

marks of a4bxd receptors: VB thalamic neurons, dentate gyrus

granule cells and striatal MSNs [23,34–38]. In these cell types we

found no evidence that 10 mM GHB affected synaptic or

extrasynaptic GABAA receptors, nor that it evoked a measureable

current when applied to nucleated patches. Furthermore while

3 mM GHB activated GABAB receptors, there was no indication

that it activated any GABAA receptors.

There are at least three potential explanations for the

differences seen between our results and those of Absolom et al.,

(2012). The first is that their results are due to an artefact of the

heterologous expression system used. This seems unlikely as their

autoradiographic experiments show clear GHB and NCS-382

binding that is reduced in a42/2 mice. The second possibility is

that the a4b1d receptor is expressed by only a few cells in the

regions we sampled from. This is always an issue with single cell

experiments. However, if the cells are sufficiently rare that in a

sample of 77 neurons/patches to which GHB was applied, not a

single sign of a GABAA receptor mediated current was seen, it

calls into question the functional significance of this GHB at this

receptor combination. The other explanation is that the regions

we studied do not express a4b1d GABAA receptors at all, but

instead express a4b2/3d receptors. The pharmacological and

knockout evidence makes it clear that VB thalamic neurons,

dentate gyrus granule cells and striatal medium spiny neurons

express a4bxd GABAA receptors [24,25,36–38], however, which b
subunit is expressed with these receptors is less clear. The fact that

Figure 3. Puff application of GHB has no effect on nucleated patches pulled from VB thalamocortical cells, or medium spiny
neurons. A1, Example traces showing the effect of 2 second puff applications of GHB (10 mM) and THIP (1 mM) to nucleated patches of
thalamocortical VB neurons. A2, Group results showing the magnitude of the effect of THIP and GHB in VB neurons. B1, Example trace showing the
effect of 2 second puff application of GHB (10 mM) and THIP (1 mM) to nucleated patches of medium spiny neurons. A2, Group results showing the
magnitude of the effect of THIP and GHB in medium spiny neurons.
doi:10.1371/journal.pone.0079062.g003
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the b2/3 selective compound etomidate enhances the tonic

current in VB neurons shows that the tonic current is in part

mediated by b2/3 containing GABAA receptors [39]. However,

given that the tonic current of b22/2 mice is only reduced by

approximately 50%, it indicates that the tonic current in these

neurons is partially produced by b1 and/or b3 containing

receptors [39]. Importantly, the tonic current from mice with

the etomidate insensitive b2N265S mutation is still enhanced by

etomidate, showing that the tonic current is in part mediated by b3

receptors, however it is unclear whether b1 containing receptors

Figure 4. High concentrations of GHB can induce an inward current that is completely abolished by the GABAB antagonist GCP
55845. A1, Representative recording from a VB thalamic neuron showing the inward current induced by 3 mM GHB, and its blockade by CGP 55845
revealing no residual current. A2, Group results showing the current induced by GHB and its complete blockade by CGP 55845. B1, Representative
recording from a dentate gyrus (DG) granule cells showing the inward current induced by 3 mM GHB, and its blockade by CGP 55845 revealing no
residual current. B2, Group results showing the current induced by GHB and its complete blockade by CGP 55845. C1, Representative recording from
a striatal medium spiny neuron (MSN) the complete lack of response to 3 mM GHB and CGP 5584. C2, Group results showing the lack of effect of GHB
or CGP 55845.
doi:10.1371/journal.pone.0079062.g004
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also mediated part of the tonic current. At least at a6bxc2

receptors, etomidate has very similar modulator properties at b2

and b3 containing receptors [40]. However, in VB neurons from

b22/2 mice, etomidate enhances the tonic current significantly

less, suggesting that some of the tonic current is mediated by b1

containing receptors (though this could be due to a compensatory

upregulation of b1 subunits in response to a loss of b2 subunits)

[39]. In the dentate gyrus an identical approach shows that

neurons from b22/2 mice have a halved tonic current, and that

the tonic currents from b2N265S mice are still partially sensitive to

etomidate, showing the presence of b3 containing extrasynaptic

receptors. Again, the magnitude of the etomidate-induced

enhancement of the tonic current in b22/2 mice suggests the

presence of some b1 containing receptors [41] Furthermore, a

recent study has shown that protein kinase A (PKA) inhibits the

current mediated by extrasynaptic receptors in VB thalamic

neurons [42]. As PKA has been shown to inhibit b1 containing

receptors, while having no effect on those containing b2 and

enhancing b3 containing receptors, this indicates that VB thalamic

neurons contain a significant amount of b1 containing GABAA

receptors, at least at extrasynaptic sites [43,44]. While these results

make it hard to say conclusively which b subunits are expressed at

the extrasynaptic GABAA receptors in these nuclei, it is worth

noting that Absalom et al., (2012) did show clear gabazine

sensitive [3H]NCS-382 binding in the thalamus, dentate gyrus

and striatum, showing that this site does appear to be present in

the brain regions we studied [20].

While our results show no indication that GHB is a direct

agonist of GABAA receptors, it is worth noting that GHB can

potentiate extrasynaptic receptors, however, we have shown that

this is through an indirect mechanism, relying of GABAB receptors

[35,42]. These results showed that activation of the GABAB

receptor leads to a dephosphorylation of presumably a4b1d

containing receptors and a subsequent potentiation of extrasynap-

tic GABAA currents [42]. However, we cannot use these results to

explain the findings of Absalom et al., (2012) [20].

Given that we could see no indication that GHB was an agonist

of GABAA receptors in VB thalamus neurons, dentate gyrus

granule cells or striatal medium spiny neurons, we are left with

three possibilities, 1) that GHB is not an agonist of a4b1d native

receptors, 2) the receptors are expressed in rare cell populations or

3) that these receptors do not exist in these brain regions. We

cannot rule out any of these option. However, if these receptors do

exist in any significant number, we feel it is unlikely that GHB is as

potent an agonist as suggested by Absolom et al., (2012) [20]. This

is due to the fact that all known reports of a behavioural effect due

to GHB dosing require doses of $100 mg/kg, even those reported

to be antagonised NCS-382 [e.g. 3,9,10]. Seeing as doses of

120 mg/kg (I.V in the cat) produce cerebrospinal fluid (CSF)

concentrations of ,2.5 mM, and even endogenous GHB is found

in the CSF at 100 nM (and .1 mM in bulk tissue), it would seem

that the a4b1d would be being activated at near its EC50 basally,

and would be well past saturation before a behaviourally relevant

concentration is reached [45,31,30]. Whether the effect of low

concentrations of GHB on a4b1d receptors is an artefact of the

heterologous expression system, or simply that a4b1d is not found

in the CNS, our results call into question the relevance of the

proposed direct action of GHB on extrasynaptic GABAA receptors

in native tissue.
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