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Abstract

Background: Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein
sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading
to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are
thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth
can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant
clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant
clones also promote apoptotic resistance in a non-autonomous manner.

Principal Findings: Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25,
mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly
mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-
autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic
resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous
proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and
vps25 mutations trigger Notch activity.

Conclusions/Significance: The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic
properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is
required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.
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Introduction

Appropriate cell/cell signaling requires both coordinated

activation and inactivation of cell surface signaling receptors.

Usually, the receptors are activated by ligand binding upon which

they induce an intracellular response including ubiquitination of

the receptor which provides the signal for receptor internalization

by endocytosis [1–3]. Endocytosis also controls the steady-state

levels of cell surface receptors independently of ligand occupation.

After endocytosis, the cell surface receptors are present at the early

endosome. Because the intracellular domain of activated signaling

receptors is exposed to the cytosol, the receptors are still able to

signal. In fact, signaling from the endosomal location appears to be

the preferred mode of several signaling pathways as it brings the

receptor in close proximity to intracellular signaling complexes [4–

8]. To fully inactivate the signaling receptors, a second form of

internalization at the limiting membrane of the early endosome is

necessary to form the multi-vesicular body (MVB) [3,9–14]. In the

MVB, the receptors are completely detached from the cytosol and

stop signaling. Finally, the MVB fuses with lysosomes for

proteolytic degradation.

Genetic studies in yeast have identified fifteen class E vps

(vacuolar protein sorting) genes required for MVB formation [15].

These genes encode the components of four ESCRT (Endosomal

Sorting Complex Required for Transport) protein complexes

(reviewed by [3,9]). Hrs (Vps27) and STAM (Hse1) form ESCRT-

0, which initiates the recruitment of the signaling receptor (the

cargo) to the early endosome and delivers it to ESCRT-I. From

there, the cargo is transferred to ESCRT-II and then to ESCRT-

III. At ESCRT-III, the receptors are internalized into MVBs [3,9].

Loss of class E vps function in yeast leads to accumulation of

ubiquitinated proteins on the limiting membrane of enlarged

endosomes [12]. Biochemical studies in mammalian cells have

revealed a similar function for endosomal protein sorting [3,9].

The phenotypic consequences of loss of class E vps genes in the

context of a multi-cellular organism have just recently been

unveiled. In Drosophila, mutants in hrs, erupted (ept, encoding the

ESCRT-I component vps23) and vps25 (a component of ESCRT-
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II) have recently been described. These mutants are characterized

by enlarged endosomes which contain increased protein levels of

Notch, Delta, EGFR, Patched, Smoothened, and Thickveins (the

Drosophila TGFb type 1 receptor) [16–21]. Despite these common

endosomal defects, hrs, ept and vps25 display different phenotypes

at the organismal level. While hrs mosaics do not display any

obvious adult phenotypes, ept and vps25 mosaics are characterized

by overgrown adult eyes and heads, and overgrown larval

imaginal discs due to hyperplastic proliferation. Hyperplastic

proliferation refers to increased proliferation and overgrowth;

however, hyperplastic cells still maintain epithelial polarity and

will eventually stop proliferating [22]. Interestingly, this hyper-

plastic growth does not occur in ept and vps25 mutant tissue itself.

Instead, it occurs in wild-type cells immediately abutting the

mutant tissue [18–21]. This non-autonomous hyperplastic prolif-

eration is caused by increased Notch activity at the ept and vps25

endosomes which stimulates neighboring cells to undergo

proliferation by activating the Jak/STAT pathway [23–25].

Increased Notch activity has not been observed in hrs mutants

despite the accumulation of Notch protein, explaining the lack of

hyperplastic overgrowth in hrs mutants.

In addition to non-autonomous hyperplastic growth in genetic

mosaics, ept and vps25 mutations can cause neoplastic overgrowth.

Neoplastic cells lose epithelial polarity and fail to stop proliferating

giving rise to significant overgrowth [22]. ept and vps25 mutants

show neoplastic overgrowth if almost the entire imaginal disc is

mutant [18,20,26]. Neoplastic overgrowth can also be induced in

vps25 mosaic tissue, if apoptosis is blocked in vps25 mutant cells

[19,21]. Under both conditions, neoplastic growth occurs in an

autonomous manner, i.e. in the mutant tissue [19,21]. These

findings were significant for a better understanding of tumor

formation caused by inactivation of Tsg101 (tumor susceptibility

gene 101), the human vps23 homolog, which has been implicated

in cervical, breast, prostate and gastrointestinal cancers [27–31].

In addition, although vps25 mutant cells undergo apoptosis,

before they die they can increase the apoptotic resistance of

neighboring cells through up-regulation of the apoptosis inhibitor

Diap1 (Drosophila Inhibitor of Apoptosis Protein 1) [21].

Except for vps25, a genetic analysis of the ESCRT-II components

for endosomal protein sorting in metazoan organisms has not been

reported. Here, we characterize and compare the mutant pheno-

types of the individual components of the ESCRT-II complex, vps22

(also called larsen [32]), vps25 and vps36 in Drosophila. The ESCRT-II

complex is a heterotetramer composed of two Vps25 subunits, and

one subunit each of Vps22 and Vps36 [33,34]. We show that mutant

cells of the three ESCRT-II components display endosomal defects

and accumulate Notch protein. Moreover, imaginal discs predom-

inantly mutant for the three ESCRT-II components show

characteristics of neoplastic tissue growth. However, despite these

common defects, the phenotypic consequences of loss of vps22, vps25

and vps36 in mosaic animals are distinct. vps22 and vps25, but not

vps36 mosaics show non-autonomous hyperplastic growth. In

contrast, vps25 and vps36, but not vps22 mosaics strongly increase

apoptotic resistance. We demonstrate that these differences are

caused by selective Notch activation. vps22 and vps25 clones display

high Notch signaling activity, while vps36 clones do not, suggesting

that hyperplastic growth depends on Notch signaling. However,

neoplastic growth may be independent of Notch signaling. Thus,

despite their intimate physical relationship, the individual ESCRT-II

components are genetically not equivalent.

Results

Common phenotypes I: ESCRT-II mutants contain enlarged
endosomes accumulating ubiquitinated proteins

Because vps25 mutants in Drosophila are characterized by

enlarged early endosomes [19–21] (see also Fig. 1B0), we tested

whether mutants in the other two ESCRT-II components also

contain abnormal endosomes. As endosomal marker we used an

antibody raised against Hrs [17]. Mutant clones of vps22 and vps36

in eye imaginal discs contain enlarged Hrs-positive particles,

representing abnormal early endosomes (Fig. 1A0,C0).

Figure 1. Mutant clones of ESCRT-II components display endosomal defects and accumulate ubiquitinated proteins. Shown are eye
imaginal discs of 3rd instar larvae mosaic for ESCRT-II mutants. Mutant clones are marked by the absence of GFP. Mutant clones of ESCRT-II
components show abnormal accumulation of the early endosomal marker Hrs and accumulation of ubiquitin-conjugated proteins as visualized by
the FK1 antibody. Hrs and ubiquitin-conjugated proteins accumulate in foci which frequently co-localize. Scale bars represent 50 mm. (A,B,C) GFP/
Hrs/FK1 (green/red/blue) co-labelings of (A) vps225F8-3, (B) vps25N55 and (C) vps36L5212 eye mosaics. (A9,B9,C9) Hrs/FK1 (red/blue) co-labelings of (A9)
vps225F8-3, (B9) vps25N55 and (C9) vps36L5212 eye mosaics. (A0,B0,C0) Hrs labeling of (A0) vps225F8-3, (B0) vps25N55 and (C0) vps36L5212 eye mosaics.
(A90,B90,C90) FK1 labeling of (A90) vps225F8-3, (B90) vps25N55 and (C90) vps36L5212 eye mosaics. Genotypes: (A) eyFlp ; FRT82B vps225F8-3/FRT82B P[ubi-GFP].
(B) eyFlp; FRT42D vps25N55/FRT42D P[ubi-GFP]. (C) eyFlp ; vps36L5212 FRT2A/P[ubi-GFP] FRT2A.
doi:10.1371/journal.pone.0004165.g001
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The FK1 and FK2 antibodies recognize ubiquitin-conjugated

proteins, but not unconjugated ubiquitin [35–37]. Using the FK

antibodies, we found that the enlarged Hrs-positive particles

accumulate ubiquitin-conjugated proteins (shown for FK1 in

Fig. 1A90–C90). Similar data were obtained for FK2 antibody (data

not shown). In addition, an antibody that recognizes both

conjugated and unconjugated ubiquitin also detects increased

abundance of ubiquitin in vps22, vps25 and vps36 mutant clones

(Fig. 2A0, C0). Thus, vps22, vps25, and vps36 mutant cells contain

abnormally large early endosomes that accumulate ubiquitin-

conjugated proteins.

Common phenotypes II: Accumulation of Notch and
Delta proteins ESCRT-II mutant clones

It has been reported that vps25 mutants accumulate Notch protein

in endosomes [19–21] (see also Fig. 2B,E). Thus, we analyzed vps22

and vps36 mutants for accumulation of Notch protein. Consistently,

vps22 and vps36 mutant clones accumulate Notch protein in punctate

particles that, due to their colocalization with ubiquitylated proteins,

correspond to enlarged endosomes (Fig. 2A,C,D,F). This was found

using antibodies that recognize both the extracellular domain of

Notch (Fig. 2A90–C90) and the intracellular domain of Notch

(Fig. 2D9–F9). In addition, an antibody raised against the Notch-

ligand Delta also detects increased abundance of Delta protein in

mutant clones (Fig. 2G9–I9).

Common phenotypes III: ESCRT-II mutant clones are
apoptotic

vps25 mutant clones in eye imaginal discs are extremely

apoptotic [19–21] (see also Fig. 3B). To test whether this applies

to vps22 and vps36 mutant clones, we performed immunolabeling

using an antibody that recognizes the cleaved and thus activated

Figure 2. Accumulation of Notch and Delta proteins in clones of ESCRT-II mutants. (A,B,C) Areas of increased Ubiquitin (Ub)
immunoreactivity frequently co-localize with areas containing accumulated levels of the Notch receptor (antibody against the extracellular domain of
Notch, N[extra]) in ESCRT-II mutant tissue. GFP/Ubiquitin/Nextra (green/red/blue) co-labelings of (A) vps225F8-3, (B) vps25N55 and (C) vps36L5212 eye
mosaics. Scale bars represent 50 mm. (A9,B9,C9) Ubiquitin/Nextra (red/blue) co-labeling of (A9) vps225F8-3, (B9) vps25N55 and (C9) vps36L5212 eye mosaics.
(A0,B0,C0) Ubiquitin labeling of (A0) vps225F8-3, (B0) vps25N55 and (C0) vps36L5212 eye mosaics. (A90,B90,C90) Nextra labeling of (A90) vps225F8-3, (B90)
vps25N55 and (C90) vps36L5212 eye mosaics. (D,E,F) Accumulation of Notch protein using an antibody detecting the intracellular domain of Notch,
N[intra]). GFP/Nintra (green, red) co-labelings of (D) vps225F8-3, (E) vps25N55 and (F) vps36L5212 eye mosaics. Scale bars represent 100 mm (D9,E9,F9) Nintra

(red) labeling of (D9) vps225F8-3, (E9) vps25N55 and (F9) vps36L5212 eye mosaics. (G,H,I) The Notch ligand Delta accumulates in clones of ESCRT-II
mutants. GFP/Delta (green/magenta) co-labeling of (G) vps225F8-3, (H) vps25N55 and (I) vps36L5212 eye mosaics. Scale bars represent 100 mm (G9,H9,I9)
Delta labeling of (G9) vps225F8-3, (H9) vps25N55 and (I9) vps36L5212 eye mosaics. Genotypes: (A,D,G) eyFlp; FRT82B vps225F8-3/FRT82B P[ubi-GFP]. (B,E,H)
eyFlp ; FRT42D vps25N55/FRT42D P[ubi-GFP]. (C,F,I) eyFlp ; vps36L5212 FRT2A/P[ubi-GFP] FRT2A.
doi:10.1371/journal.pone.0004165.g002
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form of Caspase-3 [38]. In 3rd instar eye imaginal discs of wild-

type larvae, apoptotic cell death does not occur [39,40]. However,

vps22 and vps36 clones contain increased caspase activity

(Fig. 3A,C). Thus, as for vps25, loss of vps22 and vps36 causes the

apoptotic death of the affected cells.

Common phenotypes IV: imaginal discs predominantly
mutant for ESCRT-II show disorganized cellular
architecture and overgrowth

After establishing that ESCRT-II mutants have similar

endosomal defects, we analyzed them for the presence of

neoplastic and hyperplastic growth phenotypes. Neoplastic growth

phenotypes have been observed for vps25, if almost the entire disc

is mutant [20,26]. Eye discs predominantly mutant for a gene were

obtained using the eyFlp-cell lethal system [26,41]. In this system, all

cells which are not mutant for the gene of interest are eliminated

by homozygosity of the cell lethal mutation or by induction of

apoptosis using GMR-hid [41]. When we applied this technique to

ESCRT-II mutants, the resulting mutant eye discs are overgrown

compared to normal discs (Fig. 4). This overgrowth is particularly

striking for vps25 mutant discs, consistent with previous reports

[26], but also vps22 and vps36 mutant discs are significantly larger

than normal discs (Fig. 4).

We labeled these discs with phalloidin, a marker for cortical

actin. In wild-type discs, phalloidin labeling reveals regular cellular

architecture (Fig. 4A). However, discs predominantly mutant for

vps22, vps25 and vps36 show disorganized cellular architecture.

Similar observations have been made for other neoplastic tumor

suppressor genes including ept (vps23), avalanche, rab5 and lgl [26].

Therefore, vps22, vps25 and vps36 mutant discs display neoplastic

tumor characteristics.

Distinct phenotypes I: vps22 and vps25 mosaics, but not
vps36, display non-autonomous overgrowth

Next, we tested whether vps22 and vps36 mosaics - similar to

vps25 - cause non-autonomous overgrowth which is the result of

increased Notch signaling activity [19–21]. In Figure 2, we showed

that vps22 and vps36 mutant clones contain increased Notch

protein levels. Therefore, we expected that vps22 and vps36 mosaic

animals would display the same non-autonomous overgrowth

phenotype as vps25 mosaics (Fig. 5C,K). Surprisingly, that was

only observed for vps22 mosaics, but not for vps36 mosaics. Eyes

and heads of vps22 mosaics are significantly larger compared to

wild-type controls (Fig. 5A,B,I,J). The overgrowth is also

detectable in eye-antennal imaginal discs, the larval precursors

of the adult eyes. vps22 mosaic eye-antennal discs are significantly

larger compared to wild-type controls (Fig. 5Q,R). This over-

growth is non-autonomous because, as shown in Figure 3, vps22

mutant clones are apoptotic and cannot be recovered in mosaic

vps22 eyes (mutant vps22 tissue is marked by the absence of red eye

Figure 3. Apoptosis phenotype of ESCRT-II mutants. Labeling of
vps22, vps25 and vps36 eye-antennal imaginal discs with cleaved
Caspase-3 antibody as apoptotic marker. Arrows in (A9), (B9) and (C9)
point to one representative clone in each panel containing increased
caspase-3 activity. (A–C) GFP/Caspase-3 (green/red) co-labelings of (A)
vps225F8-3, (B) vps25N55 and (C) vps36L5212 eye mosaics. (A9–C9) Caspase-
3 labeling (red) of (A9) vps225F8-3, (B9) vps25N55 and (C9) vps36L5212 eye
mosaics. Genotypes: (A) eyFlp ; FRT82B vps225F8-3/FRT82B P[ubi-GFP]. (B)
eyFlp ; FRT42D vps25N55/FRT42D P[ubi-GFP]. (C) eyFlp ; vps36L5212 FRT2A/
P[ubi-GFP] FRT2A.
doi:10.1371/journal.pone.0004165.g003

Figure 4. Eye discs predominantly mutant for ESCRT-II are overgrown and lose cellular architecture. All discs are labeled for phalloidin
and were obtained with the eyFlp-cell lethal system. Scale bars represent 100 mm. (A) Control eye-antennal imaginal disc. (B–D) Eye-antennal
imaginal discs predominantly mutant for vps22 (B), vps25 (C) and vps36 (D). Genotypes: (A) eyFlp ; FRT82B/FRT82B cl GMR-hid. (B) eyFlp ; FRT82B
vps225F8-3/FRT82B cl GMR-hid. (C) eyFlp ; FRT42 vps25N55/FRT42 cl GMR-hid. (D) eyFlp ; vps36L5212 FRT80/GMR-hid cl FRT80.
doi:10.1371/journal.pone.0004165.g004
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pigment, i.e. are phenotypically white2; note the lack of white2

tissue in Fig. 5B compared to the wild-type control in Fig. 5A).

Surprisingly, a similar strong overgrowth phenotype was not

found for vps36 mosaic eyes and heads (Fig. 5D,L). We also found

this confirmed at the level of eye imaginal discs. vps36 mosaic eye

discs are noticeably smaller than vps22 and vps25 mosaic discs and

are comparable in size to wild-type (Fig. 5Q–T). We do note,

however, a rough eye phenotype in vps36 mosaics (Fig. 5D). Thus,

although vps22, vps25 and vps36 mutants display similar endosomal

defects and contain increased Notch protein levels, they affect

mosaic animals differently.

Because we observed increased Notch protein levels in vps22,

vps25 and vps36 mutant clones (Fig. 2), we analyzed whether Notch

accounts for the overgrowth phenotypes in vps22 and vps25

mosaics. This can be tested by determining whether the

overgrowth phenotype can be suppressed by reducing the gene

dose of Notch. Thus, we analyzed vps22, vps25 and vps36 mosaics in

a heterozygous Notch background. Indeed, heterozygosity of Notch

suppresses the overgrowth of vps22 and vps25 eyes and heads

suggesting that Notch activity is required for the overgrowth

phenotype of vps22 and vps25 mosaics (Fig. 5E–G, M–O). The

rough eye phenotype observed for vps36 mosaics is not suppressed

by heterozygous Notch (Fig. 5D,H).

To further characterize these differences in the overgrowth

phenotypes, we analyzed 3rd instar eye-antennal imaginal discs of the

ESCRT-II mutants by BrdU labeling as a marker for cells in S-

phase. Anterior to the morphogenetic furrow and in the antennal

disc, BrdU-labeling is homogeneous in wild-type discs (Fig. 6A). In

contrast, vps22 and vps25 mutant clones do not proliferate very well

(Fig. 6B,C). However, the wild-type tissue immediately adjacent to

Figure 5. Adult phenotypes of ESCRT-II mosaics. vps22 and vps25 mosaics display strong overgrowth phenotypes of the adult eyes and heads,
and the larval eye imaginal discs. In contrast, vps36 mutants show no or only a mild proliferation phenotype and cause a roughening of the adult eye.
(A–D) Side view of genetic eye mosaics of (A) control flies, (B) vps225F8-3, (C) vps25N55 and (D) vps36L5212 mutants. (E–H) Eye mosaics of (E) control
(heterozygous Notch), (F) vps225F8-3, (G) vps25N55 and (H) vps36L5212 in heterozygous Notch (N) background. The Notch allele used is N264-39. (I–L) Top
view of genetic mosaics of (I) control flies, (J) vps225F8-3, (K) vps25N55 and (L) vps36L5212 mutants. (M–P) Head mosaics of (M) control (heterozygous
Notch), (N) vps225F8-3, (O) vps25N55 and (P) vps36L5212 in heterozygous Notch (N) background. The Notch allele used is N264-39. (Q–T) Size comparison of
(Q) control, (R) vps225F8-3, (S) vps25N55 and (T) vps36L5212 mosaic eye imaginal discs. Green: GFP; red: BrdU labeling. The scale bars represent 100 mm.
Genotypes: (A) eyFlp ; FRT82B/FRT82B P[w+]. (B,J) eyFlp ; FRT82B vps225F8-3/FRT82B P[w+]. (C,K) eyFlp ; FRT42D vps25N55/FRT42D P[w+]. (D,L) eyFlp ;
vps36L5212 FRT2A/P[w+] FRT2A. (E,M) N264-39/+. (F–H) and (N–P): same as (B–D) and (J–L) except they also carry N264-39 as heterozygous mutation. (Q–
T) same as in corresponding panels A–D except they carry P[ubi-GFP] instead of P[w+].
doi:10.1371/journal.pone.0004165.g005
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vps22 mutant clones shows increased density of BrdU-positive cells

(compare Fig. 6B9,C9 to wild-type in Fig. 6A9). Thus, similar to vps25

mosaics, vps22 controls cell proliferation non-autonomously. How-

ever, vps36 mosaics behave differently. We observe BrdU-positive

cells both within and outside of vps36 clones with homogeneous

density (Fig. 6D9). There is no apparent increased density of BrdU-

positive cells outside of vps36 mutant clones. Thus, vps36 mutant

clones appear to be unable to induce non-autonomous proliferation.

Distinct phenotypes II: vps22 and vps25 mutant clones,
but not vps36, contain strong Notch activity

The analyses presented above demonstrated that mutants of the

three ESCRT-II components display endosomal defects with

accumulated Notch protein (Figures 1 and 2); yet, only vps22 and

vps25 mutant clones trigger non-autonomous proliferation in a

Notch-dependent manner, while vps36 clones do not (Figures 5 and

6). One possibility to explain this discrepancy is that only vps22 and

vps25, but not vps36 mutations trigger Notch signaling although

Notch protein accumulates in all three mutants (Figure 2).

Therefore, we assayed for Notch activity in ESCRT-II mutants

using the E(spl)m8 2.61-lacZ reporter transgene that responds well

to Notch activity [21].

The E(spl)m8 2.61-lacZ reporter is turned on by normal (wild-

type) Notch activity posterior to the morphogenetic furrow in eye

imaginal discs (Fig. 7A,C). There is no reporter activity detectable

anterior to the morphogenetic furrow. However, in vps22 and

vps25 mutant clones located anterior to the morphogenetic furrow,

E(spl)m8 2.61-lacZ reporter expression can be detected (arrows in

Fig. 7A0 and B0). In contrast, clones of vps36 located anterior to the

morphogenetic furrow do not or only very mildy increase reporter

activity (Figure 7C0). This behavior was consistently observed in

fifteen eye imaginal discs of each genotype. Thus, the observed

differences in non-autonomous overgrowth between vps22, vps25

and vps36 do correlate with de-regulation of Notch activity.

Distinct phenotypes III: vps25 and vps36 mutations, but
not vps22, promote strong apoptotic resistance

Paradoxically, despite the fact that vps25 clones are highly

apoptotic (Figure 3B), we originally isolated vps25 mutants based

on their ability to suppress apoptosis [21]. Specifically, the eye-

ablation phenotype caused by expression of the pro-apoptotic gene

hid under control of the eye-specific GMR promoter (GMR-hid) is

Figure 6. Proliferation phenotype of ESCRT-II mosaics. Non-
autonomous regulation of proliferation in vps22 and vps25 eye mosaics
as depicted by BrdU incorporation (red). Arrows in (B) and (C) point to
areas of increased BrdU density next to mutant clones. Compared to
control discs, vps36 mutations do not affect the proliferation pattern
significantly. The scale bar represents 50 mm. (A–D) GFP/BrdU (green/
red) co-labelings of (A) control, (B) vps225F8-3, (C) vps25N55 and (D)
vps36L5212 eye mosaics. (A9–D9) BrdU labeling of (A9) control, (B9)
vps225F8-3, (C9) vps25N55 and (D9) vps36L5212 eye mosaics. Genotypes: (A)
eyFlp; FRT42B/FRT42B P[ubi-GFP]. (B) eyFlp; FRT82B vps225F8-3/FRT82B
P[ubi-GFP]. (C) eyFlp; FRT42D vps25N55/FRT42D P[ubi-GFP]. (D) eyFlp;
vps36L5212 FRT2A/P[ubi-GFP] FRT2A.
doi:10.1371/journal.pone.0004165.g006

Figure 7. Notch activity in ESCRT-II mutants. Notch activity in
ESCRT-II mutants was assessed using the reporter transgene E(spl)m8
2.61-lacZ and b-Gal immunohistochemistry. In wild-type discs, this
reporter is turned on posterior to the morphogenetic furrow (see bar in
A0). Note that in vps225F8-3 and vps25N55 mutant clones located anterior
to the morphogenetic furrow ectopic reporter activity is detectable
(arrows in A0 and B0). vps36L5212 clones do not or only weakly (arrow)
induce reporter activity (C0). Genotypes: (A) eyFlp; E(spl)m8 2.61-lacZ ;
FRT82B vps225F8-3/FRT82B P[w+]. (B) eyFlp ; FRT42D vps25N55 E(spl)m8
2.61-lacZ/FRT42D E(spl)m8 2.61-lacZ. (C) eyFlp ; E(spl)m8 2.61-lacZ;
vps36L5212 FRT2A/P[w+] FRT2A.
doi:10.1371/journal.pone.0004165.g007
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suppressed in vps25 mosaics (see Fig. 8A,C). The suppression of

GMR-hid by vps25 occurs in a non-autonomous manner through

up-regulation of the apoptosis inhibitor Diap1 in neighboring cells

[21]. Therefore, we tested whether vps22 and vps36 have a similar

activity. However, to our surprise, although vps22 mosaics cause a

strong non-autonomous proliferation phenotype, they do not

suppress GMR-hid (Fig. 8B). In contrast, although vps36 mosaics

display no or only a mild non-autonomous proliferation

phenotype, they are very strong suppressors of GMR-hid,

comparable to vps25 mosaics (Fig. 8D). This observation provides

another example of genetic differences between the individual

components of ESCRT-II.

Discussion

In this paper, we have characterized and compared the mutant

phenotypes of the ESCRT-II components vps22, vps25 and vps36

in Drosophila. So far, a systematic genetic analysis of class E vps

genes has only been performed in yeast [12,15]. Endosomal

defects in these mutants in yeast are genetically similar.

Consistently, endosomal defects caused by mutations in the

ESCRT-II components vps22, vps25 and vps36 in Drosophila are

similar, too. These mutant endosomes accumulate ubiquitinated

proteins and signaling receptors including Notch and its ligand

Delta. They also show neoplastic characteristics. However, despite

these common endosomal defects, at the organismal level, vps22,

vps25 and vps36 mosaic animals display distinct phenotypes. vps22

mosaics are characterized by strong non-autonomous prolifera-

tion, but not an increase in apoptotic resistance. vps36 mosaics

exhibit the reverse phenotype, i.e. increased apoptotic resistance

and no or only weak non-autonomous proliferation. As shown

before [21], vps25 mosaics combine both phenotypes. Thus, this

analysis shows that although these components are part of the

same structural complex, they are not genetically equivalent and

display distinct genetic properties.

While the vps22 allele used in this study is a clear null allele [32],

one might argue that the vps36 allele is not a null and that the

observed differences are due to the hypomorphic nature of vps36.

However, such an assumption does not explain why vps36 is a

strong suppressor of GMR-hid, while a null allele of vps22 that

causes a strong overgrowth phenotype, completely fails to suppress

GMR-hid (Fig. 8B). In addition, the common phenotypes

(endosomal defects giving rise to enlarged endosomes, accumula-

tion of Notch protein, apoptosis and the neoplastic phenotype) are

very similar between vps22 and vps36. Thus, it does not appear that

the phenotypic differences observed between vps22 and vps36 are

due to allelic strength of the mutants. Rather, they appear to be

caused by intrinsic differences of the endogenous genes.

Role of Notch signaling for non-autonomous
hyperplastic proliferation

It has previously been shown that inappropriate Notch signaling is

required for non-autonomous proliferation in vps25 mosaics [18–21].

Our data confirm this notion here for vps22 mosaics. vps22 and vps25

mutants contain increased Notch activity and heterozygosity of Notch

suppresses the non-autonomous overgrowth phenotype. In contrast,

vps36 mosaics do not activate Notch signaling and hence do not

cause non-autonomous overgrowth. Thus, Notch activity is required

for non-autonomous hyperplastic overgrowth.

It is puzzling that despite their intimate physical association in the

ESCRT-II complex [33,34], loss of vps22, vps25 and vps36 affects

Notch signaling differently. One possibility to explain these

differences is that these mutants form distinct endosomal microen-

vironments which may affect signaling from the endosome

differently. The resolution of our labeling technologies may not be

sufficient to pick up these differences in the endosomal microenvi-

ronment, but the fact that we do observe genetic differences suggests

that microenvironmental differences may exist. There is precedence

for such a conclusion. Although hrs mutants contain abnormal

endosomes leading to accumulation of Notch protein, they do not

trigger Notch activity and hence no significant growth defects [16].

Further support of the idea that Notch needs to be in a particular

microenvironment at the early endosome in order to be activated

comes from a study that analyzes that act upstream of the ESCRT

machinery in the endosomal pathway, namely shibire, avalanche and

Rab5. Mutations in these genes also result in accumulation of Notch

protein, but do not activate the pathway [8].

Class E vps genes have also been reported to function outside of

endosomal protein sorting. As such they are involved in virus

budding, transcriptional control, cell cycle progression, mRNA

localization and apoptosis [31,32,42–48]. Therefore, it is possible

that the observed genetic differences of the ESCRT-II components

may be caused by distinct requirements in addition to and

independently of endosomal function and possibly independently

of the ESCRT-II complex and the remaining ESCRT machinery.

Future work will be necessary to dissect the roles of the ESCRT-II

components in processes unrelated to endosomal processing.

Figure 8. Suppression of the GMR-hid-eye ablation phenotype
by ESCRT-II mosaics. (A) Expression of the pro-apoptotic gene hid
under control of the eye-specific GMR enhancer (GMR-hid) gives rise to a
strong eye ablation phenotype due to excessive apoptosis. (B–D)
vps25N55 (C) and vps36L5212 (D) eye mosaics are strong suppressors of
the GMR-hid-induced eye ablation phenotype in adult flies. vps225F8-3

mosaics (B) do not suppress the GMR-hid-eye ablation phenotype.
Genotypes: (A) eyFlp ; GMR-hid; FRT82B/FRT82B P[w+]. (B) eyFlp; GMR-hid;
FRT82B vps225F8-3/FRT82B P[w+]. (C) GMR-hid eyFlp; FRT42D vps25N55/
FRT42D P[w+]. (D) eyFlp; GMR-hid; vps36L5212 FRT2A/P[w+] FRT2A.
doi:10.1371/journal.pone.0004165.g008
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Role of Notch signaling for autonomous neoplastic
proliferation

While inappropriate Notch signaling correlates well with non-

autonomous hyperplastic growth, it does not correlate with

autonomous neoplastic growth. Imaginal discs entirely mutant for

vps22, vps25 and vps36 all display overgrowth and loss of cellular

architecture, hallmarks of neoplastic behavior [22]. The neoplastic

phenotype has been attributed to either increased Notch signaling or

to mis-localization of the apical transmembrane protein Crumbs

[49]. However, vps36 mutant discs display a very robust neoplastic

phenotype, but do not activate the Notch signaling pathway

significantly, suggesting that activation of Notch is not required for

neoplastic growth in vps36 mutant discs. This observation is

consistent with previous findings that mutations in the neoplastic

tumor suppressor genes avalanche and Rab5 do not activate Notch

signaling [8,49]. We have not analyzed a genetic requirement of

crumbs for the neoplastic phenotype in vps22, vps25 and vps36

mutants, but that would be an interesting experiment in the future.

It is clear that the endosomal defects in ESCRT-II mutants not

only affect Notch signaling. Other membrane proteins are also

affected which may contribute to the neoplastic phenotype. For

example, in the case of hrs and vps25, other signaling receptors

such as EGFR, Tkv, Ptc and Smo accumulate at endosomes

[16,19]. However, it was also shown that these accumulated

proteins are largely derived from the pool of unliganded receptors,

suggesting that the endosomal defect affects receptor turnover [16]

which does not necessarily cause receptor activation. The only

receptor known to be activated at the endosome in a ligand-

independent manner is Notch [8]. Future work will be necessary to

dissect the role of Crumbs and other signaling pathways for

developing the neoplastic phenotypes.

Materials and Methods

Drosophila genetics and generation of mutant clones
For this comparative analysis, we used the following mutant

alleles of the ESCRT-II components. vps225F8-3 (also known as

lsn5F8-3) was previously described by Irion and St. Johnston (2007)

[32]. It carries a premature termination codon at residue 2, likely

encoding a null allele. vps25N55 has a premature termination codon

at residue 93. We have previously characterized this allele as a null

allele [21]. vps36L5212 was also characterized by Irion and St

Johnston (2007) [32]. A P-element transposon is inserted in the

first exon 29 base pairs upstream of the initiator ATG.

Fly crosses were conducted using standard procedures at 25uC.

The following stocks were used: vps225F8-3 and vps36L5212 [32];

vps25N55 [21]; N264-39 [50]; GMR-hid eyFlp [51-53]. For generation

of mutant clones, the vps mutant alleles were crossed to eyFlp; FRT

P[ubi-GFP]. To generate imaginal discs predominantly mutant for

vps22, vps25 or vps36, we used the eyFlp cell lethal technique [41].

The vps mutant alleles were crossed to eyFlp; FRT cl GMR-hid flies.

cl indicates an anonymous cell lethal mutation that kills when

homozygous [41]. The use of the FRT depended on the location

of the vps gene in the genome. Mutant clones are marked by

absence of GFP. The complete genotypes are indicated in the

legend to the figures.

Immunohistochemistry
Eye imaginal discs from 3rd instar larvae were dissected and

immunohistochemical labeling was performed as described [21].

The following antibodies were used: anti-Hrs (kind gift of Hugo

Bellen); FK1 and FK2 (Biomol International); anti-Ubiquitin

(Sigma); anti-N[intra], anti-N[extra], anti-Delta and anti-b-Gal

(DSHB, University of Iowa); anti-BrdU (Becton Dickinson); anti-

cleaved caspase-3 (Cell Signaling Technology), and TRITC-

phalloidin (Sigma-Aldrich). Cy3- and Cy-5 fluorescently-conju-

gated secondary antibodies are obtained from Jackson ImmunoR-

esearch. Images were captured using Olympus Optical FV500 or

FV1000 confocal microscopes.
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