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The inactivation of ribosomal protein S6 kinase 1 (S6K1) recapitulates aspects of caloric

restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and

mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends

the shortened lifespan of yeast, fly, andmousemodels with severe mitochondrial disease.

Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of

mTORC1 inhibition in the Ndufs4 knockout (NKO) mouse model of Leigh Syndrome

caused by Complex I deficiency. These NKO mice develop profound neurodegeneration

resulting in brain lesions and death around 50–60 days of age. Our results show that

liver-specific, as well as whole body, S6K1 deletion modestly prolongs survival and delays

onset of neurological symptoms in NKOmice. In contrast, we observed no survival benefit

in NKO mice specifically disrupted for S6K1 in neurons or adipocytes. Body weight was

reduced in WT mice upon disruption of S6K1 in adipocytes or whole body, but not

altered when S6K1 was disrupted only in neurons or liver. Taken together, these data

indicate that decreased S6K1 activity in liver is sufficient to delay the neurological and

survival defects caused by deficiency of Complex I and suggest that mTOR signaling can

modulate mitochondrial disease and metabolism via cell non-autonomous mechanisms.

Keywords: S6K1, mTORC1, liver, lifespan, mitochondrial disease

INTRODUCTION

Reduced nutrient signaling, accomplished either by dietary restriction (DR) or genetic inhibition
of the mTOR pathway, can robustly extend lifespan in many different species and protect
against multiple age-related disorders (Johnson et al., 2013a). The mTOR kinase functions
in two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2),
and plays an essential role in coordinating anabolic and catabolic processes in response to
nutrients and growth factors (Laplante and Sabatini, 2013). Of the two TOR complexes,
mTORC1 appears to play the most important role in normative aging, with numerous studies
documenting lifespan and healthspan extension in mice following genetic knockdown of
mTORC1 or treatment with the mTORC1 specific inhibitor rapamycin (Johnson et al., 2015a).
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Ribosomal protein S6 kinase 1 (S6K1) is a substrate
of mTORC1 that has been shown to modulate lifespan in
invertebrates (Kapahi et al., 2004) and mice (Selman et al., 2009).
Unlike rapamycin, which significantly increases lifespan in both
male and female mice (Miller et al., 2014; Bitto et al., 2016),
deletion of S6K1 extends lifespan specifically in female C57BL/6
mice, and the magnitude of this effect is less robust than that
of rapamycin (Selman et al., 2009). A phosphorylation-defective
allele of the S6K1 substrate glutamyl-prolyl-tRNA synthetase
(EPRS) similarly extends lifespan in mice and recapitulates the
low body weight of S6K1 knockout mice (Arif et al., 2017).
These studies support a model that genetic or pharmacological
inhibition of mTORC1 increases lifespan partially through
reduced phosphorylation of S6K1 and its substrate EPRS.

Mitochondrial degeneration is one of the hallmarks of aging
(Lopez-Otin et al., 2013), and declining mitochondrial function
is implicated in a wide range of age-related disorders such
as cancer, cardiovascular diseases, diabetes, sarcopenia, and
neurodegenerative disorders (Payne and Chinnery, 2015; Rose
et al., 2016; Kauppila et al., 2017; Sebastian et al., 2017). Genetic
defects in nuclear or mitochondrial-encoded mitochondrial
genes can lead to severe mitochondrial disorders such as Leigh
Syndrome, MELAS (Mitochondrial encephalomyopathy, lactic
acidosis, stroke-like episodes) syndrome, and Leber’s hereditary
optic neuropathy, which are often characterized by seizures,
stroke, and progressive encephalopathy and myopathy (Lombes
et al., 1989). Although, patients with severemitochondrial disease
do not show broad phenotypes of accelerated aging, normative
aging may recapitulate some features of mitochondrial disease
as a result of mitochondrial dysfunction. Consistent with this,
both normative aging and severe mitochondrial dysfunction are
associated with hyperactivation of mTOR signaling in multiple
animal and cell-basedmodels (Blagosklonny, 2006; Johnson et al.,
2013b; Kim et al., 2013; Peng et al., 2015; Wang et al., 2016;
Zheng et al., 2016). Several studies have indicated that genetic
or pharmacological inhibition of mTOR can rescue defects
associated with severe mitochondrial disease in yeast (Schleit
et al., 2013), worms (Peng et al., 2015), fruit flies (Wang et al.,
2016), and mice (Johnson et al., 2013b, 2015b).

The Ndufs4 knockout (NKO) mouse is a rodent model of
human Leigh Syndrome, which develops progressive necrotizing
encephalopathy of the vestibular nuclei, cerebellum, and
olfactory bulb (Kruse et al., 2008; Quintana et al., 2010). Mice
or humans lacking Ndufs4 have reduced Complex I levels and
activity, and mutations in Ndufs4 cause Leigh Syndrome in
humans (Ortigoza-Escobar et al., 2016). NKO mice are small
but develop normally until about postnatal day 35 (P35) when
they begin to display characteristic neurological phenotypes,
progressive neuroinflammation and neurodegeneration, and
brain lesions similar to those present in human Leigh Syndrome
patients. NKO mice also show a profound decrease of body fat
compared to their wild type (WT) or heterozygous littermates,
and typically die between P50 and P60 (Johnson et al., 2013b).

We have previously reported that high dose rapamycin
treatment is sufficient to delay mitochondrial disease in
the NKO mice and suppress disease phenotypes including
neurodegeneration, hyperactivation of mTOR, and low body

fat (Johnson et al., 2013b, 2015b). To assess whether S6K1
plays a role downstream of mTOR in mediating mitochondrial
disease progression, we crossed whole body and tissue-specific
S6K1 knockout mice into the NKO background and examined
the impact on health and survival. Here we report the
observation that whole body disruption of S6K1modestly rescues
mitochondrial disease caused by loss of Ndufs4, but not to
the same extent as rapamycin treatment. Unexpectedly, the
magnitude of the rescue by whole body deletion of S6K1 can be
achieved by disruption of S6K1 only in the liver, while disruption
of S6K1 in brain or fat tissue had no effect on survival or disease
progression in the NKO mice.

MATERIALS AND METHODS

Animals
Generation of S6K1 floxed mice (S6K1fl/fl) in C57Bl/6Ncrl
strain and Cre-recombinase-expressing transgenic mice under
the CMV promoter in C57Bl/6J strain was described previously
(McQuary et al., 2016). Ndufs4+/− breeders were obtained
from the Palmiter laboratory at the University of Washington
and backcrossed to C57Bl/6Ncrl strain as previously described
(Johnson et al., 2013b). Cre-recombinase-expressing transgenic
mice under the Albumin-promoter (JAX stock #003574),
Adiponectin-promoter (JAX stock #010803), and Synapsin1-
promoter (JAX stock #003966) were obtained from Jackson
laboratory. Ndufs4+/− mice and S6K1fl/fl mice were bred to each
other, and then crossed with each Cre-recombinase line, finally
generating Cre; S6K1fl/fl; Ndufs4+/− and S6K1fl/fl; Ndufs4+/−

(a hybrid of C57Bl/6Ncrl and C57Bl/6J) as breeders to produce
Ndufs4−/− offspring. Synapsin1-cre was always kept on the
maternal side to avoid germline recombination caused by
Synapsin1-cre line on the paternal side. Littermates were used
in experiments so that all controls were appropriately genetically
matched.

Mice were weaned at 3 weeks of age, except for cases
where Ndufs4−/− mice were too small, in which case these
mice were not weaned until they reached body weights of at
least 7.0 g. Ndufs4−/− animals were housed with a minimum
of one Ndufs4+/+ or Ndufs4+/− littermate for warmth and
stimulation. All care of experimental animals was in accordance
with the institutional guidelines of University of Washington
andHamamatsu University School of Medicine, and experiments
were performed as approved by the Institutional Animal Care
and Use Committees at the University of Washington (protocol
#4359-03) and Hamamatsu University School of Medicine
(protocols H28-068 and H29-083).

Genotyping PCR
Genotyping PCR to detect WT, NKO, Floxed, and Floxed-out
alleles was performed using the following primers. 5′ primer
S6K1 FO E 5′-GCTCAGCAGTTAAAGAGTACCGAC-3′,
5′ primer S6K1 WT F 5′-AGCCAGTATTGCAGTGCTTTG
TGC-3′, and 3′ primer S6K1 WT F/FO 5′-TGGCACAGGTTG
TTGCCACAATGA-3′. Primers for the floxed out signal (FO
E and WT F/FO) are located upstream of the 5′ lox p site and
downstream of the 3′ lox p site. Primers for the floxed and
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wildtype signals (WT F and WT F/FO) are located upstream
and downstream of the 3′ lox p site. Primers used to detect
Cre-recombinases were 5′-GTTCGCAAGAACCTGATGGAC
A-3′ and 5′-CTAGAGCCTGTTTTGCACGTTC-3′. Primers
used to detect Ndufs4 KO and WT alleles were 5′-GGTGCA
TACTTATACTACTAGTAG-3′, 5′-AGCCTGTTCTCATACCTC
GG-3′, and 5′-GCTCTCTATGAGGGTACAGAG-3′. The sizes
of PCR products were designed to be 480 bp for WT, 580 bp for
flox, and 656 bp for flox-out alleles.

Lifespan
All mice were monitored daily, and sterile water gel was provided
on the bottom of each cage. Mice were medicated for non-
life-threatening conditions as directed by the veterinary staff.
The dates of death were documented when mice died or were
euthanized due to end-of-life criteria and were unlikely to survive
longer than 48 h at the time of inspection. Mice were euthanized
if they showed a loss of mobility, the ability to eat and drink, gait
control and balance, righting reflex, or more than 30% of their
maximum body weight.

Western Blotting
Tissues were flash-frozen in liquid nitrogen immediately after
harvest and kept at −80◦C until use. RIPA buffer (10 mM Tris-
HCl pH 8.0, 1 mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate, 0.1% SDS, 140 mM NaCl, Roche Complete
Ultra protease inhibitor, and PhosSTOP phosphatase inhibitor
tablets) was added to the tube prior to homogenization with a
grinder (Biorad). Protein lysates were quantified with a standard
BCA assay. Twenty-five micrograms protein per sample were
separated using SDS-PAGE and then transferred to a PVDF
membrane for antibody probing. Antibodies used for S6K1 and
Actin were purchased from Cell Signaling Technology.

Clasping Behavior
Forelimb clasping behavior was measured daily as a widely used
sign of neurological degeneration as previously described (Kruse
et al., 2008). Clasping involves an inward curling of the spine and
a retraction of forelimbs or all limbs toward the midline of the
body. Mice were picked up by the tail to judge if they showed the
phenotype.

Body Fat Ratio
The body composition of animals was analyzed in a non-
invasive manner using quantitative magnetic resonance methods
(Echo Medical Systems, Houston, TX). Non-anesthetized mice
were placed in the sample holder and the sample holder was
inserted into the center of the magnetic resonance machine.
Each animal underwent 2 measurements unless the difference
between measurements was over 5%, in which case a third
measurement was performed. The body fat mass was calculated
as the ratio of the average of the fat mass to the body weight of the
animal.

Statistical Analysis
p-values for lifespan analysis were calculated using the Log-Rank
test. Unpaired t-tests were used for other assays, unless otherwise
noted.

RESULTS

Mice were previously generated with a conditional allele of
the S6K1 (Rps6kb1) gene with exon 6–9 flanked by loxP sites
(Figure 1A) (McQuary et al., 2016). Homozygous S6K1 floxed
mice (S6K1fl/fl) appeared normal, without obvious phenotypic
abnormalities. We also previously generated a CMV-cre line
expressing a transgene containing Cre recombinase under the
transcriptional control of a human cytomegalovirus minimal
promoter (McQuary et al., 2016). Deletion of exon 6–9 of
S6K1 in the whole body by crossing S6K1fl/fl mice with the
CMV-cre line resulted in recombination in all tissues examined
(Figure 1B and Supplemental Figure 1; McQuary et al., 2016).
S6K1fl/fl mice bred to mice expressing Cre recombinase directed
by the promoter/regulatory regions of Adiponetcin (Adipoq-
cre) (Eguchi et al., 2011), Synapsin I (Syn1-cre) (Zhu et al.,
2001), or Albumin (Alb-cre) (Postic et al., 1999) had the S6K1
gene deleted specifically with gene recombination restricted
in adipocytes (fat), neurons (brain), or hepatocytes (liver),
respectively. In every case, intact S6K1 flox alleles were detected
in tissues not expressing Cre recombinase (Figure 1B and
Supplemetnal Figure 1). Western blotting revealed complete loss
of S6K1 proteins in all tissues of CMV-cre; S6K1fl/fl mice
(Figure 1C). S6K1fl/fl mice crossed with Syn1-cre, Adipoq-cre,
and Alb-cre showed reduced S6K1 protein in brain, fat, and
liver, respectively, compared to their littermates without the
presence of Cre recombinase (Figure 1C). Considering the gene
expression patterns of the promoters used, these results likely
reflect the knock out of S6K1 in parenchymal cells but not in
mesenchymal cells in each tissue analyzed. Thus, we successfully
createdmouse lines with disruption of S6K1 in the brain, fat, liver,
or the whole body.

Homozygous whole body S6K1 KO by CMV-cre resulted in
a reduced body weight compared to littermate heterozygous
controls without Cre (S6K1fl/1) at 2 months of age (Figure 2A).
This weight reduction is consistent with a prior report on
conventional S6K1 KOmice (Shima et al., 1998). S6K1 deletion in
the fat by Adipoq-cre also caused smaller body size in both male
and female mice compared to littermate controls (Figure 2B).
There was a significant reduction in size of brain, kidney, colon,
and visceral white adipose tissue in the whole body knockout,
whereas a significant decrease was only observed in visceral
white fat in the fat-specific KO (Supplemental Figure 2). Liver
or brain conditional disruption of S6K1 by Alb-cre or Syn1-cre
did not result in a significant change in body weight compared
with littermates without cre (Figures 2C,D). Consistent with
the unaltered body size, none of the organs analyzed showed a
significant change in size in the brain-specific KO (Supplemental
Figure 3A). In the liver-specific S6K1mice, no significant changes
were observed in liver size or body fat mass ratio at either 2
months of age (Supplemental Figures 3B–D) or 12 months of age
(Supplemental Figures 3E–G).

NKO mice show a progressive neurodegenerative phenotype

that recapitulates the clinical features of Leigh Syndrome and die

at a median age of∼2 months (Kruse et al., 2008; Quintana et al.,
2010). when NKO mice were bred to the S6K1 floxed mouse
strain, we detected no significant difference in survival among
S6k1fl/fl, S6K1fl/+, and S6K1+/+ alleles in the NKO background
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FIGURE 1 | Generation of tissue specific S6K1 conditional KO mice. (A) Schematic targeting strategy to create tissue specific disruption of the S6K1 gene.

(B) Genotyping PCR for S6K1 floxed alleles in brain, fat, and liver collected from floxed mice crossed with Albumin-cre, Synapsin1-cre, Adiponectin-cre, and CMV-cre

mice. Upper bands indicate flox-out alleles. Lower bands indicate intact flox alleles. (C) Western blot with S6K1 and actin antibody in brain, fat, and liver, collected

from floxed mice crossed with Synapsin1-cre (Syn1), Adiponectin-cre (Adipoq), Albumin-cre (Alb), and CMV-cre mice.

FIGURE 2 | Body size of S6K1 conditional KO strains. Body weight at 2 months of age of (A) whole body (CMV, n = 8–10 for female and n = 7–10 for male),

(B) fat-specific (Adipoq, n = 6–7 for female and n = 4–6 for male), (C) liver-specific (Alb, n = 13–16 for female and n = 5–7 for male), and (D) brain-specific (Syn1,

n = 7–8 for female and n = 8–11 for male) S6K1 conditional KO mice. Data are indicated as mean ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001.

(Supplemental Figure 4). These lifespan data were comparable to
our historical data for the NKO strain (Supplemental Figure 4).

Homozygous whole body disruption of S6K1 in the NKO
background resulted in an increase of the median lifespan by
16% compared to the lifespan of littermate controls (Figure 3A,
p = 0.01). A similar increase in survival was observed when
disruption of S6K1 was restricted to the liver (Figure 3B,
p= 0.01). In contrast, disruption of S6K1 in either fat or brain
had no effect on survival of NKO mice (Figures 3C,D).

We measured the incidence of forelimb clasping, an easily
scored, noninvasive neurological phenotype that correlates with
neurodegeneration in the NKO mice (Johnson et al., 2013b).
The time at which the clasping phenotype appeared was

delayed by the whole body S6K1 deletion and liver-specific
deletion (Figure 4A), showing that neuronal dysfunction was
mitigated in these lines along with the lifespan extension.
None of the tissue specific or whole body S6K1 deletions
significantly affected the body weight of NKO mice (Figure 4B
and Supplemental Figure 5).

DISCUSSION

In this study, we found that inactivation of the mTOR substrate
S6K1 in the whole body modestly enhances survival and delays
the onset of a characteristic neurological symptom in the
NKO mouse model of severe mitochondrial disease resulting
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FIGURE 3 | Lifespan of S6K1 conditional KO strains in the Ndufs4 −/− background. (A) Lifespan of homozygous S6K1 flox-out (whole body S6K1 KO, n = 20, 6

female and 14 male) and their littermate heterozygous S6K1 flox-out (n = 21, 12 female and 9 male) by CMV-cre. P < 0.05. (B) Lifespan of Albumin-cre; S6K1fl/fl;

Ndufs4−/− (Liver S6K1 cKO, n = 21, 9 female and 12 male) and their littermates without the cre gene (n = 20, 10 female and 10 male). p < 0.05. (C) Lifespan of

Adiponectin-cre; S6K1fl/fl; Ndufs4−/− (Fat S6K1 cKO, n = 21, 15 female and 6 male) and their littermates without the cre gene (n = 21, 8 female and 13 male). (D)

Lifespan of Synapsin1-cre; S6K1fl/fl; Ndufs4−/− (Brain S6K1 cKO, n = 12, 5 female and 7 male) and their littermates without the cre gene (n = 18, 11 female and 7

male).

from Complex I deficiency. Similar effects were observed when
disruption of S6K1 was restricted to liver, while the disruption
of S6K1 in brain or fat had no effect on disease progression.
These observations are consistent with the model that S6K1 acts
downstream of mTOR to mediate mitochondrial disease in this
mouse model and that the liver is the primary tissue of action for
S6K1 in this context.

The positive impact of S6K1 disruption in liver but not
in brain of NKO mice is somewhat counterintuitive, as
neurodegeneration is the primary cause of morbidity and
mortality in both the NKO mouse as well as in patients with
Leigh Syndrome. It is important to note that the Synapsin I
cre used here to disrupt S6K1 in the brain is a neuron-specific
promoter, so it remains possible that S6K1 activity in other brain
cell types, such as glia, could be important for disease progression.
Nonetheless, the ability of hepatic cell S6K1 knockout to enhance
survival and delay neurological symptoms clearly indicates a role
for mTOR signaling in liver in this disease. This is consistent
with our prior data indicating that rapamycin treatment in NKO
mice results in substantial changes in protein expression and
metabolite levels in the liver, including evidence for increased
triglyceride levels and elevated amino acid catabolism (Johnson
et al., 2015b).

Although, whole body or liver-specific S6K1 disruption
was not as effective as daily injection of 8 mg/kg rapamycin
at enhancing health and survival in the NKO mice, the
effects observed here were comparable to lower dose

regimens of rapamycin treatment in this background
(Supplemental Figure 6; Johnson et al., 2013b, 2015b). This
suggests that the effects of rapamycin can be explained in part
by reducing S6K1 activity, but that additional downstream
effects of mTORC1 inhibition also likely contribute to delayed
mitochondrial disease progression in NKO mice at higher
doses of rapamycin. Other outputs of mTORC1 signaling,
such as 4EBP1 and autophagy (Johnson et al., 2013a),
which are also associated with normative aging, are likely
candidates. Alternatively, mTORC2 signaling may play a role
in mitochondrial disease, since chronic mTORC1 inhibition by
rapamycin can inhibit mTORC2 activity (Sarbassov et al., 2006).
It is also possible that S6K1 disruption is inducing changes in
the signaling network through its regulation of the insulin/IGF-1
signaling network (Johnson et al., 2013a) or additional targets, or
that S6K1 disruption is alleviating mitochondrial disease in these
animals by a mechanism distinct from rapamycin.

While this study focused on the impact of S6K1 and mTOR
signaling in severe mitochondrial disease, these results may
have relevance to normative aging as well. Prior studies of
mTORC1 signaling and S6K1 in the context of normative
aging have largely focused on whole body genetic disruptions
(Selman et al., 2009; Lamming et al., 2012; Wu et al., 2013)
or systemic treatment with rapamycin (Harrison et al., 2009;
Miller et al., 2011, 2014; Wilkinson et al., 2012; Neff et al.,
2013; Fok et al., 2014; Popovich et al., 2014; Arriola Apelo
et al., 2016). Our results indicate that liver specific disruption
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FIGURE 4 | Phenotype of S6K1 conditional KO strains in the Ndufs4 −/− background. (A) Maximum body weight each mouse reached during the lifespan analysis

for whole body S6K1 KO (KO by CMV-cre) and tissue-specific S6K1 cKOs (brain cKO by Syn1-cre, fat cKO by Adipoq-cre, and liver cKO by Alb-cre) in the Ndufs4 KO

strains. (B) Age at which animals first show the clasping phenotype as an indicator of neurological dysfunction. Data are indicated as mean ± s.e.m. *p < 0.05,

**p < 0.01.

of S6K1 can result in delayed pathology in the brain during
mitochondrial disease and suggest the potential importance
of cell and tissue non-autonomous systemic effects during
normative aging. This could be particularly relevant for effects of
rapamycin on cognitive aging and dementia, as numerous studies
have shown that rapamycin and mTOR inhibition can delay
cognitive decline during normative aging (Halloran et al., 2012;
Majumder et al., 2012) as well as prevent or reverse Alzheimer’s
disease progression (Spilman et al., 2010; Majumder et al., 2011;
Lin et al., 2013, 2017; Ozcelik et al., 2013; Caccamo et al., 2014;
Jiang et al., 2014; Siman et al., 2015) in mouse models. It would be
informative to understand the impact of tissue specific depletion
or disruption of mTORC1 components or S6K1 on healthy
longevity, cognition, and Alzheimer’s disease in mice. Likewise,
local delivery of rapamycin or other mTOR inhibitors could have
distinct effects from systemic treatments, both in terms of overall
improvements in healthspan and lifespan, as well as lowering
risks for adverse side effects.

In summary, we show here that whole body disruption or
liver specific disruption of the mTOR substrate S6K1 can increase
survival and delay disease symptoms in a mouse model of severe
mitochondrial disease. These observations are consistent with
the idea that reduced S6K1 activity accounts for at least part of
the beneficial effect of rapamycin in this context, and suggests
that inhibition of S6K1 may be a viable therapeutic strategy
for treating mitochondrial disease. Importantly, these data also
suggest that inhibition of mTORC1 and S6K1 in the liver is

critically important for delaying mitochondrial disease in the
brain, perhaps through a change in systemic metabolism that
attenuates neuroinflammation and neurodegeneration.
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