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Background. Fatigue is one of the most distressing symptoms among persons with multiple sclerosis (PwMS). The experience of
fatigue is inherently interoceptive, yet no study to date has explicitly investigated the insular cortex (IC) as a primary goal in the
experience of fatigue in PwMS. In addition, it is unknown how brain regions such as IC play a role in state or trait fatigue.
Objective. Assess the involvement of the IC in trait fatigue and state fatigue in PwMS with and without clinical fatigue. Methods.
Trait and state fatigue, cognitive status, and structural MRI were assessed in 27 PwMS. PwMS were stratified into nonclinical
fatigue (nF-MS, FSS ≤ 4:0) (n = 10) and clinical fatigue (F-MS, FSS ≥ 5:0) (n = 10). Voxel-based morphometry analysis (VBM)
for the whole sample (n = 20) and for the two groups was performed. Anatomical covariance analysis (ACA) analysis was
conducted by selecting different volumes included in the corticostriatal network (CoStN) and analyzing interhemispheric
correlations between those volumes to explore the state of the CoStN in both groups. Results. In the VBM analysis, when
considering the whole sample of PwMS, higher levels of trait fatigue were negatively associated with grey matter (GM) volume
in the left dorsal anterior insula (dAI) (rho = −0:647; p = 0:002; R2 = 0:369). When comparing nF-MS versus F-MS, significant
differences were found in the left dAI, where the F-MS group showed less GM volume in the left dAI. In the ACA analysis, the
F-MS group showed fewer significant interhemispheric correlations in comparison with the Low-FSS group. Conclusions. The
present results provide support to the interoceptive component of self-reported fatigue and suggest that changes in the
relationship between the different anatomical regions involved in the CoStN are present even in nonclinical trait fatigue.
Those changes might be responsible for the experience of trait fatigue in PwMS. Future studies with larger samples and
multimodal MRI acquisitions should be considered to fully understand the changes in the CoStN and the specific role of the
IC in trait fatigue.

1. Introduction

Fatigue is one of the most distressing symptoms among per-
sons with multiple sclerosis (PwMS), with an estimated
prevalence between 52%-98% [1]. Defined as “An over-
whelming sense of tiredness, lack of energy and a feeling of
exhaustion” [2], fatigue has a negative impact on activities
of daily living [3].

Despite the high prevalence and impact of fatigue in
PwMS, the neuronal correlates involved in its development
remain poorly understood. Whereas there is no generally
accepted nomenclature that clearly defines fatigue, two dif-
ferent forms of fatigue have been proposed: primary and sec-
ondary fatigue [4]. Primary fatigue has been proposed as the
combination of immune-related neuroinflammation pro-
cesses associated with the disease itself, such as the immune
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system dysfunction [5], axonal demyelination [6], white mat-
ter disruption [7], and grey matter (GM) atrophy [8]. Con-
versely, secondary fatigue is caused by secondary factors
such as poor sleep and/or excessive daytime sleepiness, phys-
ical deconditioning, and depression [9], which, although
coexist with primary fatigue, are not considered the primary
source of fatigue [10]. In addition to the distinction made
between primary and secondary fatigue, some have argued
that fatigue can be divided into two descriptive forms: state
fatigue (i.e., the feeling of fatigue in the moment) and trait
fatigue (i.e., the feeling of fatigue over an extended period)
[11]. State fatigue has been studied primarily with task-
based functional magnetic resonance imaging (fMRI) stud-
ies in which attentional resources are required and sus-
tained during a long period of time. Therefore, both the
difficulty/cognitive loads of the task and the time on task
are key components to assess how state fatigue increases
across time. Those two components can only be assessed
with fMRI paradigms in which fluctuations of functional
activity can be related to changes [12] in state fatigue. Thus,
we do not expect to find structural MRI correlates with
state fatigue.

Structural and functional neuroimaging studies that
have focused on the study of neural correlates of fatigue sug-
gesting the role of the corticostriatal network (CoStN) in
fatigue, including brain regions such as the anterior cingu-
late cortex (ACC), thalamus, putamen, posterior cingulate
cortex (PCC), caudate, and the amygdala. Additionally,
most neuroimaging studies to date on fatigue in PwMS have
focused primarily on the motor and the cognitive aspects of
fatigue; there is a gap in the literature in relation to the inter-
oceptive component of fatigue in PwMS. That is, the study
of the subjective feeling of fatigue.

Recent work has hypothesized that the feeling of fatigue
is related to a disruption of the interoceptive system [13,
14]. However, to date, only one study carried out by Gonzalez
Campo et al., (2019) has tested this hypothesis empirically. In
this study, the authors found decreased GM in the insular
cortex (IC) in the clinically fatigued group (F-MS) when
compared with a control group but not in the nonclinically
fatigued group (nF-MS). Also, they found that IC volume
was negatively associated with higher levels of fatigue in the
F-MS but not in the nF-MS group. Additionally, they found
that increased functional connectivity in interoceptive
regions was also related to higher levels of fatigue, measured
with the Modified Fatigue Impact Scale (MFIS). Neverthe-
less, they did not study how these interoceptive anatomical
regions were related to other regions already described as
being involved in fatigue in PwMS [15].

In the present work, we examined the interoceptive per-
ception of fatigue severity, in particular, the IC, and how
these interoceptive regions are related to the CoStN [16]. In
this pilot study, three hypotheses were examined. First, we
hypothesized that the IC will be involved in the perception
of trait fatigue in the F-MS group but not in the nF-MS
group. Second, we hypothesized that state fatigue will not
be associated with structural damage in the IC. Third, we
hypothesized that the F-MS group will show less GM corre-
lations between different anatomical regions from the CoStN

in comparison with the nF-MS group due to a disruption of
the interoceptive system.

2. Methods

2.1. Participants. This is a reanalysis of existing data [17] in
which a total of 27 PwMS [18] were first screened by phone
to assess their medical and psychiatric history, problems
and/or contraindications to perform an MRI scan, and their
last exacerbation. Participants were excluded if they presented
a significant history of neurological (other thanMS) or psychi-
atric disorders, drug abuse, learning disabilities, current usage
of steroids, benzodiazepines, or neuroleptics. Additionally,
participants had to be relapse-free at least for 4 weeks [19].
The Institutional Review Board of Kessler Foundation
approved the research protocol. All enrolled participants gave
their written consent to participate in the study, and they
were screened for MRI contraindications. The study was con-
ducted following the ethical standards laid down in the 1964
Declaration of Helsinki and its following amendments.

2.2. Classification of the Participants. In a former study,
Fatigue Severity Scale (FSS) was categorized into three differ-
ent groups: [1] nonfatigue (FSS ≤ 4:0), [2] borderline fatigue
(4:0 < FSS < 5:0), and [3] fatigue (FSS ≥ 5:0) [20]. In this
study, the authors reported that comparing fatigue in patients
at the extreme of a continuum (nonfatigue and fatigue) yielded
significant correlations with cognitive capacity using the Min-
imal Assessment of Cognitive Function in MS (MACFIMS),
whereas when including the borderline fatigue group in the
analysis, the significance of the correlations was lost [20].
Furthermore, a criteria cut − off ≥ 5:0 was used in a recent
publication to classify PwMS with pathological fatigue [21].
Therefore, we selected two groups (Low-FSS with ≤4.0 and
High-FSS with ≥5.0) with the same number of participants
in every group (n = 10) and discarded the 7 participants whose
scoring fell into the borderline fatigue category (Table 1).

2.3. Procedure. PwMS were enrolled and screened for eligibil-
ity in the study providing written informed consent approved
by the local Institutional Review Board. After providing con-
sent, all subjects participated in an MRI scanning session (see
below for scanning details). This protocol included both
structural and functional scans. Structural scans were the
ones reported in this study; the functional imaging results
will be reported elsewhere.

On the day of the scan, participants’ fatigue levels were
assessed with the VAS_F [23] scale, which assesses fatigue
symptoms experienced at the moment of the evaluation
and was used as a measure of state fatigue. In the scale, par-
ticipants are asked to report their level of fatigue on a scale
from 0 to 100, with 0 being not fatigued and 100 being
extremely fatigued. The Fatigue Severity Scale (FSS) [24],
which focuses on fatigue symptoms experienced during the
past week, was used as a measure of trait fatigue. The FSS is
a widely used, reliable, precise, and clinical relevant tool, with
validated cut-off [20, 21, 24] to assess fatigue severity [25, 26].
It is a 9-item scale in which participants are asked to choose a
number from 1 to 7 that indicates the degree to which they
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agree with each of the statements, where 1 indicates strongly
disagree and 7 indicates strongly agree. Higher scores on this
scale indicate higher fatigue severity.

To assess general cognitive status, the oral response for-
mat from the Symbol Digit Modalities Test (SDMT) [27]
was administered. Participants were asked to use a coded
key to match nine abstracts symbols, which were paired with
numerical digits. The final score was the number of correct
matches in 90 seconds.

The FSS and the VAS_F were collected on the same day
of the MRI scanning as a basal measure of the participants.
Conversely, the SDMT was not collected on the same day
of the MRI scanning (to avoid contamination by fatigue)
but was collected within a week before the scan.

2.4. Scan Protocol. All MRI data were acquired on a Siemens
Allegra 3.0T scanner equipped with a standard radio-
frequency head coil at the medical school of the University
of Medicine and Dentistry of New Jersey (now Rutgers Uni-
versity). The MRI protocol included one set of magnetiza-
tion prepared rapid gradient echo (MPRAGE) T1-weighted
images (Repetition Time (TR)/Echo Time (TE)/Flip Angle
(FA): 2000ms/4.38ms/8°; Field of view ðFOVÞ = 220mm;
in-plane resolution: 0:859 × 0:859mm) and a fluid attenu-
ation inversion recovery (FLAIR) image (TR/TE/FA:
8530ms/81ms/180°; FOV = 256 × 320mm; in-plane resolu-
tion: 0:688 × 0:688mm). All participants were screened for
MRI contraindications.

2.5. Image Processing

2.5.1. Brain Tissue Fraction. Total brain volume (TBV) for
every individual subject was calculated from the T1-weighted

images, using MRICloud software (https://mricloud.org/).
Every segmented image was visually inspected. In case of
doubt, a visual inspection from the technician in the MRI-
Cloud was requested. The advantage of using this software
over other methods is that inMRICloud the anatomical scans
are not registered to a single anatomical template. Instead, a
Multiple-Atlas Likelihood Fusion (MALF) algorithm (Tang,
et al., 2013) is used in which multiple atlases are considered
during the registration. Total WM (TWM) and total
(TGM) were calculated with the same software.

2.5.2. Lesion Volume Analysis. A trained clinical neuropsy-
chologist with knowledge in neurology and neuroanatomy
and experience in lesion segmentation performed the
segmentation of the lesions. Manual segmentation total
lesion volume (TLV) was calculated in native space using
ITK-SNAP (http://www.itksnap.org/pmwiki/pmwiki.php),
an interactive medical imaging segmentation tool [28] by
comparing T1 and FLAIR images. After this process, the
mask was saved for every individual, and we used the follow-
ing tools to convert the masks from native space to MNI
space. First, we used the Linear Image Registration Tool
(FLIRT) from FSL (http://www.fmrib.ox.ac.uk/fsl) to calcu-
late the linear transformation matrix to register the T1
images to the MNI standard template. Second, we used the
Nonlinear Image Registration Tool (FNIRT) from FSL to cal-
culate the nonlinear transformation field. Third, we used the
warp-fields created with FNIRT using the Applywarp tool
from FSL. Then, we used fslmaths tool to add all the different
lesions together for every single participant. We ensured that
the masks were binarized after using all those transforma-
tions to avoid the problems with the edges in the masks.
Finally, we calculated the whole volume load for every PwMS
in standard space.

2.5.3. Selection of the Regions of Interest. The left and right IC
were defined anatomically by drawing them on the Montreal
Neurological Institute (MNI) 152 standard brain. The IC’s
limits were taken considering the anterior, superior, and infe-
rior periinsular sulci [29, 30]. The resulting left insula ROI
fell within the following coordinates x = –23 and –43, y = –
17 and 24, and z = –12 and 20; the right insula ROI fall within
the reflection of those coordinates in the x-axis. The right and
the left IC were divided into three regions by applying k
-clustering algorithm to voxel-wise functional connectivity
between the IC and the rest of the brain (see Deen et al.,
2011 for a full description of the procedure) [31]. This was
done bilaterally, resulting in six regions of interest (ROIs):
dorsal anterior insula (dAI), ventral anterior insula (vAI),
and posterior insula (pI) on both left and the right sides [29].

2.5.4. Voxel-Based Morphometry Analysis. T1-weighted MRI
images were analyzed with the FMRIB Software Library (FSL
http://www.fmrib.ox.ac.uk/fsl), v6.0. Structural images were
skull stripped and GM segmented. The resulting GM partial
volume images were nonlinearly registered to the MNI152
standard template using FNIRT, which uses a b-spline repre-
sentation of the registration warp field. The resulting images
were averaged and flipped along the x-axis to create a left-

Table 1: Demographic and clinical information of the sample.

Variable
nF-MS group

(n = 10)
F-MS group
(n = 10) p value

M (SD) M (SD)

Age 45.5 (10.9) 49.5 (8.8) n.s.

Gender/male, n (%) 2 (20%) 1 (10%) n.s.

Education 15.3 (1.8) 16.3 (2.6) n.s.

Disease duration
(months)

118.8 (56.1) 198.1 (122.3) n.s.

MS type, n (%)

RRMS 5 (62.5%) 7 (77.8%)

PPMS 1 (12.5%) 0 n.s.

SPMS 2 (25%) 1 (11.1%)

PRMS 0 1 (11.1%)

FSS 31.2 (5.5) 59.0 (3.37) <0.005
VAS_F 8.7 (9.8) 26.5 (25.2) 0.059

SDMT, raw scores 51.5 (16.2) 50.8 (11.6) n.s.

MS: multiple sclerosis; RRMS: Relapsing-Remitting MS; PPMS: Primary
Progressive MS; SPMS: Secondary Progressive MS; PPRMS: Progressive
Primary Relapsing MS; FSS: Fatigue Severity Scale; VAS_F: Visual
Analogue Scale for Fatigue; SDMT: Symbol Digit Modality Test; M:
mean; SD: (standard deviation); n: number. See [22] for the MS type
diagnosis criteria.
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right symmetric, study-specific GM template. Second, the
native GM images nonlinearly registered to this study-
specific template and “modulated” to correct for local expan-
sion or contraction due to the nonlinear component of the
spatial transformation by dividing them by the determinant
of the Jacobian warp field. The modulated images were finally
smoothed with an isotropic Gaussian kernel with a sigma of
3mm. Finally, a general linear model (GLM) was applied to
the six ROIs collapsed using 5000 permutation-based non-
parametric testing, correcting for multiple comparisons
across space only for the six ROIs collapsed. Age and sex
were not introduced as covariates as they were not signifi-
cantly different across both groups. First, we used the entire
sample (n = 20) to assess the influence of FSS in GM for the
six collapsed ROIs. Second, we divided the sample into nF-
MS and F-MS groups to see if the results obtained for the
whole sample were the same once was divided into nF-MS
versus F-MS.

2.5.5. Anatomical Covariance Analysis. A T1-multi-atlas seg-
mentation function implemented in the MRICloud (https://
mricloud.org/) [32] was applied to segment each T1-
weighted image into a parcellation map including GM and
WM structures [33]. The function provided by MRICloud
is fully automated and fuses different algorithms (transfor-
mation algorithm, Large Deformation Diffeomorphic Metric
Mapping (LDDMM), and the atlas label-fusion algorithm)
[34–36] with a local search algorithm [37]. We used the
atlas library version 10A, which includes 30 atlases from
cognitively-normal individuals and individuals with cogni-
tive impairment or dementia [33].

From the parcellation, we selected the following vol-
umes of interest (VOIs) already reported to be involved in
fatigue in PwMS [38–41]: right and left IC, anterior cingu-
late cortex (ACC), thalamus, putamen, posterior cingulate
cortex (PCC), caudate, and the amygdala. The volumes con-
sidered were in native space, and they were normalized by
dividing them by the TBV in native space. Cerebrospinal
fluid was not considered.

For each group, we performed an anatomical covariance
analysis (ACA) which consisted of the calculation of bivariate
Pearson coefficients between the left and right pairs of each of
the VOIs. This was done separately for the nF-MS and F-MS
groups. We only considered interhemispheric correlations to
avoid the problem of multiple comparisons with a small sam-
ple. The correlation coefficients were stored in an anatomical
matrix of seven columns by seven rows. We used the Fisher’s
Z transformation of the correlation coefficients [42]. Finally,
we used the Network-Based Statistic software (NBS) [43]
(http://www.nitrc.org/projects/nbs/) to plot the significant
correlations for the nF-MS and F-MS groups.

2.6. Statistical Analysis. For demographic, clinical, behav-
ioral, and cognitive data, we used the Statistical Package for
Social Sciences version 21.0 (SPSS Inc., Chicago, IL, USA).
Normal distribution of data was tested with the Shapiro–
Wilk test before each analysis. Group differences in demo-
graphic, cognitive, and behavioral characteristics were
analyzed as follows: independent two-sample t-tests for nor-

mally distributed continuous variables; Mann–Whitney U
-test for nonnormally distributed continuous variables; and
Fisher’s Exact test for categorical variables.

For the VBM analysis, we divided the sample (n = 20)
into F-MS and nF-MS and we compared both groups. Results
were family-wise error (FWE) corrected. Threshold-Free
Cluster Enhancement (TFCE) was the method used to define
the clusters [44].

For the volumetric analysis, a repeated 2 (GROUP: nF-
MS versus F-MS) by 2 (IC VOLUME: left versus right), anal-
ysis of variance (ANOVA) was conducted to analyze the dif-
ferences between the two groups in the right and left IC.
Bivariate Pearson correlations were computed between FSS
and VAS_F in the left and right IC volumes for the whole
sample (n = 20) and for each group (nF-MS and F-MS) inde-
pendently. Finally, bivariate interhemispheric correlations
were conducted between the different VOIs as an exploratory
analysis to explore the differences in the CoStN between the
nF-MS and the F-MS groups.

3. Results

3.1. Demographical, Clinical, and Behavioral Data. There
were no significant differences between the groups in age,
gender, education, disease duration, MS type, state fatigue,
or cognitive status. There was no significant correlation
between the VAS_F and the FSS (r = 0:386; p = 0:093). By
definition, the F-MS group had higher levels of trait fatigue
than the nF-MS group (tð14:9Þ = 13:6, p < 0:0001).

3.2. Brain Tissue Measurements. There were no significant
differences between the nF-MS and the F-MS groups in
TBV, (Fð1,18Þ = 0:685, p = 0:419), total GM volume (GMV)
(Fð1,18Þ = 0:750, p = 0:398), total WM volume (WMV)
(Fð1,18Þ = 0:511, p = 0:484), and total lesion volume
(Fð1,18Þ = 0:954; p = 0:342) TLV). All values were expressed
in milliliters (mL).

3.3. Voxel-Based Morphometry Analysis. The analysis with
VBM comparing the nF-MS with the F-MS groups for the
six ROI collapsed showed that the F-MS group had a signifi-
cantly reduced GM in the left dAI when compared to the nF-
MS group [voxels = 19, p = 0:018, peak coordinates in MNI
(64, 65, 36)] (Table 2, Figure 1(b)).

3.4. Volumetric Analysis from the Insular Cortex. A mixed 2
by 2 ANOVA, between subject factor GROUP (F-MS versus
nF-MS), within subject factor IC VOLUME (right IC versus
left IC) showed that there was a significant volume difference
between the right IC and the left IC (main effect of IC,
Fð1,18Þ = 50:911, p = 0:000, ηp2 = 0:739, large size effect). The
left IC was smaller (0.55% of TBV) than the right IC
(0.60% of TBV). No significant interactions between groups
and IC were found.

3.5. Correlations between Left dAI and theWhole GMVolume
from the Insular Cortex and Fatigue. From the VBM analy-
sis, considering the whole sample (n = 20), the left dAI
showed a more reduced GM volume in individuals who
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reported higher FSS (rho = −0:647; p = 0:002, R2 = 0:369)
(Figure 1(a)). There was no significant influence between
the VAS_F and the GM volume. When considering the
F-MS and the nF-MS groups independently, significant
correlations were lost.

From the volumetric analysis, considering the whole
sample (n = 20), negative correlations between the left and
the right IC and the FSS scores were found. That is, the left
and the right IC showed reduced GM volumes when the
FSS scores were higher (rho = −0:470, p = 0:037, R2 = 0:221;
rho = −0:473, p = 0:035, R2 = 0:224, respectively). No other
significant correlations were found.

3.6. Anatomical Covariance Analysis (ACA). Positive and
negative significant bivariate Pearson correlations were
found between the different pairs of VOIs in the nF-MS
and the F-MS groups (Table 3, Figure 2). The F-MS group
showed fewer significant correlations between the different

anatomical volumes integrating the CoStN in comparison
with the nF-MS group. The following correlations were no
longer significant in the F-MS group in comparison with
the nF-MS group: between the right ACC and the left ACC,
thalamus, putamen, and caudate; between the right thalamus
and the left ACC, between the right putamen and the left
thalamus and caudate; between the right PCC and the left
ACC and PCC; between the right caudate and the left thala-
mus and putamen. Additionally, new positive significant cor-
relations between the right putamen and PCC and the left
amygdala, and a new negative significant correlation
appeared between the right PCC and the left thalamus.

4. Discussion

To our knowledge, this is the first study to assess [1] the role
of the IC in self-reported trait and state fatigue in PwMS as a
primary goal, and [2] how the interoceptive anatomical

Table 2: Decreased areas of GM volume in the whole group and in the F-MS group. Values are FWE corrected.

Anatomical region Cluster size Hemisphere p value MNI coordinates

Whole sample

Dorsal anterior IC 10 Left 0.027 64 65 36

nF_MS> F-MS

Dorsal anterior IC 19 Left 0.018 65 65 36

MNI: Montreal Neurological Institute.

Correlations between the L-DAI and the FSS: whole sample
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Figure 1: (a) Correlations between the dorsal anterior insular cortex (L-DAI) and the level of fatigue (FSS). In the y-axis, the different scores
in the FSS are presented (higher scores mean more fatigue). In the x-axis, different values of GM volume in the L-DAI are presented. (b)
Significant differences between the nF-MS and F-MS groups in the L-DAI. In the y-axis are represented the GM volume. In the x-axis,
there are represented the two groups (nF-MS and F-MS).
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regions are related to different anatomical structures
involved in cognitive, motor, and psychosocial fatigue. The
results showed that as levels of trait fatigue increased, the left
dAI showed a reduction in GM volume across the whole
sample (n = 20). Once the sample was divided into nF-MS
and F-MS groups, a significant GM reduction in left dAI
was found in the F-MS group compared with the nF-MS
group. This result supports our first hypothesis, and it is
consistent with current literature [13, 14]. All three studies
illustrate the need to include the IC in understanding the
“feeling” of fatigue. The IC, as part of the Salience Net-
work (SN), is a highly connected region mainly involved
in the representation, interpretation, and integration of
internal and external signals coordinating external and
internal attentional processes [45]. It has been suggested
[46] that when the functionality of the IC is disturbed,
the level of vigilance and alertness towards external stimuli
becomes compromised due to the interference of intero-
ceptive stimuli [46]. The interference of interoceptive stim-
uli may, in turn, disturb the processing of external signals
needed to perform a task [46] making challenging to focus
the attention on external oriented tasks. Therefore, a
higher effort is needed to complete and external oriented
task. This higher effort, sustained along the time, could
be the cause of fatigue in PwMS.

As hypothesized in our second hypothesis, no significant
correlations were found between state fatigue and GM atrophy
in the IC. State fatigue, considered as a dynamic process that
fluctuates depending on external factors [11], has been mainly
related to fMRI tasks in which attentional resources are
required and sustained during a long period of time. There-
fore, both the difficulty/cognitive load of the task and the time
on task are key components to assess how state fatigue
increases gradually along the time. Those two components
can only be assessed with fMRI paradigms in which fluctua-
tions of functional activity can be related to changes [12] in
state fatigue.

Finally, as hypothesized in our third hypothesis, the
group with clinical fatigue (F-MS) showed less GM correla-
tions between different anatomical regions from the CoStN
in comparison with the group without clinical fatigue (nF-
MS). In our present work, the nF-MS group was character-
ized by [1] negative correlations between the left ACC and
the right thalamus, putamen, and caudate; and between the
left amygdala and the right thalamus, and [2] the preserva-
tion of the positive correlations between the right and the left
homologous contralateral anatomical areas. Conversely, the
F-MS group was mainly characterized by [1] the loss of cor-
relations between the ACC and the rest of the anatomical
regions considered in this study, [2] the emergence of two

Table 3: Bivariate transhemispheric correlations between the different VOIs from the CoStN.

(a)

nF-MS group

Left

Right IC ACC Thal. Put. PCC Caud. Amyg.

IC 0.66 (0.04) n.s. n.s. n.s. n.s. n.s. n.s.

ACC n.s. 0.74 (0.02) -0.88 (0.00) -0.93 (0.00) n.s. -0.78 (0.01) n.s.

Thal. n.s. -0.81 (0.01) 0.92 (0.00) 0.71 (0.02) n.s. 0.99 (0.03) -0.67 (0.04)

Put. n.s. n.s. 0.82 (0.00) 0.96 (0.00) n.s. 0.78 (0.00) n.s.

PCC n.s. 0.76 (0.01) n.s. n.s. 0.91 (0.00) n.s. n.s.

Caud. n.s. n.s. 0.72 (0.02) 0.79 (0.01) n.s. 0.94 (0.00) n.s.

Amyg. n.s. n.s. n.s. n.s. n.s. n.s. 0.85 (0.00)

(b)

F-MS group

Left

Right IC ACC Thal. Put. PCC Caud. Amyg.

IC 0.98 (0.00) n.s. n.s. n.s. n.s. n.s. n.s.

ACC n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Thal. n.s. n.s. 0.91 (0.00) n.s. n.s. n.s. n.s.

Put. n.s. n.s. n.s. 0.86 (0.00) n.s. n.s. 0.77 (0.00)

PCC n.s. n.s. -0.64 (0.05) n.s. n.s. n.s. 0.72 (0.02)

Caud. n.s. n.s. n.s. n.s. n.s. 0.88 (0.00) n.s.

Amyg. n.s. n.s. n.s. n.s. n.s. n.s. 0.71 (0.01)

IC: insular cortex; ACC: anterior cingulate cortex; Thal.: thalamus; Put.: putamen; PCC: posterior cingulate cortex; Caud.: caudate; Amyg.: amygdala. The first
number refers to the correlation’s coefficient; the second number between parentheses refers to the significance of the correlation.
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new positive correlations involving the amygdala (right
putamen-left amygdala and right PCC-left amygdala).
Whereas positive correlations can be suggestive of healthy
GM volume between the connected structures, negative cor-
relations are indicative of enough damage that need to be
compensated [47]. Therefore, the presence of several nega-
tive correlations in the nF-MS group mainly involving the
ACC might be suggestive of a process of compensation in
areas involved in fatigue in PwMS before the development
of clinical fatigue. Conversely, the loss of those same negative
correlations involving the ACC in the F-MS group might be
suggestive of the inability of the ACC to regulate fatigue,
and the appearance of two new positive correlations involv-
ing the amygdala is suggestive of a change in the structural
organization of the brain in which a dysfunctional ACC
and an atrophied IC might be being replaced by other ana-
tomical structures such as the amygdala. The ACC, the IC,
and the amygdala, as interoceptive brain areas, have been
recently related to fatigue in PwMS (Campo et al., 2019; Han-
ken et al., 2018).

This study has some limitations. First, there was a small
sample size. Secondly, it was cross-sectional in nature. Third,
there was a lack of an appropriate matched healthy control
group, and a lack of measures of physical disability, pharma-
cological therapy, and depression, which limits the applica-

tion of the findings to an extended population, prevents the
establishment of causality and restricts further interpreta-
tions of the different pattern of correlations found in both
groups.

In conclusion, we found that GM atrophy in the IC is
related to higher levels of trait fatigue but not with state
fatigue, and changes in the IC, the ACC and the amygdala
are involved in the process of fatigue in PwMS. This implies
that trait fatigue is a more complex system that can be better
understood when considering the interoceptive component
in its study. Furthermore, future studies focused on the study
of fatigue should include not only measures of fatigue but
also measures of interoceptive perception to complement
the assessment of fatigue. Most importantly, interoceptive
training could be a therapeutic approximation to alleviate
fatigue in PwMS.

Given the small sample and the pilot nature of the study,
the lack of significant correlations should not be interpreted
as evidence of a lack of a relationship. Therefore, the results
reported should be interpreted with caution, specially the
lack of correlation between the IC and state fatigue. Future
longitudinal studies with larger samples are warranted to
understand the neural changes associated with fatigue not
only through the disease but also through the different types
of the disease.
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Figure 2: Results from the anatomical covariance analysis (ACA). The left column of glass brains belongs to the nF-MS group. The right
column of brains belongs to the F-MS group. Blue lines indicate inverse correlations between the different volumes of interest (VOIs).
Yellow and red indicate positive correlations between the VOIs. The color bar represents Fisher Z scores. Only significant correlations are
presented. The right side of the figure shows the matrices of correlations between right and left VOIs. The up-right matrix belongs to the
nF-MS group. The down-left matrix belongs to the F-MS group. L: left: R: right. The color bar of the matrices represents the Fisher Z scores.
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