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Abstract

In a balanced design, researchers allocate the same number of units across all treatment

groups. It has been believed as a rule of thumb among some researchers in agriculture.

Sometimes, an unbalanced design outperforms a balanced design. Given a specific param-

eter of interest, researchers can design an experiment by unevenly distributing experimental

units to increase statistical information about the parameter of interest. An additional way of

improving an experiment is an adaptive design (e.g., spending the total sample size in multi-

ple steps). It is helpful to have some knowledge about the parameter of interest to design an

experiment. In the initial phase of an experiment, a researcher may spend a portion of the

total sample size to learn about the parameter of interest. In the later phase, the remaining

portion of the sample size can be distributed in order to gain more information about the

parameter of interest. Though such ideas have existed in statistical literature, they have not

been applied broadly in agricultural studies. In this article, we used simulations to demon-

strate the superiority of the experimental designs over the balanced designs under three

practical situations: comparing two groups, studying a dose-response relationship with

right-censored data, and studying a synergetic effect of two treatments. The simulations

showed that an objective-specific design provides smaller error in parameter estimation and

higher statistical power in hypothesis testing when compared to a balanced design. We also

conducted an adaptive experimental design applied to a dose-response study with right-

censored data to quantify the effect of ethanol on weed control. Retrospective simulations

supported the benefit of this adaptive design as well. All researchers face different practical

situations, and appropriate experimental designs will help utilize available resources

efficiently.

1. Introduction

A successful weed management is a key to improve the crop productivity and quality.

Researchers have used various response variables in weed control studies such as the viability
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of weed seeds [1, 2], the germination of weed seeds [3, 4], the weed emergence [5, 6], the weed

density per unit area using hand count [7, 8], and the proportion of area covered by green col-

ors [9, 10]. To identify the effect of treatments for weed control, the analysis of variance

(ANOVA) and similar statistical methods have been used. Traditionally, if an ANOVA test

rejects the null hypothesis (that all group means are equal), the Tukey’s test (also known as the

Tukey’s honestly significant difference) is often used to determine significantly different

groups [11, 12]. The Duncan’s multiple range test and the Fisher’s least square difference test

seem to be alternate choices among researchers [13–19]. These statistical tests assume that data

are observed from normal distributions (normality assumption) with equal variance (homoge-

neity assumption). The normality assumption may not be a big deal in large-sample studies,

but large sample sizes cannot resolve the issue of unequal variances. The Duncan test does not

control the family-wise rate of Type I Error [20]. In other words, the probability of falsely

claiming a difference between any two treatments increases as the number of treatment groups

increase, so it should not be recommended when there are many treatments to be compared.

To guard against the inflated rate of Type I Error in the comparison of multiple treatments,

the Tukey’s test or a correction method for multiple testing should be considered.

Balanced designs are commonly used in agricultural experiments [21–23]. A balanced

design mitigates the violation of homogeneity assumption [24]. In addition, if the homogene-

ity assumption is true, a balanced design increases statistical power of hypothesis testing for

comparing groups. In a two-sample t-test with the homogeneity assumption, it can be shown

by calculus that the standard error, the square root of σ2(1/n1 + 1/n2), is minimized when n1 =

n2 for a fixed total sample size n1 + n2. A balanced design may end up unbalanced due to unex-

pected reasons (e.g., incorrect implementation of a treatment, invasion of pests, and missing

samples). Losing a few data point during an experiment is unfortunate, but it is often not a big

deal unless the original sample size was extremely small. The Tukey-Kramer method adjusts

the calculation of standard error to account for unequal sample sizes [25, 26].

In some cases, the homogeneity assumption is not plausible when treatments have different

expected outcomes. Count data tend to vary more when the mean is higher, and the standard

error for comparing two group means, which is the square root of s2
1
=n1 þ s

2
2
=n2, is minimized

when n2 ¼ n1s
2
2
=s2

1
. In this case, however, researchers may be uncomfortable to guess s2

1
and

s2
2

before collecting data. Furthermore, it is not always possible to increase the sample size, but

it is possible to control a maximally available sample size. If researchers believe that s2
1

and s2
2

are substantially different, an adaptive design may be a practical suggestion. For example, a

researcher may start with a balanced design by spending a portion of an available (fixed) sam-

ple size, then the researcher may spend the remaining portion of the fixed sample size to mini-

mize the standard error based on estimated s2
1

and s2
2
. An adaptive design is not limited to two

phases. It may consist of two or more phases to improve precision in parameter estimation.

Although a large number of phases may improve the precision from statistical perspective,

such a long adaptive design may not be feasible in practice. Throughout the article, an adaptive

design refers to an experiment which is designed in two phases until drawing a final statistical

inference.

Ronald Fisher realized that the randomization is needed in order to satisfy the assumption

of independent errors, and he introduced the principles of randomization in his book, Statisti-

cal Methods for Research Workers [27, 28]. The randomization is an important component of

experimental design to reduce bias in parameter estimation. It is a misconception that a small

sample size leads to the bias. In fact, a small sample size is associated with the variance which is

another important component in parameter estimation. A lower variance can be attained by

increasing the sample size, but researchers often have limited resources, time, and labor
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capacity. Given a fixed sample size, we can still lower the variance by choosing an unbalanced

design carefully. For example, suppose a researcher assumes that two numeric variables X (e.g.,

treatment level) and Y (e.g., response) are linearly related as Y = β0 + β1 X + �. Further assume

that the researcher has four numeric levels of treatment x1 < x2 < x3 < x4 and can afford a

total sample size of n1 + n2 + n3 + n4 = 20, where ni is the number of experimental units

assigned to xi for i = 1, 2, 3, 4. If the parameter of interest is β1 which quantifies the linear rela-

tionship between X and Y, the unbalanced design (n1, n2, n3, n4) = (10, 0, 0, 10) leads to a

smaller variance than the balanced design (n1, n2, n3, n4) = (5, 5, 5, 5) in the estimation of

parameter β1. As such, when a researcher has a target parameter to be estimated or tested, the

researcher would like to seek an unbalanced design to minimize the variance in parameter esti-

mation. However, an optimal design for β1 (which is optimal from the theoretical perspective)

may not be recommended in practice because it is optimal only under the strong assumption

of linearity. Even if the linearity assumption is plausible as an approximation, weed scientists

may be (or should be) interested in an adequate strength of a treatment from a variety of per-

spectives such as the effectiveness of weed control, the impact on the environment, and the

cost. In this regard, finding an adequate concentration (or any quantification of treatment

strength) would be an important research objective. In a later section of this article, we demon-

strate a statistical model and an experimental design to find such a parameter in terms of

delaying weed emergence.

The primary focus of this article is to demonstrate that there are many practical situations

in agricultural studies that unbalanced designs are better than balanced designs. Here, “better”

means a smaller mean square error (which accounts both bias and variance) in parameter esti-

mation and a greater statistical power in hypothesis testing (while respecting a fixed signifi-

cance level α). In particular, we demonstrate three practical situations when the parameter of

interest is the difference in two group means (Section 2), the effective concentration of an

active treatment in which the median time to weed emergence is doubled when compared to

the control (Sections 3 and 4), and the synergistic effect of two treatments (Section 5).

In addition, by spending an available total sample size in two phases (referred to as an adap-

tive design in this article), a researcher may improve the precision of parameter estimation by

correcting an assumption made prior to the experiment. For instance, a Bayesian optimal

design or a locally optimal design requires researcher’s guess about model parameters prior to

collecting data [29–31]. In practice, it is challenging to specify an informative prior for model

parameters, and an informative prior may severely deviate from the truth. In such a case, a

researcher may regret for making a decision at once with scarce knowledge. To address the

caveat of designing an experiment at once before collecting data, a researcher may use a non-

informative prior to allocate a portion of the total sample size, then decide an experimental

design for the remaining portion using an updated posterior. In this Bayesian approach, the

key idea is to design each phase of experiment by utilizing all available knowledge (Sections 4

and 5). The benefit of adaptive designs will be demonstrated via simulations in the later sec-

tions. There are many statistical methods which have been developed to make adaptive deci-

sions in clinical trials [32–35]. The idea of an adaptive design is not new in scientific

communities, and in this article, it is discussed in the context of agricultural studies.

2. Comparing two groups

2.1. Assumptions

We assume that there are two treatments to be compared and further assume that the response

variable is generated from normal distributions, Nðm1; s
2
1
Þ for the first treatment group (say

group 1) and Nðm2; s
2
2
Þ for the second treatment group (say group 2). The null hypothesis is
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H0: μ1 − μ2 = 0, and the alternative hypothesis isH1: μ1 − μ2 6¼ 0. Let n1 and n2 be the sample

size for group 1 and group 2, respectively. Consider two-sample t-test without the equal vari-

ance assumption, and the degrees of freedom for the T statistic is estimated by the Welch-Sat-

terthwaite equation.

Suppose Researcher 1 performs the t-test using the balanced design with a total sample size

of n1 + n2 = 40, so n1 = n2 = 20. Among possible choices of (n1, n2) = (2, 38), (3, 37), . . ., (37,

3), (38, 2), the balanced design minimizes the standard error (SE), the square root of

s2
1
=n1 þ s

2
2
=n2, when σ1 = σ2. In general, if the researcher knew the true values of σ1 and σ2, the

optimal choice for minimizing s2
1
=n1 þ s

2
2
=n2 would be n1 = 40σ1/(σ1 + σ2) and n2 = 40 − n1

rounded.

Suppose Researcher 2 chooses an adaptive design (given the total sample size 40) as follows.

Let n0
1

and n0
2

be the sample size in the first phase for group 1 and group 2, respectively. Let n00
1

and n00
2

be the respective sample size in the second phase. The researcher initiates a balanced

design of n0
1
¼ n0

2
¼ 10, estimates s2

1
and s2

2
by the sample variances S2

1
and S2

2
, respectively,

then decides n00
1

and n00
2
¼ 20 � n00

1
which minimize the estimated SE, the square root of

S2
1
=ð10þ n00

1
Þ þ S2

2
=ð10þ n00

2
Þ, for n00

1
¼ 0; 1; . . . ; 20. In other words, the researcher spends one

half of the total sample size 40 to learn about s2
1

and s2
2
, then spends the remaining half to

reduce the SE in the two-sample t-test.

2.2. Simulations

To compare statistical power between the design of Researcher 1 (balanced design) and the

design of Researcher 2 (adaptive design), simulations scenarios were set at μ1 = 10, σ1 = 10,

μ2 = 10, 20, . . ., 100, and σ2 = 10, 20, 50, 100 at the significance level of α = 0.05. Each scenario

was simulated 10,000 times. The simulation process for the balanced design is as follows:

1. Fix the values of μ1, μ2, σ1, and σ2.

2. Generate a random sample of size n1 = 20 from Nðm1; s
2
1
Þ.

3. Generate a random sample of size n2 = 20 from Nðm2; s
2
2
Þ.

4. Perform the two-sample t-test and calculate the p-value.

5. Repeat Steps 2 to 4 10,000 times.

6. Calculate the proportion of times when p-value <0.05 to estimate the probability of con-

cludingH1 (power at the significance level α = 0.05).

The simulation process for the adaptive design is as follows:

1. Fix the values of μ1, μ2, σ1, and σ2.

2. Generate a random sample of size n0
1
¼ 10 from Nðm1; s

2
1
Þ, and estimate s2

1
by the sample

variance S2
1
.

3. Generate a random sample of size n0
2
¼ 10 from Nðm2; s

2
2
Þ, and estimate s2

2
by the sample

variance S2
2
.

4. Let n00
2
¼ 20 � n00

1
, evaluate cSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1

10þn00
1

þ
S2

2

10þn00
2

r

for n00
1
¼ 0; 1; . . . ; 20, and choose the value

of n00
1

which minimizes cSE.

5. Given the chosen value of n00
1
, generate a random sample of size n00

1
from Nðm1; s

2
1
Þ.
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6. Given n00
2
¼ 20 � n00

1
, generate a random sample of size n00

2
from Nðm2; s

2
2
Þ.

7. Combine the random samples in Steps 2, 3, 5, and 6 to perform the two-sample t-test and

calculate the p-value.

8. Repeat Steps 2 to 7 10,000 times.

9. Calculate the proportion of times when p-value <0.05 to estimate the probability of con-

cludingH1 (power at α = 0.05).

All computational work was performed in R Version 4.0.2 [36], and all codes were written

by the authors with built-in functions like t.test. The simulation results are graphically

shown in Fig 1. There is no meaningful difference between the two designs when σ1 = σ2 (the

upper left panel of Fig 1). The adaptive design provides greater statistical power than the bal-

anced design as σ2 deviates more from σ1 (the lower right panel of Fig 1).

Departures from the normality assumption were tested under the following distributions: t-

(10), t(5), Beta(5, 10), Beta(10, 5), and χ2(3). To match means (μ1 and μ2) and standard devia-

tions (σ1 and σ2) of each scenario, these distributions were standardized, scaled by the

standard deviations, then shifted by the means. The overall patterns, superiority of the adaptive

design over the balanced design, were similar to Fig 1. The adaptive design showed a higher

Type I error rate (about 0.08) than the balanced design when data were generated under the

chi-square distribution scaled by σ1 = σ2 = 10. The balanced design showed a higher Type I

error rate (about 0.07) when data were generated under the chi-square distribution σ1 = 10

and σ2 = 100.

2.3. Note

An adaptive design would be more applicable in pilot studies which require relatively short

time. A large branch in agricultural sciences relies on field experiments with annual crops, so

there may be a practical challenge to use an adaptive design. On the other hand, conclusions of

scientific studies are more convincing when data show a consistent pattern between two sea-

sons. Some journals, reviewers, and researchers prefer to see consistent results by repeating an

experiment. In addition, count data (e.g., weed count) often violate the normality assumption

and homogeneity assumption. A large sample size often mitigates the violation of normality

assumption but not the violation of homogeneity assumption. If a large sample size is available,

there is no reason to make the homogeneity assumption in the two-sample t-test. In this case,

an adaptive design (if it is feasible) provides experimenters an opportunity to increase statisti-

cal power by considering an optimal distribution of experimental units between groups. In

this process, the unequal variances can be estimated after the first phase of an experiment in

order to plan the second phase.

There may be other kinds of weed control studies and related studies. In particular, count

data naturally involve non-normality and homogeneity (i.e., data do not follow a normal dis-

tribution with equal variance), and there are generalized linear models which can properly

account for the uncertainty associated with count data [37–39].

3. Comparing time to weed emergence

Traditionally, treatments for weed control have been compared by the average count of weeds

per given area [2, 7, 8], the average biomass of weeds per given area [2, 7], and the proportion

of area covered by weed colors [9, 10]. The response variables have been recorded at an arbi-

trary time point. In a cross-sectional assessment, the quantification of effect size may heavily

depend on the time of assessment. For example, as shown in Fig 2, the effect of an active

PLOS ONE Applications of statistical experimental designs to improve statistical inference in weed management

PLOS ONE | https://doi.org/10.1371/journal.pone.0257472 September 15, 2021 5 / 21

https://doi.org/10.1371/journal.pone.0257472


treatment may be similar to the control at the beginning of an experiment, the relative effect

size becomes large for a period of time, then the relative effect size eventually becomes the

same as the control because, even where pesticides and fumigants have been treated, weeds

may eventually emerge.

From farmers’ perspective, the primary interest would be how long a treatment delays the

weed emergence relative to control. In addition, if a treatment is known to be effective, the

question of interest would be how strong (concentration or frequency of an active treatment)

the treatment should be in order to balance among cost, effect, and other practical consider-

ations. In this section, we discuss an experimental design to estimate a parameter which quan-

tifies the treatment effect in terms of the time to weed emergence.

Fig 1. Power analysis. This figure compares statistical power between the balanced design and the adaptive design with respect to μ2 − μ1 at σ1 =

10 and σ2 = 10, 20, 50, 100.

https://doi.org/10.1371/journal.pone.0257472.g001

PLOS ONE Applications of statistical experimental designs to improve statistical inference in weed management

PLOS ONE | https://doi.org/10.1371/journal.pone.0257472 September 15, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0257472.g001
https://doi.org/10.1371/journal.pone.0257472


3.1. Model assumptions

Let T be the waiting time (days) to observe weed emergence, and let x be the ethanol concen-

tration (fixed by an researcher), where x = 0 denotes the concentration of 0% (control) and

x = 1 denotes the ethanol concentration of 100%. We assume ln(T)*N(μx, σ), where μx = β0 +

β1 x + β2x2 with the parameter space −1<β0 <1, β1 > 0, β2 > 0, and σ> 0. Two inequalities

β1 > 0 and β2 > 0 imply that μx increases with respect to x for 0< x< 1, and these assump-

tions will simplify some mathematical subtlety. Let Δ be the concentration such that μΔ = μ0 +

ln(2) as demonstrated in Fig 3.

The choice of log-normal distribution allows the following interpretation. Under the model

assumption, the median of ln(T), denoted by M½lnðTÞ�, and the expectation of ln(T), denoted

by E½lnðTÞ�, are equal. Therefore,

M½lnðTÞ j x ¼ D� � M½lnðTÞ j x ¼ 0� ¼ E½lnðTÞ j x ¼ D� � E½lnðTÞ j x ¼ 0�

¼ m0 þ lnð2Þ � m0

¼ lnð2Þ :

ð1Þ

Further note that

M½lnðTÞ j x ¼ D� � M½lnðTÞ j x ¼ 0� ¼ ln½MðT j x ¼ DÞ� � ln½MðT j x ¼ 0Þ�

¼ ln
MðT j x ¼ DÞ

MðT j x ¼ 0Þ

� �

:
ð2Þ

Fig 2. Treatment effect with respect to time since treatment application. This hypothetical scenario compares the weed density (proportion of

area covered by weeds) between the treatment group and the control group with respect to time since treatment application. The quantification of

treatment effect (relative to control) may be highly sensitive to the time of data collection.

https://doi.org/10.1371/journal.pone.0257472.g002
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From Eqs (1) and (2), we obtain

MðT j x ¼ DÞ

MðT j x ¼ 0Þ
¼ 2 :

In the subsequent applied example (Section 4), the primary parameter of interest is Δ, the

concentration that corresponds to the doubled median waiting time when compared to the

control. Note that

mD � m0 ¼ b1Dþ b2D
2
¼ lnð2Þ

is equivalent to the quadratic equation

b2D
2
þ b1D � lnð2Þ ¼ 0 :

Under the model assumptions, by the quadratic formula, the parameter Δ has the closed-

form expression

D ¼
� b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb1Þ
2
þ 4lnð2Þb2

q

2b2

: ð3Þ

Note that the choice of the constant 2 (doubled median waiting time) is arbitrary. For any

constant k> 1 (an increase in median waiting time by k times), ln(2) in Eq (3) can be replaced

by k.

3.2. Experimental design

Let xi be a fixed concentration and letmi be the number of units allocated to xi for i = 1, . . ., k.

Suppose n is the total sample size which is available for an experimenter, so the experimenter

Fig 3. The relation between Δ and μΔ. The y-axis represents the logarithmic time to weed emergence, and the x-axis

represents the ethanol concentration. The value of Δ corresponds to the concentration such that the expected time to

weed emergence increases by ln(2). In other words, the median time doubles at the concentration of Δ when compared

to the zero (control) concentration.

https://doi.org/10.1371/journal.pone.0257472.g003
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designs an experiment by choosing (m1, . . .,mk) such thatm1 + � � �+mk = n. Let Tij be the wait-

ing time to be observed at concentration xi for j = 1, . . .,mi.
Assuming lnðTijÞ � Nðmxi ; s

2Þ, where mxi ¼ b0 þ b1xi þ b2ðxiÞ
2

is the assumed quadratic

regression, let ϕij be the normal probability density function for ln(Tij). Given the model

parameters~y ¼ ðb0; b1; b2; s
2Þ, under the independence assumption, the likelihood function

is given by Lð~yÞ ¼
Qk

i¼1

Qmi
j¼1
�ij. Given the likelihood function, the Fisher information is

defined as

Ið~yÞ ¼ � E
@

2ln½Lð~yÞ�
@~y @~yT

 !

;

and Vð~yÞ ¼ r~hTð~yÞ ½Ið~yÞ�� 1~hð~yÞ is the approximation for the variance of the maximum like-

lihood estimator for Δ in Eq (3), where

~hTð~yÞ ¼ @D

@b0

@D

@b1

@D

@b2

@D

@s2

� �

@D

@b0

¼ 0

@D

@b1

¼ �
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb1Þ
2
þ 4lnð2Þb2

q

@D

@b2

¼ �
1

b2

D �
lnð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb1Þ
2
þ 4lnð2Þb2

q

0

B
@

1

C
A

@D

@s2
¼ 0 :

This experimental design is referred to as the c-optimal design, and it has been introduced

and applied in other regression models [34, 40–42]. The c-optimal design is devised to mini-

mize the expected asymptotic variance of the maximum likelihood estimator for the parameter

of interest [40, 43]. The primary focus is to increase the precision in the estimation for the

parameter Δ by seeking the distribution of (m1, . . .,mk) which minimizes the expected value of

Vð~yÞ given prior knowledge modeled by a prior distribution f ð~yÞ. In other words, the c-opti-

mal design minimizes
R

Vð~yÞ f ð~yÞ d~y with respect to (m1, . . .,mk).
In agricultural studies, the balanced design (equal replication per group) seems common,

and the c-optimal design and other designs often outperform the balanced design for parame-

ter estimation. When researchers have a specific parameter to be estimated, the c-optimal

design is devised for the purpose. For a situation when there are multiple criteria to be opti-

mized, robust designs have been discussed [40].

3.3. Simulations

To demonstrate the performance of the c-optimal design relative to the balanced design (i.e.,

mi = n/k for i = 1, 2, . . ., k), four simulation scenarios were designed as shown in Fig 4. In the

figure, the curves represent the expected time to weed emergence in the original unit (days)

under the assumption of σ = 1. For each scenario, k = 5 concentrations were fixed at x1 = 0,

x2 = 1/8, x3 = 1/4, x4 = 1/2, and x5 = 1, and the total sample size was fixed at n = 100. We
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compared the balanced design ~m ¼ ð20; 20; 20; 20; 20Þ and the c-optimal design with a flat

prior f ð~yÞ / 1 which allocated ~m ¼ ð42; 0; 0; 50; 8Þ at the fixed concentrations, respectively.

Each scenario was repeated 1,000 times. All computational work in this simulation and sub-

sequent simulations was done by writing codes with built-in functions in R Version 4.0.2 [36].

The bias, variance, and mean square error (MSE) of posterior mean for Δ were compared

between the two experimental designs as shown in Table 1. It demonstrates the outperfor-

mance of the c-optimal design over the balanced design in terms of the three criteria.

4. Right-censored time to weed emergence

In the previous section, we considered time to weed emergence as a response variable of inter-

est. In practice, it is implausible to wait for weed emergence in all experimental units because it

will require a too long study time. Suppose the maximum time of observation is fixed before

initiating an experiment. For instance, in the small-scale experiment to be introduced in Sec-

tion 4.3, we fixed the maximum time of observation at 30 days, and weed did not emerge until

30 days in some experimental units. In this case, we do not know the exact time of weed emer-

gence, but we know that it is at least 30 days. This type of data is referred as right-censored

data, and we revisit the regression model discussed in Section 3 to account for the right-cen-

sored data.

Fig 4. Simulation scenarios. The curves are designed by the values of regression parameters (β0, β1, β2) given in

Table 1. The true values of Δ (the parameter to be estimated) are 0.477, 0.203, 0.241, and 0.267 in Scenarios 1, 2, 3, and

4, respectively.

https://doi.org/10.1371/journal.pone.0257472.g004

Table 1. Simulation results.

True parameter values Balanced design c-optimal design

Scenario β0 β1 β2 Δ Bias Variance MSE Bias Variance MSE

1 1.0 0.5 2.0 0.477 + 0.003 0.104 0.104 + 0.001 0.078 0.078

2 1.0 3.0 2.0 0.203 + 0.012 0.052 0.053 + 0.006 0.035 0.035

3 1.0 3.0 -0.5 0.241 + 0.029 0.082 0.087 + 0.010 0.054 0.055

4 1.0 3.0 -1.5 0.267 + 0.056 0.127 0.139 + 0.025 0.080 0.084

https://doi.org/10.1371/journal.pone.0257472.t001
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4.1. Model assumptions

We maintain all assumptions made in Section 3.1 and introduce the following notations. Let

Tij denote the actual time of weed emergence in the j-th experimental unit of the i-th concen-

tration level for i = 1, . . ., k and j = 1, . . .,mi. Let Cij = 1 if Tij� 30 (so that the actual time of

weed emergence is observed) and Cij = 0 if tij> 30 (the actual time is not observed). The likeli-

hood function given in Section 3.1 is modified as Lð~yÞ ¼
Qk

i¼1

Qmi
j¼1
ð�iÞ

cijð1 � FÞ
1� cij , where

ϕi is the probability density function of lnðTijÞ � Nðmxi ; s
2Þ and Fi is its cumulative distribu-

tion function [44, 45].

4.2. Prior specification

Instead of the flat prior f ð~yÞ / 1, we modeled an informative prior before starting the experi-

ment (to be introduced in Section 4.3). Under the regression model mxi ¼ b0 þ b1xi þ b2ðxiÞ
2
,

β0 is interpreted as E½lnðTÞ j x ¼ 0�, and it is equivalent to ln½MðT j x ¼ 0Þ� because of the

log-normal assumption. Instead of a prior specification on β0, we specified a prior on

eb0 ¼MðT j x ¼ 0Þ, the median time to weed emergence at the control dose. (This parame-

terization was easier to elicit our prior knowledge.) We assumed that the median time at the

control is shorter than 7 days with a probability 0.5, Pðeb0 < 7Þ ¼ Pðb0 < lnð7ÞÞ ¼ 0:5. We

were fairly certain that the median time is shorter than 30 days, and we chose Pðeb0 < 30Þ ¼

Pðb0 < lnð30ÞÞ ¼ 0:975 for computational simplicity. Using a normal prior β0 * N(a0, b0),

we calculated a0 = ln(7) = 1.95 and b0 = 0.5 ln(30/7) = 0.73 to reflect the prior assumptions on

the median time eb0 .

Under the regression model, it was challenging to elicit a prior distribution jointly on β1 >

0 and β2 > 0 in a tractable way. For the sake of simplicty, we specified β1 * Exp(d1) and β2 *

Exp(d2) independently. The hyper-parameters, d1 and d2, were chosen by trial and error such

that PðD < 0:5Þ¼
�

0:95 and PðD < 1Þ¼
�

1, where Δ is the transformation of β1 and β2 given in

Eq (3). After several iterations of trial and error, we found that d1 = 0.2 and d2 = 0.2 are reason-

able. For the standard deviation σ> 0, a flat prior was chosen independently.

4.3. Adaptive experiment design (applied example)

Typical weed control treatments contain pre- and/or post-emergence pesticides, fumigants,

biofumigants, solarization, flaming, and hand hoeing [1]. While pesticide-based weed controls

are known to be biologically efficacious and economically efficient, most of them are harmful

to environments. Consumers have raised their concern, they have showed a high interest in

organic products, and regulations on the use of pesticides have been strengthened. Ethanol

(EtOH) contained in plants or synthesized in factories is an easily available, low-toxic solvent.

Although EtOH is not registered as a biological control agent, researchers have reported that it

inhibits the germination of weed seeds. For instance, it was shown that the germination of

morning glory seeds was reduced after being exposed to 1% v/v of EtOH [46]. Since EtOH is a

natural product, EtOH may be available as a biological control agent. It seems promising that a

high concentration of EtOH is effective, and our objective is to find an adequate concentration.

We acknowledge that there are more realistic powerful herbicides in weed science, and this

section is devised for the purpose of demonstrating the adaptive experimental design for esti-

mating the parameter Δ. An experiment of EtOH was conducted to find the concentration

which doubles the median time of weed emergence, when compared to the control, and this

parameter is denoted by Δ as in Section 3.
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Each flowerpot contained 10 seeds of ryegrass (Lolium multiflorum). At the center of each

flowerpot, we prepared to apply 15 mL of 0% (non-treated control), 12.5%, 25%, 50%, and

100% of EtOH were applied. That is, we fixed the experimental concentrations at x1 = 0, x2 =

0.125, x3 = 0.25, x4 = 0.5, and x5 = 1. The original experimental plan was to have a sample of

size n = 100, but only 50 flowerpots were available at a time. We decided to perform an adap-

tive experimental study, and we fixed the maximum waiting time of 30 days per phase because

the emergence of ryegrass would take an extremely long time at a high concentration of EtOH.

For the first phase of this experiment, we applied the c-optimal design using the prior in

Section 4.2. The c-optimal design allocatedm1 = 11 flowerpots at x1 = 0,m4 = 25 flowerpots at

x4 = 0.5, andm5 = 14 flowerpots at x5 = 1. All flowerpots were monitored daily. All of the 11

flowerpots at x1 = 0 had ryegrass emerged within 30 days (average of 12.45 days), 13 out of the

25 flowerpots at x4 = 0.5 had ryegrass emerged within 30 days, and none of the 14 flowerpots

at x5 = 1 had ryegrass emerged within 30 days.

After collecting the data in the first phase, we combined the prior f ð~yÞ with the likelihood

Lð~yÞ for the posterior, and we applied the c-optimal design for the next 50 flowerpots by mini-

mizing the posterior expectation of Vð~yÞ. Note that we used the likelihood Lð~yÞ of the form

given in Section 4.1 to account for the right-censored data. For the second phase, the c-optimal

design allocated 32 flowerpots at x1 = 0 and 18 flowerpots at x4 = 0.5. In other words, the c-

optimal design suggested stop observing at the maximum (100%) concentration, and it

attempted to gather more information at the control than at the 50% concentration in order to

reduce uncertainty about Δ. For the observed data, see S1 and S2 Data.

Fig 5 graphically presents the change in the knowledge about Δ before the experiment

(prior) and after the first phase and the second phase of the experiment (posteriors). The

respective point estimates for Δ, using the mean of distribution, were 0.21, 0.46, and 0.39,

respectively. The respective 95% credible intervals were (0.04, 0.7), (0.35, 0.6), and (0.33, 0.45),

and the degree of uncertainty about Δ decreased as we collected more data.

Fig 5. Prior and posterior inference for Δ. This figure demonstrates that the uncertainty about Δ decreases as data are

accumulated.

https://doi.org/10.1371/journal.pone.0257472.g005
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4.4. Retrospective simulations

After the second phase, the posterior means of β0, β1, and β2 were 2.2, 1.0, and 1.9, respectively.

Six simulation scenarios were designed around these parameter values. This was a retrospec-

tive simulation study to investigate what would happen if the c-optimal design was performed

at once instead of taking two phases. Each retrospective scenario was replicated 1,000 times.

The adaptive design resulted in lower MSEs in the six scenarios as shown in Table 2.

4.5. Note

In a large-scale field experiment, random-effects may exist due to random germination times

and other environmental factors. Additional sources of random variations can be modeled via

a mixed-effects model. An experimental design under a mixed-effects model requires a more

sophisticated variance structure, the underlying mathematical formulas are much more techni-

cal [47–49]. In addition, survival analysis (analyzing time-to-event data) in weed science has

been discussed in literature [50–52].

5. Synergistic effect

Sometimes researchers seek a synergistic effect of two treatments [53–56]. Suppose an out-

come is coded as 1 or 0 (e.g., 1 for suppressing germination, 0 otherwise), and let π be the

probability of the outcome coded as 1. Let x be the concentration of treatment A and z be the

concentration of treatment B. The logistic regression is given by

pðx;yÞ ¼
eb0þb1xþb2zþb3xz

1þ eb0þb1xþb2zþb3xz
;

or equivalently

ln
pðx;yÞ

1 � pðx;yÞ

 !

¼ b0 þ b1xþ b2z þ b3xz :

Under the model, the parameter of interest is β3 to test for the presence of synergistic or

antagonistic effect between the two treatments. If β3 = 0, the null hypothesis, it implies the

absence of synergistic or antagonistic effect. If β3 6¼ 0, the alternative hypothesis, it implies the

presence of synergistic or antagonistic effect.

For the purpose of demonstration, suppose a researcher has four concentrations for treat-

ment A, say x = 0, 0.25, 0.5, 1, and four concentrations for treatment B, say z = 0, 0.25, 0.5, 1. If

the researcher can afford a total sample of size 160, there are 10 units allocated to each possible

combination (x, y) for a balanced design. Instead of the balanced design, the researcher may

consider the d-optimal design which maximizes the determinant of the Fisher expected

Table 2. Simulation results.

True parameter values Fixed design Adaptive designs

Scenario β0 β1 β2 Δ Bias Variance MSE Bias Variance MSE

1 2.5 0.07 1 0.798 -0.064 0.148 0.161 -0.054 0.150 0.160

2 2.5 0.07 3 0.469 -0.073 0.048 0.087 -0.051 0.049 0.070

3 2.5 0.7 1 0.553 -0.024 0.087 0.090 -0.020 0.082 0.084

4 2.5 0.7 3 0.378 -0.037 0.046 0.059 -0.025 0.042 0.049

5 2.5 1.7 1 0.340 0.017 0.056 0.058 0.016 0.050 0.053

6 2.5 1.7 3 0.275 -0.007 0.037 0.037 -0.004 0.033 0.033

https://doi.org/10.1371/journal.pone.0257472.t002
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information (FEI) matrix, and it is devised to increase the amount of information about the

model parameters~b ¼ ðb0; b1; b2; b3Þ globally. Alternatively, the c-optimal design maximizes

the asymptotic variance of the maximum likelihood estimator for β3 (i.e., the (4,4)-th element

of the inverted FEI), and it is devised to maximize the information about the target parameter

β3 in order to test for the synergistic or antagonistic effect.

5.1. Prior specifications for simulation study

For the d- and c-optimal designs, we need a prior specification on~b. Agriculture researchers

may collaborate with statisticians to express a prior (researchers’ knowledge prior to an

experiment) via a probability distribution. Instead of directly expressing a prior on~b, which is

difficult to interpret in the context of research, prior knowledge can be expressed on the proba-

bility of an outcome at four (the number of regression parameters) arbitrary concentrations.

For the purpose of demonstration, we considered four concentrations (0, 0), (1, 0), (0, 1), and

(1, 1), and we specified π(0,0) * Beta(1, 1), π(1,0) * Beta(1, 1), π(0,1) * Beta(1, 1), and π(1,1) *

Beta(1, 1) independently to express a high degree of uncertainty. This non-informative prior is

referred to as prior 1 in this section. The independent priors on π’s can be transformed to the

joint prior of~b ¼ ðb0; b1; b2; b3Þ as shown in the left panel of Fig 6. This method of eliciting a

prior distribution on~b is known as the conditional mean prior [57]. To express a less degree

of uncertainty, we specified π(0,0) * Beta(2, 8), π(1,0) * Beta(5, 5), π(0,1) * Beta(5, 5), and

π(1,1) * Beta(8, 2) independently. This prior is referred to as prior 2, and the informative prior

leads to smaller prior variances on~b as shown in the right panel of Fig 6.

Fig 6. Joint prior distributions of model parameters. The scatter plots graphically demonstrate the joint prior distribution of~b ¼ ðb0;b1; b2; b3Þ induced from the

independent beta priors on π(0,0), π(1,0), π(0,1), and π(1,1). The figure on the left demonstrates prior 1 (non-informative prior), and the figure on the right demonstrates

prior 2 (informative prior).

https://doi.org/10.1371/journal.pone.0257472.g006
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5.2. Experimental designs

The c-optimal design is sensitive to a prior specification, but the d-optimal design is not. In

Fig 7, the four experimental designs (balanced, d-optimal, c-optimal with prior 1, and c-opti-

mal with prior 2) are compared in terms of the relative proportion of units (out of the total

160) allocated at the 16 possible combinations of two treatments. The d-optimal design spreads

the total sample size of 160 evenly at the four concentration points (x, z) = (0, 0), (0, 1), (1, 0),

and (1, 1). In other words, it widely spreads the units on the entire concentration space [0, 1] ×
[0, 1] in order to learn about all model parameters~b ¼ ðb0; b1; b2; b3Þ globally. The c-optimal

design with prior 1 balances between the extreme and middle concentrations at some degree,

but the c-optimal design with prior 2 resembles the d-optimal design.

Fig 7. Experimental designs. Unlike the balanced design (the same proportion of experimental units across all concentration points), the d-optimal design and the c-

optimal design with prior 2 distribute experimental units at the extreme points (0, 0), (0, 1), (1, 0), and (1, 1). The c-optimal design with prior 1 (non-informative prior)

seeks information at a variety of concentration points.

https://doi.org/10.1371/journal.pone.0257472.g007
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5.3. Simulations

To compare the four designs, seven simulation scenarios were considered. The values of~b

were chosen at β0 = −1.5, β1 = 0.75, β2 = 1.5, and β3 = 0, 0.5, 1, 3, 5, 10, 15 to vary the degree of

synergistic effect. Each scenario was replicated 1,000 times to approximate statistical power for

testing β3 = 0 versus β3 6¼ 0 at significance level 0.05 for each design. As shown in the left panel

of Fig 8, the d-optimal design outperforms the balanced design until β3 = 10, and the c-optimal

design with prior 1 outperforms the d-optimal design. The power of c-optimal design with

prior 2 seems similar to the power of d-optimal design because the two designs were very simi-

lar as shown in Fig 7. When β3 = 15 the balanced design outperformed the d-optimal design

and the c-optimal design with prior 2.

The power of c-optimal with prior 2 was substantially lower than the power with prior 1 for

high values of β3, and it is because the strong prior substantially deviated from the true simula-

tion scenarios. The power could be improved by implementing adaptive design. In the first

phase, 80 units were allocated based on prior 2, and the remaining 80 units were allocated

based on posterior (prior 2 and collected data). The two-step procedure was helpful to correct

the initial c-optimal design, and the power was noticeably increased for β3� 3 as shown in the

right panel of Fig 8.

5.4. Note

Binomial counts are typically over-dispersed which means the data are more variable than the

assumption under the standard logistic regression discussed in this section. The over-disper-

sion can be addressed via a mixed-effects model or a quasi-binomial logistic regression. The

quasi-binomial model includes a dispersion parameter, and it scales the standard error of

under the standard logistic regression. Regardless, the c-optimal design has the same objective

which is to reduce uncertainty associated with the estimation for the parameter of interest.

Fig 8. Statistical power. The figure on the left demonstrates that the c-optimal design and d-optimal design outperform the balanced design when β3 is relatively close to

the null value 0. The figure on the right demonstrates that the c-optimal design with prior 2 can be improved by the adaptive design.

https://doi.org/10.1371/journal.pone.0257472.g008

PLOS ONE Applications of statistical experimental designs to improve statistical inference in weed management

PLOS ONE | https://doi.org/10.1371/journal.pone.0257472 September 15, 2021 16 / 21

https://doi.org/10.1371/journal.pone.0257472.g008
https://doi.org/10.1371/journal.pone.0257472


6. Discussion

A clear objective of an experiment should be specified before choosing an appropriate experi-

mental design [58]. This point was demonstrated in Section 5.3. If an objective was to investi-

gate the interaction between two treatments, the c-optimal design would result in higher

statistical power than the d-optimal design. Sometimes a researcher has multiple objectives,

and this situation has been discussed in the context of a non-monotonic dose-response rela-

tionship in toxicology [40]. Choosing an objective-specific experimental design is not a new

idea. It has been practiced among engineers and drug developers [59]. Like other research

areas, agricultural data are expensive in terms of time and effort given a fixed amount of

resources. Therefore, a careful experimental design is worth to be considered before initiating

an experiment.

Hopefully this article alleviates some misconceptions of balanced designs. It is an optimal

approach under specific cases like when two groups have the same variance in the two-sample

t-test, but σ1 = σ2 or σ1 6¼ σ2 is out of researcher’s control. After a researcher gains information

about σ1 and σ2, via a pilot study or the first phase of a multi-phase experiment, the researcher

may attempt to balance between s2
1
=n1 and s2

2
=n2 by choosing appropriate n1 and n2. In prac-

tice, a researcher may face a situation when some treatments might be more difficult to run or

more expensive than other treatments [60]. Therefore, an experimental design is a practical

problem of balancing between statistics and logistics.

In this article, given a specific objective which is formulated by a model parameter, we dis-

cussed adaptive designs to address uncertainty about researcher’s prior knowledge. Scientific

research requires some degree of assumptions prior to data collection, and an adaptive design

provides an opportunity to correct the prior assumption before exhausting all available

resources. If the initial assumption is reasonably close to the truth, an adaptive design will not

be detrimental as shown in the simulations of this article. Despite an adaptive design being a

practical challenge because the total time of an experiment would be increased, we believe that

the benefit of an adaptive design is clear from statistical perspective.

In agricultural studies, it is common to collect data for two seasons to confirm a hypothesis

[1, 2, 8, 61]. It is also an opportunity to consider an adaptive design or some variation as there

is no single statistical strategy which can fit all situations. Collaborations between agricultural

researchers and statisticians are highly encouraged to find an appropriate strategy for a given

research objective under practical and logistical considerations. Simulating data and compar-

ing multiple possible plans under likely scenarios would be a recommended practice.

7. Conclusion

A research question can be formulated via a statistical parameter (a quantity which measures

the treatment effect), and an experiment can be designed to increase the amount of informa-

tion about the parameter of interest. In practice, increasing the sample size is not always feasi-

ble, so researchers fix a sample size at their maximal capacities. The simulations demonstrated

that unbalanced and adaptive designs provide smaller error in parameter estimation and

higher statistical power in hypothesis testing than balanced and fixed designs. Therefore,

researchers facing different practical situations can utilize available resources efficiently by

using appropriate experimental designs.

Supporting information

S1 Data. Data observed after the first phase of the experiment.

(CSV)
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S2 Data. Data observed after the second phase of the experiment (combined with the first

phase).

(CSV)
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49. Mentré F, Mallet A, Baccar D. Optimal Design in random-effects regression models. Biometrika. 1997;

84(2):429–42. https://doi.org/10.1093/biomet/84.2.429

50. Onofri A, Carbonell EA, Piepho H-P, Mortimer AM, Cousens RD. Current statistical issues in weed

research. Weed Research. 2010; 50(1):5–24. https://doi.org/10.1111/j.1365-3180.2009.00758.x

51. Scheiner SM, Gurevitch J Design and analysis of ecological experiments, 1st edition. Oxford University

Press, Oxford, UK; 1993.

52. Scott SJ, Jones RA, Williams WA Review of data analysis methods for seed germination. Crop Science.

1984; 24(6):1192–1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x

53. Casey M, Gennings C, Carter WH Jr., Moser VC, Simmons JE. Ds-optimal designs for studying combi-

nations of chemicals using multiple fixed-ratio ray experiments. Environmentrics. 2005; 16(2):129–147.

https://doi.org/10.1002/env.666

54. Holland-Letz T, Kopp-Schneider A. Optimal experimental designs for estimating the drug combination

index in toxicology. Computational Statistics & Data Analysis. 2018; 117:182–193. https://doi.org/10.

1016/j.csda.2017.08.006 PMID: 29173022

55. Sperrin M, Thygesen H, Su TL, Harbron C, Whitehead A. Experimental designs for detecting synergy

and antagonism between two drugs in a pre-clinical study. Pharmaceutical Statistics. 2015; 14(3):216–

225. https://doi.org/10.1002/pst.1676 PMID: 25810342

PLOS ONE Applications of statistical experimental designs to improve statistical inference in weed management

PLOS ONE | https://doi.org/10.1371/journal.pone.0257472 September 15, 2021 20 / 21

https://doi.org/10.1002/sim.2337
http://www.ncbi.nlm.nih.gov/pubmed/16217853
https://doi.org/10.2307/2531628
http://www.ncbi.nlm.nih.gov/pubmed/2350571
https://doi.org/10.1002/sim.4780140904
http://www.ncbi.nlm.nih.gov/pubmed/7569508
https://doi.org/10.1198/jasa.2009.ap08425
https://doi.org/10.1198/jasa.2009.ap08425
https://www.R-project.org/
https://doi.org/10.1198/016214507000001346
https://doi.org/10.1198/016214507000001346
https://doi.org/10.1111/j.1539-6924.2011.01625.x
http://www.ncbi.nlm.nih.gov/pubmed/21545627
https://doi.org/10.1214/aoms/1177729442
https://doi.org/10.1016/0378-3758(80)90020-8
https://doi.org/10.1080/07474946.2016.1238250
https://doi.org/10.1080/07474946.2016.1238250
https://doi.org/10.1104/pp.50.2.293
http://www.ncbi.nlm.nih.gov/pubmed/16658159
https://doi.org/10.1214/09-AOS708
https://doi.org/10.1093/biomet/84.2.429
https://doi.org/10.1111/j.1365-3180.2009.00758.x
https://doi.org/10.2135/cropsci1984.0011183X002400060043x
https://doi.org/10.1002/env.666
https://doi.org/10.1016/j.csda.2017.08.006
https://doi.org/10.1016/j.csda.2017.08.006
http://www.ncbi.nlm.nih.gov/pubmed/29173022
https://doi.org/10.1002/pst.1676
http://www.ncbi.nlm.nih.gov/pubmed/25810342
https://doi.org/10.1371/journal.pone.0257472


56. Straetemans R, O’Brien T, Wouters L, Van Dun J, Janicot M, Bijnens L, et al. Design and analysis of

drug combination experiments. Biometrical Journal. 2005; 47(3):299–308. https://doi.org/10.1002/bimj.

200410124 PMID: 16053254

57. Bedrick EJ, Christensen R, Johnson W. A new perspective on priors for generalized linear models.

Journal of the American Statistical Association. 1996; 91(436):1450–1460. https://doi.org/10.1080/

01621459.1996.10476713

58. Inouye BD. Response surface experimental designs for investigating interspecific competition. Ecology.

2001; 82(10):2696–2706. https://doi.org/10.1890/0012-9658(2001)082%5B2696:RSEDFI%5D2.0.

CO;2

59. Shivhare M, McCreath G. Practical consideration for D0E implementation in quality by design. BioPro-

cess International. 2010.

60. Chatterjee K, Georgiou SD, Koukouvinos C. A2-optimal designs: the nearly-balanced case. Statistics.

2017; 51(2):235–246. https://doi.org/10.1080/02331888.2016.1239726

61. Swegarden HR, Sheaffer CC, Michaels TE. Yield stability of heirloom dry bean (Phaseolus vulgaris L.)

cultivars in midwest organic production. HortScience. 2016; 51(1):8–14. https://doi.org/10.21273/

HORTSCI.51.1.8

PLOS ONE Applications of statistical experimental designs to improve statistical inference in weed management

PLOS ONE | https://doi.org/10.1371/journal.pone.0257472 September 15, 2021 21 / 21

https://doi.org/10.1002/bimj.200410124
https://doi.org/10.1002/bimj.200410124
http://www.ncbi.nlm.nih.gov/pubmed/16053254
https://doi.org/10.1080/01621459.1996.10476713
https://doi.org/10.1080/01621459.1996.10476713
https://doi.org/10.1890/0012-9658(2001)082%5B2696:RSEDFI%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082%5B2696:RSEDFI%5D2.0.CO;2
https://doi.org/10.1080/02331888.2016.1239726
https://doi.org/10.21273/HORTSCI.51.1.8
https://doi.org/10.21273/HORTSCI.51.1.8
https://doi.org/10.1371/journal.pone.0257472

