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A novel donor–acceptor–donor (D-A-D) type compound containing pyrazine as the
acceptor and triphenylamine as the donor has been designed and synthesized. The
photophysical properties and biocompatibility of this probe, namely (OMeTPA)2-Pyr for live
cell imaging were systematically investigated, with observed large Stokes shifts, high
photostability, and low cytotoxicity. Furthermore, we demonstrated that (OMeTPA)2-Pyr
could permeate live cell membranes for labeling. The proposed mechanism of this probe
was the binding and shafting through membrane integral transport proteins by
electrostatic and hydrophobic interactions. These salient and novel findings can
facilitate the strategic design of new pyrazine-fused charge-neutral molecular platforms
as fluorescent probes, for long-term in situ dynamic monitoring in live cells.
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INTRODUCTION

Using fluorescent probes for long-term monitoring of live cells is the key to understanding and
modulating molecular events happening within organelles, unraveling the physiological dynamics.
Recently reported fluorogenic probes involve the D-A (donor–acceptor) type platforms such as
substituted acetylnaphthalene derivatives (Tang and Jiang, 2017; Zhang et al., 2021a; Gao et al.,
2021), BODIPYs (Tian et al., 2018; Bai et al., 2019; Liu et al., 2019; Zhang et al., 2021b; Li et al., 2021),
AIEgens (Shi et al., 2019; Xu et al., 2021; Zheng et al., 2021), and organometallic compounds (Jin
et al., 2021; Zhu et al., 2021; Ünlüer, 2021). However, tuning the bandgaps for predictable
photophysical properties of D-A type molecules was limited by synthetic approaches. On the
other hand, D-A-D type chromophores have currently attracted much research attention for
showing great potentials as a fine-tuning platform for opto-electronic applications (Yang et al.,
2020; Liu et al., 2021). In recent reports, D-A-D fluorescent probes have been used in imaging of
lysosomal nitric oxide (Wang et al., 2018) and biothiol (Chen et al., 2018). With enriched variety of
structure–activity relationships and a larger degree of conjugation that generates a longer wavelength
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emission, the D-A-D type molecular systems can reach desired
performance indicators as probes through a rational design.

Under physiological microenvironments, aggregated caused
quenching (ACQ) may happen that interferes the sensitivity and
signal to noise ratio of fluorescent probes (Chen et al., 2020; Wang
et al., 2021). Therefore, fluorophores with background-free signals
are desired in bioimaging. It has been proven that in pure aqueous
media, heteroaromatic-fused probes show none or weak
fluorescence due to their formation of intramolecular
H-aggregates, whereas in microenvironments with mixed organic
media lipophilic and components, distinct fluorescence signals are
obtained due to the unfolding and disruption of the probes’ single
domain alignment (Kobayashi andChoyke, 2011; Lee et al., 2014; He
et al., 2019). Considering choosing suitable aggregate moieties as
functional groups in fluorescent probes, tetrenyl styrene (TPE),
tetrenyl-1,4-dibutylene (TPBD), and distyrene (DSA) were
reported susceptible to photothermal oxidation which leads to
poor photostability, due to their strong electrophilic C-C double
bonds that can react with nucleophilic reagents; the synthetic
complexity of tetrenyl-1,4-dibutylene (TPBD) and hexabenzene
(HPS) makes their scalability unfeasible for rapid accessible at a
low cost (Chen et al., 2019; Xia et al., 2019; Cai and Liu, 2020). To
tackle the above issues, in recent reports, a range of D-A-D type
molecular systems have been reported. Lou et al. reported a D-A-D
type curcuminoid-based fluorophore with a high signal to noise ratio
(SNR) for biothiol recognition in living cells (Yang et al., 2020).
Zhang et al. and Wang et al. reported fluorescent imaging via
triphenylamine (TPA)-based probes (AS2CP-TPA, TTVP) with
hydrophilic pyridinium salt moiety (Liu et al., 2020a),
demonstrated a fast staining protocol. However, these probes
were limited to stain the cell plasma membrane, thus, required
additives such as lipid vesicle reagents (Morris et al., 2009; Suzuki
et al., 2016; Han et al., 2017). Therefore, there is still an unmet
demand for rational design and synthesis of novel probes with
synthetic simplicity, tunable photophysical properties, greater
stability, and biocompatibility (Liu et al., 2020b; Wang et al., 2020).

RESULTS AND DISCUSSION

Preparation of (OMeTPA)2-Pyr Probe
In view of current challenges in probing molecular platforms, we
have synthesized a D-A-D type probe with a rational design. The
consideration for the molecular design is to retain photostability
and imaging brightness by expanding the degree of π-conjugation
and enhancing the intramolecular charge transfer effect through
the D-A-D configuration. Pyrazine was chosen as the core
acceptor moiety, which reacted with 4-methoxytriphenylamine
as the donor group. The lone-pair electrons of the terminal O and
N atoms in the TPA groups were able to efficiently delocalize the
π-bonds. As the LUMOs are relatively concentrated on the
pyrazine core, the intramolecular charge transfer (ICT) effect
would be promoted upon excitation during the imaging process
to ensure the photostability (Yang et al., 2020; Liu et al., 2021).
Synthesis was carried out in a one-pot reaction by the Suzuki
coupling reaction Pd2 (dba)3, SPhos, and cesium carbonate
aqueous solution in toluene, 80 °C, 12 hrs (Scheme 1) in

moderate yield as yellow powder. The correct chemical
structure of (OMeTPA)2-Pyr was verified by 1H and
13CNMR spectra alongside mass spectrometry
(Supplementary Figure S1–3) with satisfactory analysis.

Density Functional Theory (DFT)
Calculations
Introduction of the bulky 4-methoxy-TPA substituents as donor on
the pyrazine core as the acceptor orchestrated the electronic
distribution and photophysics property of the fused D-A-D type
compound (Figure 1). It was found that the horizontal dispersion of
LUMO levels was mostly distributed on the central pyrazine core
with the central π bridge; however, the electronic cloud of theHOMO
levels in the compound could be delocalized further over the entire
molecule. This electronic distribution was considered facilitating the
inherent intramolecular charge transfer (ICT) characteristics of
(OMeTPA)2-Pyr, which were further confirmed via spectroscopy.

Photophysics Analysis
From spectroscopy, (OMeTPA)2-Pyr was found with a quantum
yield ΦFL � 0.36 and lifetime τ� 1.42 ns in DMF. In accord with
the DFT calculation, the spectra have shown the existence of an
intramolecular charge transfer (ICT) excited state in the D-A-D
system. Two absorption bands of 289 nm (n→σ*) and 416 nm
(n→π*) were observed in the UV-Vis spectrum, which were
relatively insensitive to polarity changes in solvents
(Figure 2A, Supplementary Figure S4). The maximum
excitation wavelength of (OMeTPA)2-Pyr was found at
427 nm (Supplementary Figure S5), and the fluorescence
emission spectra were strongly affected by the polarity of
surrounding solvents (Figure 2B). The emission peak of
(OMeTPA)2-Pyr red shifted from 489 nm (in hexane, apolar
aprotic) to 551 nm (in DMF, polar aprotic), respectively (Table
S1). The sensitivity of (OMeTPA)2-Pyr in the solvent
environment was estimated by measuring the difference in
units of wavenumbers (Δν) between the maximum absorption
and emission, deduced from the Lippert-Mataga equation (Chen
et al., 2019) (Zhang et al., 2021a),

�VAbs − �VFL � Δ �V � 2
hc

( ε − 1
2ε + 1

− n2 − 1

2n2 + 1
) (με − μG)2

a3

� 2Δf
hc

(με − μG)2
a3

,

[1]

in which, νAbs is the wavenumber of the absorption, νF is the
wavenumber of the fluorescent emission, h is Planck’s constant, c
is the velocity of light, and a is the Onsager cavity radius around
the fluorophore, which was calculated from the DFT optimized
lowest energy structure. In this case, the Onsager radius a (0.68 Å)
was taken as half the average distance between the 4-
methoxyphenylaniline (-OCH3) in the donor moiety and the
imine nitrogen carbon of the pyrazine acceptor, which correlates
with the longest possible axis across the molecule where charge
separation could take place; Δμ � (μE-μG) represents the
difference between excited and ground states dipole moments.
Δf is defined by the dielectric constant ε and the refractive index
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n, which represents the orientation polarizability. In accord with
the Lippert–Mataga formula, the Stokes displacement is
proportional to the orientation polarizability with different
solvents, relevant to Δμ (the difference between the dipole
moment between the excited state and the ground state). The
D-A-D type structure with the planar TPA group and twisted
molecular conformation made the (OMeTPA)2-Pyr probe
possess both π-conjugation and intermolecular π-π
interactions. Upon excitation, π electrons are easily polarized.
The dipole moments in the excited state are known to be greater
than theirs in the ground state. Hence, the excited energy of this
molecule would be stabilized by the polar solvent to a greater
extent, which correlates with the solvent dependency of Stokes’
shift changes. The Stokes’ shift measured in the variant solvent
can be seen changing linearly in the Lippert-Mataga plot
(Supplementary Figure S7, S8) in response to the solvent

polarity. The Stokes shift of (OMeTPA)2-Pyr changed from
64 nm (3080cm-1) in hexane to 124 nm (5314cm-1) in DMF,
respectively, correlating with Δμ (8.0 D), proportional to the
orientation polarizability.

From the spectroscopy-measured excited-state dipole moment
data alongside DFT calculation, the electron transfer process can
be seen in this D-A-D molecular system. The obtained DFT
values of redox potentials indicate that the subunits interact
very weakly in the ground states. Introduction of electron-
donating methoxy groups enhanced the electron push-pull
effect and the conjugate level of the D-A-D molecule.
Meanwhile, due to the rotation of the 2-phenylpyrazine
single bonds between the donor and acceptor, activation of
the ICT process was observed accompanying by
conformational changes in molecular geometry and
therefore, induced the formation of twisted intramolecular

SCHEME 1 | The synthesis of (OMeTPA)2-Pyr. Reagents and conditions: Pd2 (dba)3, SPhos [2-Dicyclohexylphosphino-2′,6′-dimethoxybiphenyl] and cesium
carbonate aqueous solution in toluene, 80°C, 12 h.

FIGURE 1 | Energies and electronic orbital localizations of (OMeTPA)2-Pyr in its representative Frontier molecular orbital distributions.
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charge transfer (TICT) states apart from the excited state
charge transfer (Supplementary Figure S9).

Considering the use of (OMeTPA)2-Pyr for live cell probing
under physiological environments, the fluorescent property was then
tested in the gradient mixture of DMF with water (protic solvent).
Intensity of maximum fluorescence increased with water fraction
range 30–70%. Dynamic light scattering measurement has found a
smaller average diameter (19 nm) and a fewer polydispersity index
(0.305) of the probe in aqueous solution than in DMF solvents
(Supplementary Table S2, Figure S10). Attribute to the free rotation
ofmethoxy groupswithminimumelectron affinity in theD-A-D axis
plane orientations, the non-aggregate homogenous distribution
property in the aqueous solution maketh the probe compatible for
live cell imaging.

Molecular Docking Simulations
Using the aromatic heterocycle with two nitrogen atoms, the pyrazine
core could affect the protonation and hydrogen-bond formation with
the membrane integral transport proteins and facilitate the live cell
membrane permeability. To validate this hypothesis, (OMeTPA)2-
Pyr was docked into the binding site of the human asialoglycoprotein
receptor ASGPR (PDB ID: 1DV8, typeII membrane integral
transport protein). The maximum binding affinity between
(OMeTPA)2-Pyr and the ASGPR was predicted to be -5.6 kcal/
mol. The probe adopted a compact conformation to bind at the site of
the ASGPR (Figure 3A). The probe located at the hydrophobic
pocket, surrounded by the residues Val-155, Trp-166, Ala-173, and
Pro-271, forming a stable hydrophobic binding (Figure 3B). Detailed
analysis showed that the phenyl groups of the (OMeTPA)2-Pyr
formed cation-π and anion-π interactions with the residues Lys-172
and Asp-176, respectively. Importantly, two key hydrogen bond
interactions were observed between the (OMeTPA)2-Pyr and the
residues Ser-170 and Ala-173 (bond lengths: 2.2 Å and 2.2 Å), which
was the main interaction between the (OMeTPA)2-Pyr and the
ASGPR (Figure 3B). All these interactions facilitated the probe to
anchor tightly into the binding pocket of ASGPR, rather than attach
at the shallow surface of the peptide side chains. Therefore, this
charge neutral probe was enabled to interact with membrane

transporters for attained live cell permeability, which was then
confirmed by time-resolved live cell imaging results.

Live Cell Confocal Laser Scanning
Microscopy Imaging
Confocal laser scanning microscopy (CLSM) imaging results
(Figure 4) showed that the distribution of (OMeTPA)2-Pyr was
mainly in live cell plasma, fewer at cell nucleus, none co-localizing
with the commercial nuclear stain RedDot™ (Figure 4) nor Hoechst
33,342 (Figure 5); partially co-localizing with the commercial
mitochondria tracker MitoTracker® Red (Pearson correlation
35.7%). The linear fluorescence intensity was measured using
ImageJ; the average diameter of the stained points was 1.27mm
with high uniformity (Supplementary Figure S11). (OMeTPA)2-
Pyr was found to effectively label the cells with obviously
homogenous distribution in the cytoplasm without leaching out
from the stained cells over incubation time (24 h). This result
suggested that (OMeTPA)2-Pyr is unlikely to cause false positive
stain due to leakage. The membrane permeability and live cell-
specific labeling of (OMeTPA)2-Pyr was then confirmed by imaging
results in fixed cells (Figure 5). In 4% formaldehyde-fixed Hela cells,
(OMeTPA)2-Pyr was stained solely on the cell membrane thitherto
none uptake by the cytoplasm after 24 h incubation. In accord with
the molecular docking simulations, hydrophobic pocket binding
formation of (OMeTPA)2-Pyr with the asialoglycoprotein receptor
(ASGPR)-a type II transmembrane glycoprotein played important
role in its live cell cytoplasm localization.

The photophysical fidelity and biocompatibility of (OMeTPA)2-
Pyr in live cell imaging were further examined. Photo-bleaching,
which is a common challenge for many organic probes were not
observed in this case. LiveHela cells precultured with (OMeTPA)2-
Pyr were exposed to constant 405 nm laser illumination, the
intracellular fluorescence intensity was recorded over time by
confocal microscopy and calculated by ImageJ software. Results
have showed that (OMeTPA)2-Pyr exhibited constant fluorescence
emission and the relative intensity remained over 70% after 2 h
illumination, suggesting the photostability of (OMeTPA)2-Pyr

FIGURE 2 | (A) Normalized absorption and fluorescence emission spectrum of (OMeTPA)2Pyr in DMF; (B) Fluorescence spectra of (OMeTPA)2Pyr in variant
solvents (λex � 427 nm).
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inside live cells (Supplementary Figure S13). The biocompatibility
of (OMeTPA)2-Pyr was evaluated in HeLa and 4T1 cells by CCK-8
assay for 24 h incubation at a dosage up to 50 μg/ml
(Supplementary Figure S14), which was over 30 fold higher
than the concentration used in cell labeling. The data suggested
that (OMeTPA)2-Pyr labeling did not affect cell viability. Moreover,
the quality of fluorescence images retained over different generations
of (OMeTPA)2-Pyr-labeled live cells. Results have shown that the
probe could be carried over to the three generation of offspring cells
with photophysical consistency (Figure 6).

CONCLUSION

A pyrazine-bridged D-A-D type fluorescence probe, namely
(OMeTPA)2-Pyr, was designed and synthesized. This charge

neutral probe was found selectively binding to membrane
transporter protein and thus, could be taken by live cells for
cytoplasm imaging. The advantages of photostability and long-
term labeling render great potential to develop a novel molecular
platform for long-term live cell imaging.

METHODS

Synthesis of (OMeTPA)2-Pyr
In a 50ml Shrek tube, the mixture of 2,5-dibromopyrazine (242mg,
1.01mmol), 4-methoxy-N-(4-methoxyphenyl)-N-(4-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)--phenyl)aniline (1.29 g,
3.04mmol),Pd2 (dba)3 (127mg, 0.14mmol),SPhos (88mg,
0.21mmol), and Cs2CO3 (6.91g, 21.21mmol) in toluene/H2O (2:
1, 15ml) was stirred at 85 °C for 24 h under the protection of N2.

FIGURE 3 | (A) Total view of; (B) Detailed view of (OMeTPA)2Pyr docked into the binding site of the ASGPR transmembrane glycoprotein. Representative binding
residues were shown in blue/green lines; the probe molecule was represented with rose red sticks with N/O atoms highlighted; The hydrogen bonds were shown in
yellow dotted lines.

FIGURE 4 | CLSM images of (A) Merged image of all channels for the cells co-stained with a commercial nuclear stain RedDot™(1.0 μM, 30 min) and probe; (B)
(OMeTPA)2Pyr (2.0 μM with 0.1% DMSO in cell medium) treated live Hela cells after 30 min staining; (C) Calculation of co-localization coefficient. Scale bar: 20 μm.
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FIGURE 5 | CLSM images of live Hela cell (a-/b-/c-/d-live) and DMF fixed cell (a-/b-/c-/d-fix) co-stained with commercial dyes and probe: (A) channels of nuclear
stain Hoechst 33,342; (B) channels of mitochondria tracker MitoTracker

®
Red; (C) channels of fixed and live cells stained with (OMeTPA)2-Pyr (1.5 μg/ml) in 24 h,

respectively; (D) Merged image of all channels. Scale bar, 10 μm.

FIGURE 6 | CLSM images of live Hela cells stained with (OMeTPA)2Pyr (1.5 μg/ml) over different cell generation. Scale bar, 10 μm.
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After cooling the solution to room temperature, the reaction mixture
was poured into a 250ml separatory funnel to separate the organic
phase and using CH2Cl2 to extract the aqueous phase. Then, the
combined organic phase was dried by MgSO4 and concentrated by
rotavapor. At last, the residue was purified by a silica gel column
(Hexane:DCM � 1:1) to afford (OMeTPA)2-Pyr as a yellow solid
(402mg, 58% yield). 1HNMR (400MHz, CDCl3): δ � 3.81 (s, 12H),
6.86 (d, J� 8Hz, 8H), 7.01 (d, J� 8Hz 4H), 7.11 (d, J� 8Hz, 8H), 7.85
(d, J� 8Hz, 4H), 8.91 (s, 2H) ppm; 13CNMR (100MHz, CDCl3): δ �
55.46, 114.75, 119.69, 127.07, 127.17, 127.65, 140.19, 149.21, 149.98,
156.26 ppm. HRMS (EI) m/z: calcd for C44H38N4O4 � 686.29;
found [M+1]+ � 687.2965.

Density Functional Theory (DFT)
Calculations
Highest occupied (HOMO) and lowest unoccupied (LUMO)
Kohn–Sham orbitals were conducted by TDDFT/B3LYP/6-
31G*(d,p) for C/H/O/N based on the optimized molecular
geometries in the ground state and first excited state. The
orbital energies shown in parentheses were established with
DFT calculations using Gaussian 09 software package. The
optimized geometry and space plots were visualized using
Multiwfn and VMD software.

Molecular Docking Simulation
Dock vina 1.1.2 was used to investigate the binding mode between
(OMeTPA)2-Pyr and the membrane transporter human
asialoglycoprotein receptor (ASGPR). The 2D structure of the
(OMeTPA)2-Pyr was drawn and converted to a 3D structure by
ChemBio3D Ultra 14.0 software. The 3D structure of ASGPR
(PDB ID: 1DV8) was downloaded from the RCSB Protein Data
Bank (www.rcsb.org). AutoDockTools 1.5.6 package (Cai and
Liu, 2020) was employed to generate the docking input files. The
ligand was prepared for docking by merging non-polar hydrogen
atoms and defining rotatable bonds. The search grid of the
ASGPR site was identified as center_x: 3.911, center_y: 17.995,
and center_z: 32.857 with dimensions size_x: 39.75, size_y: 39.75,
and size_z: 35.25. In order to increase the docking accuracy, the
value of exhaustiveness was set to 20. For Vina docking, the
default parameters were used if it was not mentioned. The best-
scoring pose as judged by the Vina docking score was chosen and
visually analyzed using PyMoL 1.7.6 software (www.pymol.org).

Cell Imaging
Cells were seeded on 35 mm glass-bottom dishes (NEST) and
incubated in DMEM culture medium at 37 °C in 5% CO2

overnight. The cells were cultured for 40 min in DMEM
spiked with (OMeTPA)2-Pyr (1.5 μg/ml) and commercial
trackers. The cells were washed with PBS (1 ml) and placed in
fresh culture medium. Then, the cells were analyzed by confocal
fluorescence microscopy (Leica SP8) using the following filters:
λex � 405 nm and λem � 420–550 nm for (OMeTPA)2-Pyr
signal, λex � 552 nm and λem � 587–657 nm for the
Mitotracker Red signal, and λex � 638 nm and λem �
710–880 nm for the RedDotTM1 signal. The fluorescence
signals of MitoRed, RedDotTM1, and (OMeTPA)2-Pyr inside

cells were merged using Photoshop CS 5.0. The fluorescence
values and distributions were analyzed by the software of ImageJ.

Cytotoxicity Assay (CCK-8)
To determine the biocompatibility of (OMeTPA)2-Pyr against
different cell types, 4T1 and HeLa cells were seeded in the 96-well
plate with 5 × 103 cells per well and incubated overnight in
DMEM culture medium. The cells were washed with PBS once
and then incubated in fresh culture medium containing various
amounts of (OMeTPA)2-Pyr (0, 10, 20, and 50 μg/ml) for 48 h
respectively. After washing with PBS twice, the cells received
CCK-8 analysis following the manufacturer’s protocols.
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