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The ‘Mendelian randomization’ approach uses genotype as an
instrumental variable to distinguish between causal and non-causal
explanations of biomarker–disease associations. Classical methods
for instrumental variable analysis are limited to linear or probit
models without latent variables or missing data, rely on asymptotic
approximations that are not valid for weak instruments and focus
on estimation rather than hypothesis testing. We describe a
Bayesian approach that overcomes these limitations, using the
JAGS program to compute the log-likelihood ratio (lod score)
between causal and non-causal explanations of a biomarker–disease
association. To demonstrate the approach, we examined the rela-
tionship of plasma urate levels to metabolic syndrome in the
ORCADES study of a Scottish population isolate, using genotype at
six single-nucleotide polymorphisms in the urate transporter gene
SLC2A9 as an instrumental variable. In models that allow for
intra-individual variability in urate levels, the lod score favouring a
non-causal over a causal explanation was 2.34. In models that do not
allow for intra-individual variability, the weight of evidence against a
causal explanation was weaker (lod score 1.38). We demonstrate the
ability to test one of the key assumptions of instrumental variable
analysis—that the effects of the instrument on outcome are mediated
only through the intermediate variable—by constructing a test for
residual effects of genotype on outcome, similar to the tests of ‘over-
identifying restrictions’ developed for classical instrumental variable
analysis. The Bayesian approach described here is flexible enough to
deal with any instrumental variable problem, and does not rely on
asymptotic approximations that may not be valid for weak
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instruments. The approach can easily be extended to combine infor-
mation from different study designs. Statistical power calculations
show that instrumental variable analysis with genetic instruments
will typically require combining information from moderately large
cohort and cross-sectional studies of biomarkers with information
from very large genetic case–control studies.

Keywords Bayesian analysis, biomarkers, uric acid, human SLC2A9 protein,
Monte Carlo method, causality, randomization, genetics

Introduction
Classical epidemiological methods have difficulty in
distinguishing between causal and non-causal expla-
nations of biomarker–disease associations. As more
genetic effects on biomarkers are discovered, the pos-
sibilities for exploiting these effects for ‘Mendelian
randomization’ studies have expanded. In this
approach, associations between genotype, intermedi-
ate phenotype (biomarker) and disease outcome are
examined to test whether the association of the inter-
mediate phenotype with outcome has a causal expla-
nation.1–3 This is an application of the ‘instrumental
variable’ approach, first developed in economics.4–6

The term ‘instrumental variable analysis with genetic
instruments’ has therefore been suggested as a more
precise alternative to ‘Mendelian randomization’.7

The instrumental variable approach relies on being
able to identify a genetic variant (instrument) that
perturbs the intermediate phenotype (termed the
‘endogenous variable’ by economists). The observed
effect of this instrument on outcome is compared
with the effect predicted from assuming a causal
explanation for the observed association of the inter-
mediate phenotype with outcome. Equivalently, the
size of the ‘crude’ effect of the intermediate variable
on outcome (estimated directly from a regression
model) can be compared with the size of the
‘causal’ effect estimated from a model with genotype
as instrumental variable.8 Thus, for instance, elevated
plasma fibrinogen levels are associated with increased
risk of coronary heart disease in prospective cohort
studies, but it is uncertain whether this relationship
is causal.2 This has been investigated using a
single-nucleotide polymorphism (SNP) in the pro-
moter region of the �-fibrinogen gene FGB, which is
known to affect plasma fibrinogen levels. The size of
effect of this SNP on coronary heart disease can be
compared with the size of effect predicted from the
effect of the SNP on fibrinogen levels and the rela-
tionship of fibrinogen levels to disease risk.2

Classical methods for instrumental variable analysis
construct ‘estimators’ of the causal effect using meth-
ods such as equating moments, two-stage least
squares and limited information maximum likelihood.
These methods have limitations, as reviewed by
Hernán and Robins.6 The estimators generally rely

on asymptotic approximations that are inaccurate
when the instrument is ‘weak’ (as is usually the case
for genetic effects on complex traits).9 Although in this
situation it is possible to construct interval estimates
using tail probabilities,10 this introduces further diffi-
culties; classical interval estimators that are not based
on the likelihood function may yield intervals that are
logically inconsistent with the data and the model,
even though they have correct coverage probabilities
in repeated experiments.11,12 Another limitation of
classical methods is their ability to handle latent vari-
ables and time-varying exposures. Biomarker measure-
ments are typically subject to intra-individual
variability (including laboratory measurement error);
failure to allow for this will lead to underestimation
of the crude effect size. Classical methods are also lim-
ited in their ability to handle missing data, and to com-
bine information from data sets in which different
subsets of variables have been measured; for instance,
where the genotype–biomarker and genotype–outcome
associations have been measured in different studies.

A more fundamental limitation of sampling
theory-based methods for instrumental variable ana-
lysis is that they do not provide a coherent framework
for hypothesis testing. In a classical framework, we
can test the null hypothesis of no causal effect (by
testing for association of genotype with outcome), or
the null hypothesis of equality of causal and crude
effects, but we have no way to evaluate the weight
of evidence favouring one of these two hypotheses
over the other. This article describes the use of
Bayesian methods that allow all instrumental variable
problems to be handled in a single approach, without
requiring ad hoc extensions to deal with binary out-
comes,13–15 weak instruments,10 missing data and
intra-individual variation. As Bayesian inference is
based directly on the likelihood function, it is
straightforward to combine information from differ-
ent studies in this framework.16 In Appendix 1, we
show that combining information from different stu-
dies will usually be necessary for instrumental vari-
able analysis with genetic instruments to be useful, as
a single study design will rarely yield enough infor-
mation for hypothesis testing to be definitive.

Although exact Bayesian methods for instrumental
variable analysis have been developed,17 they are trac-
table only where the variables are all Gaussian and

908 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY



there are no latent variables. This limits their useful-
ness for epidemiological studies where the outcome is
often binary and where allowing for intra-individual
variability requires that the intermediate trait is mod-
elled as a latent variable. In a Bayesian framework,
more flexible computationally intensive methods for
inference in directed graphical models are available,
using Markov chain Monte Carlo (MCMC) simulation
to generate the posterior distribution of all unob-
served quantities (model parameters and missing
data) given the observed data. This makes it possible
to fit models that are not tractable to exact methods:
for instance, to allow for non-linear effects of the
instrument18 or non-linear confounding effects.19 We
describe the application of Bayesian computationally
intensive methods to instrumental variable analysis
with genetic instruments, using the urate transporter
gene SLC2A920,21 as the instrument, urate levels as
intermediate phenotype and metabolic syndrome as
outcome.

Methods
Statistical model
The argument underlying instrumental variable ana-
lysis is presented graphically in Figure 1. If we have
observed only an exposure x and an outcome y, a
model in which this association is generated by an
unmeasured confounder c is likelihood-equivalent to
a model in which this association is causal. Two
models are likelihood-equivalent if for any setting of
the parameters of one model we can find a setting of
the parameters of the other such that both models
have the same likelihood given any possible data
set. Thus, without prior information on the size of
model parameters, we cannot infer whether the data
support a causal or a non-causal explanation. If, how-
ever, we also observe an instrumental variable g, the
causal and non-causal models are not likelihood-

equivalent; a causal effect can be inferred from the
associations of x with g and y with g. This graph
makes clear the two key assumptions underlying the
application of instrumental variable analysis to
genetic instruments: (i) that the effects of genotype
are unconfounded; and (ii) that the effect of genotype
on outcome is mediated only through the intermedi-
ate phenotype (no pleiotropy). The ability to general-
ize from the results depends on a third assumption—
that the effects on outcome of different settings of the
intermediate variable are independent of the instru-
ment; in a genetic context, this assumes that there is
no developmental compensation for the setting of the
intermediate phenotype by genotype.

A full probability model for an instrumental variable
study of outcome y, with genotype g as an instrument
that influences an intermediate phenotype x is shown
in Figure 2a. For simplicity, measured covariates
(such as age and sex) are omitted from the figure:
including them does not change the approach described
here. Specifying genotype as a stochastic node depen-
dent on allele frequencies allows any missing genotypes
to be sampled from their posterior distribution.

If the intermediate phenotype x is specified as a
Gaussian node with a linear regression model, we
can eliminate the unobserved confounder c by substi-
tuting a likelihood-equivalent model in which y is
dependent through a regression model on x and the
residual deviation e of x from its conditional expecta-
tion given genotype (hx|gi, using angled brackets to
denote expectation). The assumption of a Gaussian

(a) (b)

Figure 2 Graphical model for genotype as an instrumental
variable g influencing outcome y through intermediate
phenotype x, with allele frequency f and regression
parameter vectors a,b: (a) model with confounder c;
(b) likelihood-equivalent model in which the random
component �¼ x�hx|gi has an effect on outcome.
Ellipses represent unobserved nodes, rectangles represent
observed nodes, broken arrows represent deterministic
relationships and continuous arrows represent stochastic
relationships

Figure 1 Graphical models of association of intermediate
variable x with outcome y, contrasting causal and
non-causal models, with and without instrumental variable
g. Ellipses represent unobserved nodes and rectangles
represent observed nodes
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distribution for the residual e can easily be tested
using the data.

For binary y, this leads to a model as shown in
Figure 2, of the form

xi ¼ �0 þ �ggi þ �i

logitð piÞ ¼ �0 þ �xxi þ ���i

where the outcome variable yi has a Bernoulli distri-
bution with parameter pi. In this model, �x represents
the causal effect of x on y, and �e represents the effect
of confounding on the association between x and y.

For a binary outcome, the logistic link function is
preferable to alternative link functions such as the
probit, unless prior information to support an alterna-
tive model is available. This has a fundamental basis
in information theory: the logistic model maximizes
the conditional entropy of y given x, subject to the
constraint that the data average of y given x equals
the model expectation.22 From the principle of maxi-
mum entropy,23 it follows that unless we have more
information than just the average values of y given x,
any alternative to the logistic regression model would
encode information about joint effects that we do not
have. Another way to appreciate that the logistic model
is less restrictive than the probit model is to note that
the logistic model can be represented as a scale mixture
of probit models.24 Other advantages of the logistic
model are that the coefficients are easily interpretable,
and that information from case–control and cohort stu-
dies can easily be combined. We have used a probit
model for some analyses in this article only as a
temporary fix to overcome a limitation of currently
available computational tools as explained later.

The logistic regression model can be reparameterized
in various ways, allowing us to specify different types
of prior on the model parameters. One possible para-
meterization eliminates the causal effect parameter �x

and introduces a new parameter gg for the effect of
the instrument g on the outcome y.

logitðpiÞ ¼ �0þ �xð�0þ �ggi þ �iÞ þ ���i ¼ �0 þ �ggi þ �x�i

where �0 ¼ �0þ �x�0; �g ¼ �x�g and �x ¼ �x þ ��

gx is the sum of causal and confounding effect param-
eters. As the residuals �i are uncorrelated with gi, gx

represents the crude effect of � on y.
This parameterization resembles the ‘unrestricted

reduced form’ of the classical instrumental variable
model.17 With this parameterization, we could
obtain the posterior distribution of the causal effect
parameter �x by monitoring posterior samples of gg/ag.
Specifying independent priors on gg and ag, and eval-
uating �x at the maximum likelihood values of these
parameters would yield the classical ‘method of
moments’ estimator of �x as the ratio �̂g=�̂g of
sample covariances.25 As one would expect, when
the instrument is weak (ag near zero) this estimator
behaves badly. In a Bayesian framework, specifying

diffuse independent priors on gg and ag can yield a
bimodal posterior distribution for �x if the instrument
is weak.17 The problem is that specifying independent
priors on gg and ag is inappropriate because gg depends
upon ag: a weak instrument cannot have a large effect
on the outcome if the no-pleiotropy assumption holds.

Another possible parameterization is

logitðpiÞ ¼ �0 þ �xð�0þ �ggiþ �iÞ þ ���i

¼ �0 þ �xhxijgii þ �x þ ��ð Þ�i

where hxi|gii is the conditional expectation of xi

given gi. This makes clear that the causal effect
parameter �x is inferred from the effect of the condi-
tional expectation hx|gi on the outcome. This parame-
terization resembles the ‘restricted reduced form’ of
the classical instrumental variable model.17 More
recently a similar parameterization has been proposed
to obtain ‘adjusted instrumental variable estimates’ of
biomarker effects on disease status.26

The classical ‘two-stage least-squares’ estimator of
�x is obtained by plugging the predicted values of x
given g into the regression model for the outcome y.
The Bayesian procedure differs from this in that the
conditional expectation <x|g> is not estimated but
integrated out to obtain the marginal posterior for
�x. With this parameterization it is possible to specify
independent priors on the effect ag of the instrument,
the size �x of the causal effect, and the size of the
confounding effect ��.

This parameterization may be appropriate where we
want to infer the size of �x, but for hypothesis testing
it may be preferable to separate out our prior beliefs
about the crude association between x and y and the
extent to which the crude effect has a causal expla-
nation. In typical applications of the instrumental
variable analysis with genetic instruments, the
biomarker–disease association is already established
and the objective is to distinguish between causal
and non-causal explanations of this association. We
have therefore used the parameterization

logitð piÞ ¼ �0 þ �x �hxijgii þ �ið Þ

where h¼ �x/gx, the ratio of the causal effect to
the sum of causal and confounding effect parameters.
For brevity, we denote h as the ‘causal/crude
effect ratio’, although as noted above gx is the crude
effect of the residual e on y, rather than the
crude effect of x on y. With this parameterization,
we can specify independent priors on the effect ag

of the instrument, the sum gx of causal and con-
founding effects and the ratio h. With this parameter-
ization it is straightforward to construct tests
contrasting the hypothesis h¼ 1 with the hypothesis
h¼ 0, as described below. For inference on the causal
effect parameter �x, we can monitor the posterior
distribution of gxh.

The model is easily extended to more complex models
for the effect of genotype on x: for instance, to
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multilocus models where gi is specified as a vector of
haplotypes or unphased multilocus genotypes. We
model the variables ei to have mean zero and precision
�, with a diffuse gamma prior on �. To allow for
intra-individual variability in the intermediate pheno-
type x, the model is extended to specify x as a latent
(unobserved) node, with the observed value xobs having
mean x and variance �2

e conditional on this unobserved
node. Unless repeat measurements of the intermediate
variable are available, we have to specify a fixed value
(or at least a strong prior) for the intra-individual vari-
ance �2

e .
The ORCADES sample (described below) consists of

related individuals. To allow for the correlations of
phenotypic measurements between related individ-
uals, we extend the regression models for effects on
intermediate phenotype x and outcome y to include
residual additive polygenic effects: that is, small addi-
tive genetic effects at many unlinked loci. Under this
model,27 the residual phenotypic covariance between
pairs of relatives is proportional to their kinship coef-
ficient: the probability that a gene copy selected at
random from one member of each pair will be iden-
tical by descent. The kinship coefficient is equal to
half the degree of relationship: thus parent–offspring
and sib pair (first-degree relatives) have kinship coef-
ficient 1/2. We can thus model the polygenic effects of
the phenotype as multivariate Gaussian with zero
mean and precision matrix (inverse covariance
matrix) h2A�1, where h2 is the additive genetic vari-
ance of the trait and A is the matrix of coefficients of
relationship, calculated from the pedigree structure.
This random-effect model can be combined with
the fixed effects of genotype at typed loci in a
mixed model.28,29 For regression models for effects
on x and y, gamma priors (shape 2, inverse scale
20) were specified for the polygenic effect coefficients
hx, hy. The heritability of the trait is h2/(h2

þ �2),
where �2 is the residual variance in the regression
model.

Construction of hypothesis tests and model
diagnostics
In a Bayesian inference framework, the weight of evi-
dence favouring one model over another is given by
the difference between the log (marginal) likelihoods
of the two models given the observed data.30 In accor-
dance with established practice in genetic analysis, we
use the term lod score for this log-likelihood ratio,
and express it using logarithms to base 10. To evalu-
ate the evidence favouring causation over confound-
ing as the explanation for a biomarker–disease
association, we compare the likelihood at h¼ 1 (all
observed effect causal) with the likelihood at h¼ 0
(no causal effect). Causal and non-causal explana-
tions are thus subsumed within a more general
model parameterized by the causal/crude effect ratio.
This is computationally convenient: it is easier to
compute the likelihood of a model parameter than

to compute the marginal likelihood of a model. We
use Bayes’s theorem (posterior is proportional to like-
lihood � prior) to obtain a relative likelihood surface
by dividing the posterior density by the prior. To
implement this, we weight the posterior samples of
h by the inverse of the prior on h, evaluate the
weighted density and take logarithms of this density
to obtain the log-likelihood function. As the likeli-
hood does not depend on the prior, any convenient
prior on h can be chosen to ensure that posterior sam-
ples are obtained over the range (0–1) over which we
wish to evaluate the likelihood. For parameter estima-
tion we specify a diffuse prior on h.

If the likelihood function were to give strong sup-
port to values of h outside the range 0–1—implying
that the causal and confounding effects are opposite
in direction—we might consider a wider range of
hypotheses and use some more appropriate parame-
terization, rather than simply comparing the likeli-
hoods of causal and non-causal explanations.

Where the instrumental variable is specified by
genotypes at multiple loci (possibly in the same
gene), it is possible to test the assumption of no
pleiotropy—that effects of genotype on outcome are
mediated only through the intermediate variable—
by testing for residual effects of multilocus genotype
on outcome in a logistic regression model that
includes as independent variable the conditional
expectation of the intermediate variable given geno-
type. If the gene has pleiotropic effects, and there is
more than one functional polymorphism in the gene,
the weighted combination of single locus genotypes
that predicts outcome will not necessarily be the
same as the weighted combination of single-locus
genotypes that predicts effects on the intermediate
variable.

To test for residual effect of genotype at T loci (or
haplotypes coded as T dummy variables) on outcome,
we extend the logistic regression model to specify
these residual effects.

logitð piÞ ¼ �0 þ �x �hxijgii þ �ið Þ þ �r1g1i þ � � � þ �rTgTi

imposing the constraint that �rT ¼ ��r1 � � � � � �r T�1ð Þ

for identifiability. The null hypothesis is that
�r1 . . . �rT½ � ¼ 0; the score test evaluates the gradient

and second derivative at the null of the log-likelihood
with respect to this parameter vector. As the test is
evaluated at the null, there is no need to fit the
extended model. For each realization of the complete
data by the MCMC sampler, we evaluate the
score vector U as a vector whose t-th element isP

i yi � pið Þ gti � gTið Þ and the information matrix V
as a matrix with element t; t0ð Þ equal toP

i pi 1� pið Þ gti � gTið Þ gt
0
i � gTi

� �
. The score is evalu-

ated as the posterior mean of U, and the observed
information as the complete information (posterior
mean of V) minus the missing information (posterior
covariance of U).31 This yields a summary chi-square
test with T – 1 degrees of freedom.
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Data set
The population sample is from the ORCADES study of
individuals originating in the Orkney Islands, Scotland,
UK.20 A total of 1017 healthy adults (mean age 53 years;
range 16–100 years; 60% female) were examined in
2005–07 and over 100 quantitative traits were mea-
sured, including fasting plasma glucose, lipid profile
and uric acid levels. Detailed pedigree information
was collected from which to calculate the relationship
matrix. Metabolic syndrome was defined as the pres-
ence of at least three of the Adult Treatment Panel III
criteria:32 waist girth >102 cm in men or >88 cm
in women, systolic blood pressure 5130 mmHg
or anti-hypertensive medication, plasma glucose
(>6.1 mmol/l), plasma high-density lipoprotein choles-
terol (mmol/l) (<1.03 in men or <1.29 in women),
plasma triglyceride 51.70 mmol/l. The prevalence of
metabolic syndrome by these criteria was 20%. In a
random subset of 706 individuals, six SNPs in the
urate transporter gene SLC2A9 were typed using a
TaqMan assay.

Computational methods
Plasma urate levels were scaled before analysis
to have standard deviation (SD) of 1. To allow for
intra-individual variation in measured urate levels,
the model was specified with intra-individual variance
of 0.2. This is equivalent to the intra-class correlation
of 0.80 that has been reported for urate measured on
two occasions.33 The kinship matrix A for the
ORCADES participants was calculated from the pedi-
gree using the R package kinship (http://cran
.r-project.org/web/packages/kinship/kinship.pdf. The
JAGS program (http://www-fis.iarc.fr/martyn/soft
ware/jags) was used to sample the posterior density.
Models were specified with a flat prior on the allele
frequency, diffuse Gaussian priors (mean zero, vari-
ance 1000) on regression coefficient, and a diffuse
gamma prior (shape 0.01, inverse scale 0.01) on the
precision parameter in the linear regression of urate
on genotype. Age and sex were included as covariates
in both the regression models. With the current ver-
sion of JAGS, it is not computationally feasible to
model polygenic effects as predictors in a logistic
regression model, as this gives rise to a non-conjugate
full conditional distribution for the polygenic effects.
To model polygenic effects, a probit regression model
was therefore substituted for the logistic regression
model. Probit regression is similar to logistic regres-
sion, but gives more weight to outliers because the
probit distribution is less heavy-tailed than the logis-
tic distribution.34 For the probit regression model, the
Gaussian errors were specified with a prior mean of
zero and variance of 1; the value specified for the
variance affects the scaling of the regression parame-
ters but not the parameter h. All 1017 participants
were included in the model: missing values for geno-
type, urate level and outcome were sampled from
their joint posterior distribution. For each model,

two sampling chains were run with a burn-in of
1000 iterations followed by 20 000 iterations for infer-
ence. The R package coda was used to assess conver-
gence by Geweke diagnostics and mixing of the two
chains by Gelman–Rubin diagnostics. The number of
iterations was set so as to obtain stable estimates of
the lod score. The R function density was used with
Gaussian kernel to compute the marginal density
from posterior samples.

Results
The SNPHAP program was able to assign haplotypes
with >90% posterior probability in 674 of the 706
individuals who were genotyped at least one locus.
The three commonest six-locus haplotypes accounted
for 90% of estimated haplotype frequencies, As the
associations of urate with haplotype were slightly
weaker than the associations with individual SNPs,
the effects of genotype on plasma urate were mod-
elled as effects of unphased genotypes. Of the six
SNPs typed, rs13129697 showed the strongest univari-
ate association with urate levels in classical linear
regression analyses fitted by maximum likelihood.
The frequency of the rs13129697 allele associated
with higher urate levels was 0.24. The slope of the
logistic regression of metabolic syndrome on urate
was 0.79 per SD (P<10�12), and the slope �̂g of the
linear regression of urate on rs13129697 genotype
(coded as 0, 1, 2 copies) was 0.22 odds ratio (OR)
1.25, P ¼ 2� 10�5. The slope �̂g of the logistic regres-
sion of metabolic syndrome on genotype was �0.27
(OR 0.76, 1p ¼ 0:09). This compares with a predicted
slope of þ0.17 (0.22� 0.79) if the association of urate
with metabolic syndrome were causal. An approxi-
mate estimator of the causal effect parameter can be
obtained as �̂g=�̂g ¼ �0:27=0:22 ¼ �1:22.

All six SNPs in SLC2A9 were included as predictors
in the Bayesian model linear regression model for
urate. Table 1 shows the posterior means and 95%
credible intervals in a model specified with diffuse
priors on all parameters including the effect ratio
parameter h. The posterior mean for the causal
effect parameter �x was �1.25 (95% credible interval
�2.91 to 0.05). The posterior mean for the confound-
ing effect parameter �� was 2.63 (95% credible inter-
val 1.24–4.38). The posterior means and credible
intervals were similar when an alternative parameter-
ization for causal and confounding effects was used,
although mixing was slower.

The log-likelihood function for the causal/crude effect
ratio parameter h, scaled to have zero value at h¼ 0, is
shown in Figure 3. In a model that ignores
intra-individual variability in plasma urate levels, the
lod score favouring h¼ 0 (association attributable
entirely to confounding) over h¼ 1 (association attrib-
utable entirely to causal effect) is 1.38: equivalent to a
likelihood ratio of 24 : 1. When intra-individual vari-
ability in plasma urate is allowed for in the model by
setting the intra-class correlation to 0.8, the evidence
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against a causal explanation for the crude association of
urate with metabolic syndrome is stronger (lod score
2.34). The data give most support to negative values
of h, equivalent to a causal effect of urate that is in
the opposite direction to the crude (observed) associa-
tion with metabolic syndrome. A score test for residual
association of genotype with outcome yielded no evi-
dence against the no-pleiotropy assumption (	2 4.4
with 5 df).

Figure 4 compares probit regression models with and
without allowing for relatedness through inclusion of
additive polygenic effects on urate levels and metabolic
syndrome in the model. Allowing for relatedness yields
a flatter log-likelihood function but has little effect on
the lod score for a non-causal versus a causal
explanation.

Discussion
The Bayesian formulation helps to make explicit
the assumptions underlying instrumental variable

analysis, and to distinguish assumptions that are fun-
damental to the approach from those that are
required to calculate estimators. For instance, we are
free (except where we have to model polygenic effects
in related individuals) to specify logistic regression
models for effects on a binary intermediate variable,
rather than probit regression models that are more
restrictive than the information available in the
data. Other linear models, such as Cox regression
for survival data, are straightforward to fit with this
approach.

With a binary intermediate variable, we would have
to specify the unobserved confounder as a latent vari-
able, because its effect on the intermediate variable
cannot be marginalized out analytically, as it can
when the intermediate variable is modelled as a
Gaussian node. We are not restricted to generalized
linear models; thus Bayesian instrumental variable

Table 1 Posterior means and 95% credible intervals for parameters in a model with diffuse priors

Parameter Posterior mean Percentile 2.5 Percentile 97.5

Linear regression: effect of genotype on urate

rs737267 0.16 �0.04 0.37

rs13129697 0.26 0.10 0.42

rs1014290 0.05 �0.15 0.25

rs6449213 0.04 �0.20 0.26

rs13131257 �0.12 �0.32 0.08

rs4447863 0.07 �0.02 0.15

Residual precision (inverse variance) of urate 2.09 1.83 2.38

Logistic regresssion: effect of urate on metabolic syndrome

Causal effect parameter �x �1.25 �2.91 0.05

Confounding effect parameter �e 2.63 1.24 4.38

Causal/crude effect ratio parameter h �0.91 �2.20 0.04

Causal / crude effect ratio θ
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Figure 4 Log-likelihood of causal/crude effect ratio h,
scaled to zero at h¼ 0: comparison of models ignoring and
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analysis can be extended to encompass non-linear
confounding effects, using a Dirichlet process mixture
to model the covariance of residuals in the interme-
diate phenotype and the outcome.19 We do not have
to assume a monotonic effect of the instrument on
the intermediate phenotype; where the instrument is
a randomization procedure, we could fit a model that
allows some individuals to ‘defy’ the instrument.18

The flexibility of programs such as JAGS makes it
straightforward to allow for intra-individual variabil-
ity in the intermediate phenotype by modelling its
underlying (stable) value as a latent variable. We
would expect that failure to allow for intra-individual
variation in the intermediate phenotype would lead to
underestimation of the crude effect but not the causal
effect of the intermediate phenotype on the outcome.
Our results are consistent with this: in comparison
with a model that allows for intra-individual varia-
tion, a model that ignores intra-individual variation
yields a likelihood peak for the ratio h of causal to
crude effect that is further from zero.

The fully Bayesian approach to hypothesis testing
eliminates the difficulties of constructing ‘estimators’
because nothing is estimated: hypothesis tests are
obtained directly from the likelihood, with nuisance
parameters integrated out. If parameter estimates are
required, they can be obtained from the posterior dis-
tribution as posterior means and credible intervals, as
demonstrated in this article. Such Bayesian estimates
usually have excellent sampling properties over
repeated experiments.11 As Bayesian inference does
not rely on asymptotic arguments, the problems of
inference with ‘weak’ instruments discussed by
others9 do not arise: if the instrument is too weak,
the log-likelihood function will be nearly flat, imply-
ing that the study has yielded very little information.
The posterior density, however, will be dominated by
the prior when the instrument is weak. As Kleibergen
and Zivot have demonstrated,17 some classical instru-
mental variable methods can be viewed as limiting
cases of Bayesian methods with inappropriate priors.
Thus we have shown above that the classical
‘methods of moments estimator’ for the causal effect
parameter is a limiting case of a Bayesian estimate in
which priors on the effects of the instrument on the
biomarker and the outcome are (inappropriately) spe-
cified to be independent.

In large samples where regularity assumptions hold,
the log-likelihood function is approximately qua-
dratic, as is the log-likelihood of the effect ratio
parameter h in this data set. In this situation, classical
significance tests and interval estimates can be
obtained from the likelihood function: for instance,
a test of the null hypothesis of equality of causal
and crude effects can be obtained from the differ-
ence between the peak log-likelihood and the
log-likelihood at h¼ 1. Even where asymptotic proper-
ties of the log-likelihood do not hold, inference based
on the likelihood ratio is still valid. Construction of

‘estimators’ that are not based on the likelihood is of
uncertain value: even if such estimators have correct
sampling properties, they violate the likelihood prin-
ciple (the principle that the log-likelihood of a param-
eter contains conveys all information in the data
about that parameter35).

There has been controversy over whether causal
relationships can be represented by probabilistic gra-
phical models without invoking ‘counterfactual’ argu-
ments.6,36,37 The likelihood principle35 implies that
counterfactual arguments can therefore contribute to
inference of causation from data only to the extent
that they specify the likelihoods of causal and
non-causal models, given the data.

We now discuss in more detail the three funda-
mental assumptions of the instrumental variable
argument as applied to genetic instruments: no con-
founding of the effect of genotype on outcome, no
pleiotropy (equivalent to the ‘exclusion restriction’ of
classical instrumental variable analysis18), and that
effects of different settings of the intermediate phe-
notype are independent of the instrument (no devel-
opmental compensation). With genetic instruments,
we can assume no confounding not only for the
effect of genotype on outcome but also for the effect
of genotype on intermediate trait: this strengthens the
basis for combining results from different studies, as
outlined below. The laws of Mendelian genetics guar-
antee that genetic associations are unconfounded
(other than by alleles at linked loci) if population
stratification has been controlled in the design or
analysis. Inference of population stratification
is now straightforward, using either principal compo-
nents analysis with a genome-wide panel of
tag SNPs38 or modelling admixture with a subset
of ancestry-informative markers.31 Recent experi-
ence with genome-wide association studies has
shown that these methods are adequate to control
for confounding by population stratification,
even when the genetic associations under study are
weak.

The assumption of no pleiotropy—that the effect of
genotype on outcome is mediated only through the
intermediate trait—relies mainly on biological plausi-
bility: for instance, understanding the role of nicotine
in maintaining smoking behaviour (and the lack of a
known role of nicotine in carcinogenesis) makes it
plausible that any effect of nicotine receptor genotype
on lung cancer risk is mediated through effects on
smoking.39 One situation in which the assumption
of no pleiotropy is likely to be violated is where the
intermediate trait is measured as the level of the gene
product, and there is a non-synonymous variant (one
that alters protein sequence) in the gene used as
instrument. An effect on disease mediated through
altered protein sequence would not necessarily be
captured by measurement of the level of the protein.
This can be dealt with by typing the non-synonymous
variant and including it in the model as a covariate,
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rather than as an instrumental variable. Where mul-
tiple loci have been typed in the gene used as instru-
ment, we can test the assumption of no pleiotropy by
testing for residual association of genotype with the
outcome (conditional on the expected value of the
intermediate trait given multilocus genotype) as
demonstrated here. If the assumption of no con-
founding of genotypic effects holds, this is a specific
test for pleiotropy. This is similar to the argument
used to construct tests of ‘overidentifying restrictions’
in classical instrumental variable analysis.40 In a
Bayesian framework, it is straightforward to con-
struct such tests by averaging over the posterior dis-
tribution to compute the score vector and information
matrix. As most genetic association studies now
type multiple SNPs in each gene, this test has wide
application.

The assumption of no developmental compensation
usually relies upon understanding biological path-
ways. In principle, it could be tested by measuring
possible compensatory effects. This is a rather stron-
ger assumption than is typically made for instrumen-
tal variable problems, where it is customary to
emphasize that the results may depend upon the
instruments used.

For the instrumental variable argument to be valid,
it is not necessary that all three effects—genotype on
intermediate phenotype, genotype on outcome and
intermediate phenotype on outcome—are inferred
from a single study. Inference of these effects from
different studies does not change the modelling
approach described here, as Bayesian modelling auto-
matically uses all available data to infer the model
parameters. Because associations with genotype are
unconfounded, it is reasonable to assume that the
effects of genotype on intermediate variable and out-
come will not differ between study populations of
similar genetic background unless factors that
modify the effect of genotype differ markedly between
the study populations, The association of intermediate
phenotype with outcome may vary between study
populations because of confounding, but the instru-
mental variable analysis should be able to deal with
this. The ability to combine information from differ-
ent studies is important because the most efficient
study designs for inferring the effect of genotype on
outcome are not usually optimal for inferring the
mediating effect of the intermediate variable on out-
come. Usually, the effect of the intermediate variable
on a disease outcome is examined in a cohort study,
so that measurements of the intermediate variable
can be obtained before disease onset. For inferring
the effects of genotype on disease outcome, however,
case–control studies are the most efficient design,41

and cohort studies of adequate size to detect small
effects of genotype on outcome are usually unfeasible.
In Appendix 1, we show that for typical assumptions
about allele frequency, size of genetic effect on the
intermediate variable, Type 1 error rate and Type 2

error rate, the number of cases required in a genetic
case–control study with equal numbers of cases and
controls is of the order of 100 times larger than the
number of cases required to detect the association of
the biomarker with outcome in a cohort study. Thus,
for instance, where the standardized OR for the effect
of a biomarker on disease risk is 1.5 (typical of met-
abolic risk factors for cardiovascular disease), only
63 cases at follow-up are required for 90% power
to detect this association at P < 0.05 in a case–con-
trol study, but (assuming allele frequency of 0.2
and standardized effect size of 0.25 for the effect of
genotype on the biomarker, about 6000 cases and
6000 controls are required to detect the predicted
genotype–disease association. This disparity in
sample size requirements means that it is not usu-
ally feasible to infer the intermediate variable–
outcome and genotype–outcome associations in a
single study as in the classical ‘instrumental variable’
approach.

The emphasis of this article is on statistical methods
for instrumental variable analysis, rather than on the
association of urate levels with metabolic syndrome42

that we have used to demonstrate the application of
these methods. If the assumption of no pleiotropy—
that any effect of SLC2A9 on the metabolic syndrome
is mediated only through urate levels—is correct, our
results suggest that the association is unlikely to be
causal, and that raised urate levels may even protect
against metabolic syndrome. There is some indirect
support for this from clinical studies showing
that administration of uric acid has effects which
are possibly beneficial, such as reversal of endothelial
dysfunction and increase of anti-oxidant capacity.43,44

However, as SLC2A9 is also a fructose transporter,20

the assumption of no pleiotropy is open to question.
Although the score test does not yield any evidence of
pleiotropy, this test would be more convincing if it
could be demonstrated that the SNPs or haplotypes
influencing fructose transport differed from those
influencing urate transport.

Instrumental variable analysis with genetic instru-
ments has been applied mainly to quantitative bio-
markers of disease identified in cross-sectional or
prospective studies, though in principle it can be
applied to any trait or exposure for which a suitable
genetic instrument is available: for instance, nicotine
receptor genotype may be a suitable instrumental
variable for exposure to tobacco smoke. As more loci
that influence intermediate traits are discovered
through scoring of genome-wide SNP panels in large
collections of individuals on whom multiple quantita-
tive traits have been measured, there will be many
more opportunities for using instrumental variable
analyses to distinguish between causal and
non-causal biomarkers of disease risk. The methods
described here have application to instrumental
variable modelling of other problems, such as
allowing for non-compliance in randomized trials
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(where assignment can be considered as the instru-
mental variable and treatment received as the inter-
mediate phenotype5) or estimating the effect of
emergency therapeutic intervention using proximity
to hospital as instrumental variable.45 In these con-
texts, a key advantage of Bayesian computationally
intensive methods may be the ability to handle
latent variables and missing data.

Implementation of these methods depends upon the
availability of software for Bayesian modelling. The
two main general purpose programs for MCMC sam-
pling in graphical models are BUGS and JAGS. JAGS
uses the same model description language as BUGS,
but is fully portable across platforms as it is written in
Cþþ. The current version of JAGS has several limita-
tions for type of analysis described here: mixing of the
sampler for regression parameters is slow, and it is
not computationally feasible to include polygenic
effects in a logistic regression model because the full
conditional distribution for the polygenic effects is
non-conjugate. These limitations can be overcome by
implementing a more efficient joint sampler for
regression model parameters, and by reparameterizing
the logistic regression model as a scale mixture of
probit regression models so as to allow conjugate
updating of random effects.46 Work is in progress to
implement these extensions in JAGS. A more

challenging problem is to extend this approach to
more complex problems with multiple genes and bio-
markers, where inference of causal relationships
requires searching a large space of possible models.
Such model choice problems are not, except in special
cases, tractable to MCMC simulation but may be trac-
table to approximate inference methods such as var-
iational Bayes and expectation-propagation.47

URLs
JAGS scripts for the model described here: http://
homepages.ed.ac.uk/pmckeigu/mendelrand JAGS pro-
gram: http://www-fis.iarc.fr/~martyn/software/jags
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KEY MESSAGES

� Using genotype as an ‘instrument’ it is possible in principle to distinguish between causal and
non-causal explanations of a biomarker–disease association, but classical methods for instrumental
variable analysis have limitations.

� Bayesian computationally instensive methods overcome these limitations, and can evaluate the
weight of evidence favouring a causal explanation over confounding.

� A Bayesian analysis using the urate transporter gene SLC2A9 as instrument yields a likelihood ratio of
218 : 1 favouring confounding over causation as explanation of the association of plasma urate levels
with metabolic syndrome.

� Where multiple SNPs in a gene have been typed, it is possible to test a key assumption of the
instrumental variable method that effects of the instrument on the outcome are mediated only
through the biomarker.

� Applying this approach in practice will typically require combining information from cross-sectional
or cohort studies and with information from large genetic case–control studies.
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Appendix 1: sample size require-
ments for instrumental variable
analysis with genetic instruments
For given Type 1 and Type 2 error probabilities and
study design, the sample size required to detect an
effect of size d is proportional to 1/d2V, where V is
the Fisher information (expectation of minus the
second derivative of the log-likelihood of the effect
size) from a single observation. For a single observa-
tion from a logistic regression model (in which the
effect is measured as the log OR), the Fisher informa-
tion is f(1�f)v, where f is the probability of being a
case, and v is the variance of the predictor variable.

For a cohort design testing for association of a rare
disease (f close to 0) with a quantitative trait that is
scaled to have variance of 1, the Fisher information is
simply the total number n of cases yielded by the
cohort study. For a case–control design with N cases
and N controls (f¼ 0.5), testing for an effect on
disease risk of genotype (coded as 0, 1, 2) at an
SNP with allele frequency p, the Fisher information

is 2N�0:5�0:5�2pð1� pÞ ¼ Np 1� pð Þ. For allele fre-
quency 0.2, this evaluates to N/6.25. Thus, in this sit-
uation the number N of cases required for a case–
control study to detect the effect (measured as log
OR associated with one extra copy of the disease-
associated allele) is 6.25 times larger than the
number n of cases required for a cohort study to
detect an effect of the same size (measured as log
OR associated with change of 1 SD) of a continuous
trait on disease risk.

In reality, the size of the genotypic effect ag on the
intermediate phenotype is usually modest: typically
no more than 0.25 SD for each extra copy of the
trait-raising allele. As sample size scales inversely
with the square of the effect size, this implies that
the case–control collection would have to be 100
(16� 6.25) times larger (in terms of number of
cases) than the cohort study for the effect of genotype
on disease to be detected in a conventional signifi-
cance test. For a Bayesian hypothesis test, the
sample size requirements for the case–control study
of genotype–disease association are similar. Bayesian
sample size requirements for an experiment compar-
ing two hypotheses can be calculated by specifying
the expected log-likelihood ratio (ELOD) favouring
the true hypothesis over the alternative. For a given
effect size d, the sample size required for 90% power
to detect this effect at 5% significance in a classical
hypothesis test is (Z0.9þ Z0.975)2/(d2V)¼ 10.5/(d2V),
and the sample size required for an ELOD of
log(100) favouring this effect size over the null is
2 logeð100Þ=ðd2VÞ ¼ 9:2=ðd2VÞ.
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As a natural experiment, random inheritance of
alleles promises to allow unveiling causal effects of
changeable traits. Fulfilling this warrants statistical

research from several angles and we welcome a con-
tribution on Bayesian methods for instrumental vari-
ables analysis with genetic instruments.1 Exploiting
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