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INTRODUCTION

After the sensational images of the mouse growing a human ear were broadcast

around the world in the late 1990s, the in vitro fabrication of tissues and the

regeneration of internal organs were no longer regarded as science fiction but as

possible remedies for the millions suffering from chronic degenerative diseases.

Biofabrication.

© 2013 Elsevier Inc. All rights reserved.
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Although some mistook it as a genetically engineered mouse expressing a human

ear [1], these striking images nonetheless highlighted the medical promise of

“tissue engineering” and ignited widespread interest from researchers in many

fields, including cell and molecular biology, biomedical engineering, transplant

medicine, and organic chemistry.

While there have already been successful clinical reports documenting the

treatment of severe burn patients with culture-expanded skin cell sheets since the

introduction of this tissue engineering technology in 1981 [2], fabrication of

three-dimensional (3D) tissue constructs in vitro remains a challenge.

In the above-mentioned study, Cao et al. prepared a biodegradable polymer

scaffold in the shape of a human ear and seeded its surface with bovine chondro-

cytes. This “tissue engineered ear” was then implanted under the skin of a nude

mouse. As nutrients were provided by the in vivo environment, the implanted

chondrocytes gradually started producing extracellular matrix (ECM) components

such as collagen and glycoproteins. While a cell-free ear-shaped polymer could

not have maintained its original shape in vivo due to the hydrolytic degradation

of the polymer, the chondrocytes seeded onto the polymer maintained the original

scaffold shape for 12 weeks after implantation. Indeed, the geometry was similar

to and as complex as the original human ear.

After the study of the mouse with the human ear, many researchers attempted to

create tissues or organs in vitro by constructing scaffolds composed of various bio-

compatible materials, such as animal-derived collagen [3], synthetic polymers [4],

artificially synthesized bone substitutes (calcium-phosphate cement) [5], and autolo-

gous fibrin glue [6]. These scaffolds were seeded with a large array of somatic cells

or stem cells to reconstruct target tissues such as skin [7], bladder [8], articular

cartilage [9], liver [10], bone [11], vascular vessels [12], and even a finger [13].

The combination of a scaffold with cells and/or growth factors became the gold

standard of tissue engineering [14]. Successful application of scaffold-based tissue

engineering depends on three steps: (1) finding a source of precursor or stem cells

from the patient, usually through biopsy or isolated from accessible stem cell-rich

tissues, (2) seeding these cells in vitro onto scaffold material of the desired shape

(with or without growth factors) that promotes cell proliferation, and (3) surgically

implanting the scaffold into the target (injured) tissue of the patient.

This tissue engineering method overcomes a number of problems associated

with allogeneic organ transplantation: the perpetual shortage of donors, the possi-

bility of rejection, ethical issues such as organ trafficking [15], and the need for

prolonged immunosuppression, which may lead to opportunistic infections and

increased risk of cancer [16].

Many researchers tried to fabricate organs by combining cells, proteins/genes,

and scaffolds. The various biomaterials used to fabricate scaffolds are classified

into three types: (1) porous materials composed of biodegradable polymers, such

as polylactic acid, polyglycolic acid, hyaluronic acid, and various co-polymers;

(2) hydroxyapatite or calcium phosphate�based materials; and (3) soft materials

like collagens, fibrin, and various hydrogels and their combinations.
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In addition to providing a 3D structure for transplanted cells, scaffolds also

dramatically enhance cell viability (e.g., a few exogenous cells were detected

after the transplantation of single isolated cells into infarcted myocardium

[17,18]). Anchorage-dependent cells cannot survive for long when detached from

the surrounding ECM or culture surface. When there is loss of normal cell�cell

and cell�ECM interactions, unanchored cells may undergo a specific form of pro-

grammed cell death called “anoikis” [19,20]. Thus, seeding anchorage-dependent

cells onto scaffolds allows for efficient transplantation, especially if scaffolds are

pretreated with growth factors. Indeed, some scaffold-based tissue engineered sys-

tems, such as bladder [21], articular cartilage [22], epidermis [23], and peripheral

pulmonary arteries [24], have already been translated into the clinical stage.

1.1 Problems with scaffold-based tissue engineering
The ideal biodegradable scaffold polymer should be (1) nontoxic; (2) capable of

maintaining mechanical integrity to allow tissue growth, differentiation, and integra-

tion; (3) capable of controlled degradation; and (4) nonimmunogenic; also, it should

not cause infection or a prion-like disease. Although there are many clinical reports

on the successful use of various biomaterials, there is still no “ideal” biomaterial for

scaffold construction. Furthermore, concerns such as immunogenicity, long-term

safety of scaffold degradation products, and the risk of infection or transmission of

disease, either directly or concomitant with biofilm formation, remain to be resolved.

1.1.1 Immune reactions
A serious concern is that scaffolds may induce undesirable immune reactions

[25], including inflammation, acute allergic responses, or late-phase responses.

Scaffolds might even stimulate an autoimmune response, such as that produced

by type II collagen in mice [26�28] used as models for rheumatoid arthritis.

Immune responses may also be triggered by scaffold degradation byproducts.

Metallosis is a specific form of inflammation induced by tiny metal particles that

are shed from the metallic components of medical implants, such as debris from

artificial joint prostheses [29]. Accumulation of scaffold degradation byproducts

may elicit chronic diseases associated with inflammatory responses.

1.1.2 Degradation of scaffolds in vivo
Classic biodegradable polymers are defined as materials that are gradually

digested by environmental bacteria through a process that is distinct from physio-

logical degradation processes like digestion. Biodegradation can lead to toxicity

in two ways: either a degradation product is directly toxic or it is metabolized to

a toxic product (i.e., by liver enzymes). “Biodegradable” is distinct from

“biocompatible.” In most industrialized countries, only certified biomaterials that
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have passed multiple tests for severe toxicity and safety are permitted for use as

medical implants.

Most synthesized biodegradable polymers are broken down by hydrolysis,

resulting in the accumulation of acids that may alter the pH of the microenviron-

ment or exert more direct toxicity. Some scaffolds are destroyed by macrophages,

inducing an inflammatory reaction.

While bone substitute scaffolds may be replaced gradually by true bone

through the activity of osteoclasts and osteoblasts, degradation of most other

biomaterial scaffolds will leave a potential space that can impede repair.

Biodegradable biomaterials are used extensively for cartilage repair, since articu-

lar cartilage (hyaline cartilage) has a low regenerative capacity and is usually

replaced by weaker, rougher fibrous cartilage after injury [30]. When the scaffold

is degraded and disappears, the space that once occupied it may no longer be

filled with chondrocytes due to the cells’ low proliferative capacity. These spaces

might eventually form tiny cracks that trigger further deterioration of the smooth

cartilage surface.

1.1.3 Risk of infection
There are two potential sources of infection from implanted scaffolds: pathogens

transmitted directly from the scaffold or cells and infections emerging from the

bacterial biofilm formed around the scaffolds after implantation.

1.1.3.1 Potential risk of disease transmission by scaffolds
Some scaffolds, such as collagen gels and amniotic membranes, are animal-

derived. Recent outbreaks of severe infectious diseases like bovine spongiform

encephalopathy and severe acute respiratory syndrome highlight the fact that

animals harbor pathogens that may be lethal or cause severe infections in humans.

Moreover, it is safe to assume that there are many undiscovered animal pathogens

with the potential to cause human disease or death. Preclinical studies may mini-

mize this risk, but there is no guarantee that these materials do not harbor

unknown human pathogens.

1.1.3.2 Biofilms
Another source of infection from implanted scaffolds is the biofilm that forms on

the scaffold surface [31]. Medical devices and implants, such as catheters and

orthopedic or dental implants, are now ubiquitous in clinical practice. However,

as the number of devices and implants continues to increase, the frequency of

device-related infections will also increase [32,33]. Infections that are mostly

caused by staphylococci, such as methicillin-resistant Staphylococcus aureus,

usually do not respond to antibiotic therapy, necessitating removal of the

implanted device.

In vivo microbial contamination of these devices differs from infection of nat-

ural tissues. Medical devices lack an immune system or bloodstream. Thus, once
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microorganisms invade through skin scratches, wounds, airways, or medical inter-

ventions and attach to the surface of the implanted material, they begin to form a

bacterial biofilm [34]. The biofilm is composed of glycoproteins and polysacchar-

ides secreted by microorganisms. Unlike circulating bacteria, biofilm-protected

microorganisms are resistant to physical removal, host immunity, and antibiotics.

Furthermore, since most antibiotics are unable to completely diffuse inside the

biofilm, long-term antibiotic treatment may increase the risk of antibiotic resis-

tance. In the United States, for example, catheter-related infections are a major

cause of nosocomial morbidity and mortality. More than 300,000 U.S. patients

are infected annually during presurgical or surgical procedures [35]. Moreover, as

biofilms are slow to develop, infections due to biofilms may emerge several years

after implantation. In artificial joint replacement surgery [36], this type of infec-

tion is a serious complication that can usually be cured only by removing the

implant [32,37]. Infection by microorganisms is also widespread among contact

lens users. One common cause of vision loss is contact lens�related microbial

keratitis [38,39], and the risk of microbial keratitis increases during extended

wear. This is why clinicians recommend frequent removal or replacement of con-

tact lenses [38]. Furthermore, infection is the most common reason for breast

implant removal [40,41]. These biofilm-related infections prolong hospitalization,

increase medical costs, and sometimes result in mortality.

It is evident from the preceding discussion that scaffolds have several potential

disadvantages. However, because there have been no clinical case reports docu-

menting scaffold-related infection in regenerative medicine, many researchers

have paid little attention to the possibility of infection from pathogens in the

implant or biofilm.

Although most biomaterials used as scaffolds are biodegradable, degradation

is usually very slow and may take several years. When infection occurs at the

scaffold site, curing the infection may require surgical removal of the scaffold,

disrupting tissue repair or causing further damage.

Various attempts have been made to develop infection-resistant biomaterials,

such as silver ion�coated materials, ceramics that slowly release antibiotics [42],

and antibacterial adhesion polymers [43], but it may take years before these mate-

rials are used in regenerative medicine, especially because these antibacterial

factors may also harm the implanted cells. Thus, while scaffolds may hold great

clinical potential, there remain significant safety concerns.

1.2 “Scaffold-free” tissue engineering
A precise definition of “scaffold-free” is still controversial [44]. Some investiga-

tors would insist that some of the techniques described below should not be called

“scaffold-free” because the implanted construct may include residual biomaterials

from the fabrication process. For the purpose of this section, a “scaffold-free”
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system is a “cell-only” construct that may or may not use other biomaterials

during fabrication. Even if it does contain other biomaterials, these are not

implanted along with the cells.

From a clinical perspective, the most important property of a scaffold is its

behavior in the body upon implantation (degradation, biofilm formation) and

physiological reactions induced by the parent material and degradation byproducts

(immune responses, local or systemic infections).

1.2.1 Classification of present scaffold-free systems
Several scaffold-free systems have been reported, some of which are already used

for clinical treatments. These systems can be divided into three categories accord-

ing to the cellular material used for construction. One system uses single cell

sheets, another uses isolated single cells, and the third uses spheroid cell aggre-

gates as the essential building blocks for implantable 3D constructs (Figure 1.1).

1.2.1.1 Cell sheets
Cell sheet technology is one of the most advanced methods for the construction

of implantable engineered tissue. Certain types of cells can be removed from a

culture dish as a relatively stable confluent monolayer-sheet [45]. Cell sheet tech-

nology is already used clinically for the repair of skin [2], cornea [46], esophagus

[47], heart muscle [48], and blood vessels [49], and it is a promising method for

many other applications in tissue engineering and regenerative medicine.

The first successful clinical application of cell sheets was developed by

Rheinwald and Green [45] to treat patients with severe burns. At that time, kerati-

nocytes were difficult to culture for expansion. Rheinwald et al. seeded a suspen-

sion of disaggregated keratinocytes onto a feeder layer of irradiated mouse 3T3

cells. The feeder layer enhanced plating efficiency and stimulated keratinocyte

proliferation. Proliferation and culture life span could be further increased by add-

ing various supplements or growth factors to the culture medium. They were able

to recover single continuous sheets of keratinocytes that could be grafted onto the

sites of severe burns. Many patients with severe burns have survived due to this

skin sheet technology [7]. Since then, grafting of these keratinocyte monolayers is

perhaps the most successful example of tissue engineering therapy, and several

products have been examined in clinical trials. A number of them have been

approved by the FDA and are now on the market [50].

In January 2009, Japan Tissue Engineering Co., Ltd., a Japanese biotechnol-

ogy company, began marketing autologous cultured epidermis (called JACE) as

the first Japanese tissue engineering product covered by national health insurance.

JACE uses Green’s [45] cell sheet engineering system, and it is the only regenera-

tive medicine product currently approved by the Japanese Ministry of Health,

Labor and Welfare [51]. This approval is significant because the Japanese

MHLW was considered to be the utmost conservative authority for the approval
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of new drugs and medical devices and thus may indicate more timely approval

and acceptance of similar products in Japan and elsewhere.

Okano et al. developed an alternative method for cell sheet engineering

by first coating culture dishes with a temperature-responsive polymer, poly(N-

isopropylacrylamide) [52]. This surface is relatively hydrophobic and similar to

standard culture dishes at 37�C, but it becomes hydrophilic below 32�C. Various
cell types can attach to the surface and proliferate at 37�C, while cooling below

32�C causes the cells to detach without the use of enzyme digestion reagent [53].

This is in contrast to Green’s [45] cell sheet method, which always requires

(a) Isolated
single cells

(b) Bioreactor or
static culture mold

(e) Layering

(c) Cell sheet
formation (f) Rolling/Folding

Bioreactor or
static culture mold

(g) Bioprinting/Biofabrication system

(d) Multi/cellular
spheroid formation

FIGURE 1.1

Methods for scaffold-free biofabrication. (a) Isolated single cell suspension. (b) Culture

isolated cells in bioreactor or in static culture mold. (c) Cell sheet formation.

(d) Multicellular cellular spheroid formation. (e) Layering cell sheets. (f) Rolling or folding

cell sheets. (g) Computer-based bio-printing/biofabrication system.
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dispase for recovery of cell sheets from culture dishes. The method of Okano

allows the production of many types of cell sheets that are too fragile or otherwise

difficult to recover by other methods [53�55]. Furthermore, Okano’s method

does not require an earlier used exogenous feeder layer, thus representing a poten-

tially safer method. (Earlier employed feeder layers containing mouse 3T3 cells

produce mouse proteins that may induce allergic reactions.)

1.2.1.1.1 Corneal sheets
The clinically most advanced application of the system developed by Okano is

corneal regeneration using cultivated human corneal sheet transplantation [46].

Kinoshita et al. also showed good clinical results with cultivated human corneal

sheet transplantation [56]. However, their system is not scaffold-free by our defi-

nition because it used allogeneic amniotic human membrane as an autologous cell

carrier. Nishida et al. harvested corneal epithelial stem cells from the limbus of

patients with severe ocular trauma, such as alkali burns, or ocular diseases,

including autoimmune disorders or Stevens-Johnson syndrome (erythema multi-

forme). After monolayer expansion in vitro, the corneal epithelial stem cells were

formed into cell sheets using Okano’s thermal responsive culture plates.

Harvesting and transplantation of noninvasive cell sheets using this temperature-

responsive culture system has also been applied for ocular surface regeneration.

1.2.1.1.2 Heart regeneration
Using Okano’s method, Sawa et al. implanted a cultured skeletal muscle cell

sheet into the damaged heart of a patient with degenerative cardiomyopathy, a

disease characterized by progressive heart failure [48]. The patient was at end-

stage heart failure and on life support using a mechanical left ventricle assisting

system. The implanted cells were isolated from an approximately 10-g piece of

skeletal muscle excised from the medial vastus muscle under general anesthesia.

After monolayer expansion, 20 skeletal myoblast cell sheets were obtained and

autologously implanted onto the patient’s dilated heart through left lateral thora-

cotomy. Seven months after implantation, the patient was discharged from the

hospital and no longer required artificial heart support.

1.2.1.1.3 Esophageal ulcer treatment
With the rapid progress of endoscopy, large esophageal cancers can be removed

by a single procedure, such as endoscopic submucosal dissection (ESD).

Endoscopic resection has become the standard treatment for esophageal lesions,

replacing longer open surgery procedures. However, massive resection of esoph-

ageal cancer by ESD can be complicated by postoperative inflammation and

stenosis (narrowing of the esophagus). Severe inflammation causes esophageal

scarring, while stenosis may make swallowing difficult and painful. Although

treatment with balloon dilation or temporary stents can enlarge the narrowed

esophagus and partially and temporarily overcome this problem, an extended
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response generally requires repeated treatment that can lead to further inflamma-

tion and postoperative pain.

Postoperative inflammation and stenosis are caused mainly by massive ulcera-

tion of the esophageal surface. Following a successful preclinical trial in dogs,

Ohki et al. performed clinical trials using cell sheets to treat large esophageal

ulcers [57]. To this end, they developed a device that can directly transfer and

attach cell sheets through endoscopy without suturing. The application of these

epithelial cell layers enhanced wound healing and reduced host inflammatory

responses without causing stenosis.

1.2.1.1.4 Blood vessels
Good clinical results were obtained when cell sheet�based scaffold-free blood

vessels were used for the facilitation of hemodialysis (HD) treatment [12,58].

These vessels were fabricated by wrapping a dehydrated fibroblast sheet around

a polytetrafluoroethylene (PTFE) tube cylinder and then overlaying a living

smooth muscle cell sheet and an outer fibroblast sheet. After culturing this multi-

layered “cell roll,” the PTFE cylinder was removed and the lumenal surface was

seeded with endothelial cells. A small clinical trial was conducted using this

scaffold-free tube in ten patients with end-stage renal failure treated by HD

through an arteriovenous fistula (shunt). Patients who require HD always face

shunt complications such as infection and low blood flow due to clotting.

L’Heureux et al. fabricated tissue engineered blood vessels with autologous cells

from each patient and implanted the vessel as a replacement HD shunt. The

implanted grafts were stable in vivo for 3 months and withstood repeated punc-

ture for HD for up to 13 months, allowing uninterrupted HD [59].

1.2.1.1.5 Nerve grafts
Baltich et al. fabricated scaffold-free tubular constructs consisting of an external

fibroblast layer and an internal core of interconnected neuronal cells derived from

fetal rat spine. The conduction velocity of this engineered “nerve” was compara-

ble to that of the sciatic nerve of a 4-week-old rat and approximately 50 percent

of that observed in a 12-week-old (adult) rat [60]. These results suggest that the

scaffold-free nerve grafts may be useful for peripheral nerve repair.

1.2.1.1.6 Liver regeneration
Fabrication of liver tissue in vitro has attracted considerable interest given the

innate regenerative capacity of the liver and prevalence of liver diseases. Ohashi

et al. [10] fabricated hepatocyte cell sheets by culturing hepatocytes on

temperature-responsive poly(N-isopropylacrylamide)-coated culture dishes. Sheets

of hepatic tissue transplanted ectopically into the subcutaneous space were

pretreated with growth factor FGF-2 to promote neovascularization. These sheets

efficiently integrated with the surrounding tissue and persisted for longer than

200 days. The engineered and implanted hepatic tissues also showed several char-

acteristics of liver-specific functionality. Furthermore, layered hepatic tissue

91.2 “Scaffold-free” tissue engineering



sheets reorganized into a 3D structure with the histological appearance of liver

tissue [10].

1.2.1.1.7 Implantation of pancreatic islets
The observed functional differentiation of ectopically implanted hepatocytes led

Ohashi and Okano to perform a similar experiment using cell sheets composed of

rat pancreatic islet cells [61]. In vitro, these pancreatic islet cell sheets retained

the functional activity of native islet cells, including the production of insulin

and glucagon, and glucose-dependent insulin secretion. Moreover, when trans-

planted into the subcutaneous space of rats, pancreatic islet cell sheets produced

and secreted insulin, suggesting a new therapeutic approach for the treatment

of diabetes mellitus and other diseases involving dysfunctional islet cells and

possible elimination of the need for daily insulin injections [62,63].

The Okano group is now aggressively expanding potential applications by

developing sheets for regeneration of bone [64], articular cartilage surface [65],

periodontal ligament [66], lung [67], thyroid [68], and bladder [69].

1.2.1.1.8 Expansion of cell sheets into 3D structures
Various approaches have been used to fabricate larger 3D tissues and organs from

cell sheets. One example is the “Origami” approach, where, like L’Heureux et al.

[12], sheets are formed around a temporary 3D scaffold (like surgical tubing).

Another standard approach is the layering of multiple cell sheets. Shimizu et al.

layered beating cardiomyocyte sheets to fabricate scaffold-free 3D constructs and

found that these layered cardiomyocytes exhibited synchronized beating.

However, the maximum thickness was limited to less than 80 µm (three-cell

layer), possibly due to starvation and hypoxia of inner layers that have poor

access to the culture media and atmosphere. Moreover, cardiomyocytes are tightly

interconnected by gap junctions, and the outer layer may prevent gas and nutrient

exchange to the inner layers. Indeed, four-layered cardiomyocyte constructs

showed necrosis in the inner layers [70]. To overcome this limited maximum

thickness, they implanted 10 three-layered cardiomyocyte sheets into nude rat

hearts at 1- or 2-day intervals, finally obtaining a 1-mm-thick neomyocardium

fused onto the native heart and integrated with a well-organized microvascular

network. Although it is obviously impossible to perform multiple thoracotomies

on human patients, this demonstration revealed the importance of neovasculariza-

tion for the gradual construction of larger cell constructs with or without the use

of scaffolds [71,72].

1.2.2 In vitro self-produced ECM-rich scaffold-free constructs
Certain cell types possess the capacity to synthesize and release components of

ECM in vitro under appropriate culture conditions. Fibroblasts and chondrocytes,

for example, produce collagens and proteoglycans in vitro. This ECM production

capacity is accelerated under confluence or 3D culture conditions, a phenomenon
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that may be inspired to develop scaffold-free systems for fabrication of 3D

constructs from isolated chondrocytes [73,74]. Normal anchorage-dependent cells

proliferate at low density in monolayer culture. When the cell density reaches a

certain threshold, proliferation is suppressed by contact inhibition. Under contact

inhibition, the cell cycle stops and chondrocytes start to produce ECM proteins.

Using this in vitro�produced ECM, many groups have developed methods to

fabricate 3D scaffold-free constructs in vitro. Most of these approaches are used

for fabrication of cartilage-like constructs [75,76]. In this technique, a large num-

ber of isolated chondrocytes is loaded into a specific culture mold and fed

reagents that enhance matrix production. Since chondrocytes exist under relatively

low oxygen partial pressure and without blood supply in vivo (in joints), they are

relatively harder than normal cells and can be cultured under high-density static

culture conditions. Although these approaches require relatively longer culture,

the resulting constructs are similar to native cartilage in terms of histology and

biomechanical properties [77�79]. However, these “in vitro self-produced ECM-

rich scaffold-free” constructs have limitations as well. It is difficult to expand

cultures in 3D without hypoxia or nutrient starvation of inner core cells. Thus,

most of these scaffold-free cartilage-like constructs are thinner than normal

human articular cartilage in adults.

1.2.3 The rotating wall vessel bioreactor system
Another approach for fabricating scaffold-free constructs from isolated cells is by

using a rotating wall vessel bioreactor system. This culture system utilizes a

circular vessel with a gas-exchange membrane and rotates around a horizontal

axis to provide culture media flow in a simulated microgravity environment. The

rotating wall reactor (RWR) was developed by NASA to produce cartilage-like

tissue in space [80]. This reactor has also been used on earth to fabricate various

other cell constructs [81�83]. Okamura et al. loaded isolated hepatocytes into an

RWR and obtained a “liver-like” construct with bile duct� and vessel-like struc-

tures formed within the tissue. Histological analysis showed that the bile duct

structures secreted mucin and formed complex tubular branches in the peripheral

region. Distal to these bile duct structures, they observed mature hepatocytes

capable of producing albumin and storing glycogen [84]. To our knowledge, there

are still no clinical reports using engineered tissue fabricated by this method.

1.3 Aggregation/spheroid-based approaches
The capacity of dissociated cells to reaggregate through cell�cell attachment has

been known for over 100 years [85]. This phenomenon is preserved in almost all

living organisms irrespective of their complexity [86,87]. These aggregates are

usually called multicellular spheroids (MCSs) and are powerful research tools in
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modern developmental biology, stem cell biology, tumor biology, toxicology, and

pharmacology.

1.3.1 Preparation of multicellular spheroids
Although several methods for MCS preparation have been introduced, they all

rely on a simple common principle: dissociated cells are incubated in a nonadhe-

sive environment to allow individual cells to attach to one another. This cell�cell

attachment is a survival mechanism that allows cells to avoid anoikis, possibly by

activating signals mediated by surface receptors and ligands that suppress the

anoikis cascade.

These MCSs can be prepared in regular nonadhesive culture dishes, silicon-

coated dishes [88], containers coated with nonadhesive enhanced polymers (such

as PDMS [89]) or poly-HEMA [90], agarose gels [91], alginate beads [92],

spinner flasks [78], or hanging drop cultures [93]. After reaggregation of dissoci-

ated cells, each MCS has the capacity to fuse with other MCSs. Many groups

have developed alternative approaches for scaffold-free tissue engineering using

this propensity for MCS fusion. In fact, methods using spheroids as building

blocks for fabrication of scaffold-free cell constructs may be a better approach

because many cells in spheroids show greater similarity to cells in the native state

than do cells in monolayer culture [94].

MCS fusion usually requires 24 to 72 hours, depending on the cell type and

culture conditions. During fusion, these MCSs must be kept in culture media

under controlled conditions because even a slight tilting of the culture dish may

deform the desired shape of the stacked MCS blocks.

1.3.2 Molding MCSs
Most of these MCS-based approaches also use specific molding chambers to

produce constructs of the desired shapes [91,95,96]. However, it remains difficult

to fabricate larger tissues similar to the geometry of native tissues or organs due

to limited gas and nutrient exchange within the core of the spheroids, particularly

for hepatocytes, cardiomyocytes, and other cells with high nutritional or meta-

bolic demands.

1.3.3 Bio-printing
Possibly inspired by common inkjet printers, cell printing systems, called bio-

printing systems, have been developed [71,97]. Mironov, Forgacs, and colleagues

first established a spheroid-based bio-printing system [98,99] that used MCSs as

“bio-ink” and hydrogels as “bio-paper.” Their printer lays down MCSs onto pre-

designed spots on the hydrogel to allow adjacent MCSs to fuse until the desired

shape is attained. Using this system, they fabricated a beating cardiomyocyte

plate. Their latest system can print multicellular rods onto agarose (bio-paper)
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using a dual-nozzle system for real-time molding of vascular and peripheral nerve

constructs [100]. This bio-printing approach can fabricate more complex three-

dimensional designs with microchannels that may allow for better in vitro perfu-

sion and provide conduits for neovasculization in vivo.

1.3.4 Alternative approach for MCS assembly technique
for biofabrication
We developed another approach for a scaffold-free MCS assembling system

called a “needle-array” system (Figure 1.2) that is slightly different from bio-

printing systems. Instead of using hydrogel as the “bio-paper,” we used medical-

grade stainless needles as temporal fixators to skewer MCSs until they fused with

one another. This concept was inspired from surgical treatments for bone fracture

in orthopedic surgery, called “external fixation” (Figure 1.3). For treatment of

bone fracture, orthopedic surgeons reposition fractured bone pieces to their origi-

nal positions with or without surgery. After repositioning, surgeons immobilize

bone pieces by using casts or splints without surgery or by using metal plates,

screws, or pins under surgical procedure. Inspired from fracture treatment,

especially by the external fixation technique, we developed the needle-array

FIGURE 1.2

The needle-array system. (Left) Skewering a spheroid into the needle-array with a robotic

system. (Right) Removing fused spheroids to obtain a scaffold-free construct.
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system. We also developed a robotic system that skewers MCSs into needle-array

according to a three-dimensional design template (Figure 1.4).

By applying these systems, we can fabricate complex three-dimensional

scaffold-free cell constructs by using various types of cells such as chondrocyte,

hepatocyte, cardiomyocyte, vascular smooth muscle cell, and so on. Since we uti-

lize medical grade needles, it is easy to remove the temporary supports without

contamination with exogenous materials. In addition, efficient gas and nutrition

exchange could be expected, unlike in other scaffold-free MCS-based systems.

CONCLUSION

In this section, we reviewed the pros and cons of tissue engineering using scaf-

folds for regeneration of damaged tissue and discussed current developments in

scaffold-free systems, some of which have already found clinical applications.

We possess a large array of tissue engineering/regenerative medicine systems that

must now be refined for clinical applications. Some of these systems show

remarkable results in vitro but are challenging to translate into bedside.

Fracture

Femur

Skin

External
Fixator

FIGURE 1.3

External fixation for bone fracture treatment. Pins are inserted through the skin into the bone.
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The industrial giant Dow Corning, the largest supplier of silicone breast

implants, filed for Chapter 11 bankruptcy in 1995 in the face of over 20,000 law-

suits claiming that its implants caused systemic health problems, despite the fact

that there was no direct evidence linking the implants to these health problems

[101]. The lesson from this case is that despite promising results in vitro and in

preclinical models (that are usually only monitored for a few months or years),

the safety of scaffolds and implants must be confirmed in humans over the long

term. Scaffold-free systems are an alternative for tissue engineering and repair of

damaged tissues that may circumvent at least some of these potential risks.

Tissue engineering and regenerative medicine are under constant development,

so it is too early to determine which is better: scaffold or scaffold-free engineered

tissues. Whichever approach is used, to fabricate human-scale tissues or organs

in vitro, new methods must allow for neovascularization to overcome the diffu-

sion limits of oxygen and nutrients within tissues [71,72]. Endothelial cells have

the capacity to form tubes and networks in vitro under appropriate culture condi-

tions [102], so there is hope that the problems of neovascularization can be solved

without the need for fabricating complex vascular networks in vitro.

In light of the latest developments on decellularized organs [103,104], it can

be surmised that it will soon be possible to fabricate whole tissues and organs

in vitro using the appropriate combination of cells, culture conditions, and bio-

reactors without the use of artificial scaffolds. To achieve the translation of these

emerging tissue engineering technologies from benchside to bedside, with or

without a scaffold, the safety, efficacy, and cost-effectiveness of the approach

will have to be evaluated at each phase of clinical development.

FIGURE 1.4

Needle-array-based scaffold-free biofabrication system. (Left) DNA-like double helix

design template. (Middle) 3D biofabrication system in a bio-clean bench. (Right) Scaffold-

free endothelial cell�based construct based on the design template in the left pane. Scale

bar5 1 mm.
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