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ABSTRACT
Aberrant activation of the Sonic Hedgehog (SHH) gene is observed in various 

cancers. Previous studies have shown a “cross-talk” effect between the canonical 
Hedgehog signaling pathway and the Epidermal Growth Factor (EGF) pathway when SHH 
is active in the presence of EGF. However, the precise mechanism of the cross-talk effect 
on the entire gene population has not been investigated. Here, we re-analyzed publicly 
available data to study how SHH and EGF cooperate to affect the dynamic activity of the 
gene population. We used genome dynamic analysis to explore the expression profiles 
under different conditions in a human medulloblastoma cell line. Ordinary differential 
equations, equipped with solid statistical and computational tools, were exploited to 
extract the information hidden in the dynamic behavior of the gene population. Our 
results revealed that EGF stimulation plays a dominant role, overshadowing most of 
the SHH effects. We also identified cross-talk genes that exhibited expression profiles 
dissimilar to that seen under SHH or EGF stimulation alone. These unique cross-talk 
patterns were validated in a cell culture model. These cross-talk genes identified here 
may serve as valuable markers to study or test for EGF co-stimulatory effects in an 
SHH+ environment. Furthermore, these cross-talk genes may play roles in cancer 
progression, thus they may be further explored as cancer treatment targets.

INTRODUCTION

It is now well known that, in most cancer patients, 
there are multiple genetic aberrations and deregulation 
of multiple signaling pathways that work in a synergistic 
manner to initiate and promote the tumor. Studying the 

cooperation between these oncogenic pathways could 
help identify genes commonly regulated by oncogenic 
pathways and, importantly, genes that are synergistically 
regulated, the latter of which are likely to play important 
roles in tumor-initiation and cancer growth. These genes 
might then be exploited for novel therapeutic approaches. 
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Although most studies based their data analysis on analysis 
of covariance (ANOVA) or classic regression models, we 
developed an alternative comprehensive approach that 
exploits Ordinary Differential Equations (ODE) models and 
gene regulatory network analysis [1–3]. This model is able 
to take into account the dynamic and temporal behavior of 
genes and learn the dynamic relationship between genes.

To validate our approach, we selected Sonic Hedgehog 
(SHH) and epidermal growth factor (EGF) signaling 
pathways. The Hedgehog signaling pathway is primarily 
involved in tissue development. However, in adults, the 
activation of this signaling pathway has been implicated 
in cancers of the brain, including medulloblastoma, lung, 
prostate, breast, and most notably in the skin (basal cell 
carcinoma) [4]. Dysregulation of this pathway has been 
shown to promote stem cell proliferation and tumor initiation 
[5]. Other important proteins in this pathway, Smoothened 
and Patched homolog 1, encoded by SMO and PTCH1, 
respectively, in turn, regulate the expression of the GLI1 
gene. GLI1 encodes for the zinc finger transcription factor 
Glioma-associated oncogene homolog 1 (GLI1)–the main 
effector of SHH pathway [5]. Inhibition of the SHH pathway 
by targeting these transcription factors and their receptors 
could lead to a cure for many malignancies. For example, 
Vismodegib, an antagonist of Smoothened, is approved for 
the treatment of basal cell carcinoma [6]. In addition, the 
upstream activators of the SHH pathway are dependent 
on EGF- receptor-mediated activation of the RAS/RAF/
MEK/ERK pathway, but not of the PI3K/AKT pathway 
[7]. Synergistic integration of SHH and EGF signaling has 
been identified as a critical step in oncogenic transformation, 
neural stem cell proliferation [8], and development of 
tumor types such as skin, prostate, pancreas, and basal 
cell carcinoma [9–13]. The combination of SHH and EGF 
leads to a synergistically activated growth response in basal 
cell carcinoma and tumor-initiating pancreatic cancer cells 
both in vitro and in vivo [9]. Activation of at least one of 
these pathways is implicated in one-third of all cancers 
[14–16]. Although this synergy has been studied, details of 
interactions at the molecular level are not well known.

In this study, we used publicly available 
gene expression profiling datasets from a human 
medulloblastoma cell line that possesses a fully inducible 
endogenous SHH pathway according to gene expression 
profiling [8]. Briefly, cells were subject to four different 
experimental conditions: i) no stimulation control (CTRL), 
ii) EGF stimulation only (EGF+), iii) Sonic Hedgehog 
stimulation only (SHH+), and iv) co-activation of EGFR 
and Hedgehog (EGF+SHH+). The cells were harvested for 
gene expression profiling at 14 different time-points over a 
24-hour period after cell stimulation. In the original study, 
an Illumina HumanHT microarray was used to obtain the 
gene expression data. It included expression values for 
47,231 probes. ANOVA was used and implemented on 
fold-change ratios for identifying the target genes affected 
by synergy between SHH and EGF signaling. Specifically, 

linear regression models were fitted to fold-change 
ratios over time, and experimental conditions served as 
covariates. A total of 3,827 genes (from 4,580 probes) were 
determined to be significantly expressed in all pairwise 
comparisons of treatment conditions. However, only 
12 genes with a documented role either in EGF or SHH 
pathways were used for further validation, and under co-
activation of both pathways, canonical SHH target genes 
such as GLI1, PTCH, and HHIP were downregulated, 
while selected EGF target genes such as MMP7, VEGFA, 
and IL8 were synergistically upregulated [8].

Here, we used a series of analytic and modeling 
approaches to explore the dynamic activities of the entire 
gene population. Genes with significant dynamic responses 
were identified, and those that follow similar patterns 
over time were grouped with a clustering algorithm and 
then validated in a cell culture model. The interactive 
relationship between genes as stimulators or inhibitors of 
each other was explored through the regulatory network 
analysis. We also looked at the influence of the synergistic 
co-activation of the EGF and SHH pathways on individual 
gene levels and the overall effect at the gene network level.

RESULTS

EGF stimulation dominates gene regulation over 
SHH stimulation

Our analysis identified 7,176 genes as “dynamic 
response genes (DRG)” under the CTRL condition, 
meaning that they showed significant changes in their 
expression levels over time under the CTRL condition. 
Under the SHH+ condition, there were 50% more DRGs 
(10,770 DRGs) than in CTRL, reflecting the effect of SHH 
stimulation. The effect of EGF stimulation was stronger, 
leading to a 118% increase in the number of DRGs 
(15,659 DRGs) over CTRL. These findings imply that the 
downstream cascading effects of EGF stimulation activate 
far more genes than SHH stimulation. The EGF+SHH+ 
stimulation recruited the highest number of genes of the 
four conditions: 17,972 DRGs. This was an increase of 
150% over CTRL. However, this number was less than 
the additive effect of SHH+ and EGF+, giving us the first 
evidence of some commonality or “cross-talk” between the 
downstream effects of stimulating the Hedgehog and EGF 
pathways. As much as one-third of the SHH+ downstream 
effects were also seen after EGF+ stimulation. Our further 
analysis aimed to explore this synergism and the genes 
that play a differential role under the synergistic condition.

Gene response modules under EGF stimulation 
are synchronized into fewer expression patterns 
than SHH stimulation

DRGs were grouped into gene response modules 
(GRM) according to similar patterns of expression over 
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time. However, to compare the number and characteristics 
of the GRMs between different conditions, we restricted 
our further analysis to only the top 3,000 DRGs on the 
basis of the F-ratios in each condition. This eliminated 
the confounding effect of the considerably larger number 
of DRGs under the EGF+ and EGF+SHH+ conditions 
as compared to the CTRL. Under the CTRL condition, 
the dynamic genes were responding to a wide array 
of homeostasis signals and physiological demands in 
the cells, which varied in terms of their temporality 
and resulted in a large number of distinct patterns of 
expression–namely 216 different GRMs (Table 1). Under 
SHH stimulation, the number of GRM patterns was 
close to that of CTRL. It is likely that SHH exerts its 
influence through a narrower set of DRGs, as there was 
no evidence of synchronized expression as compared to 
CTRL. In contrast, under EGF stimulation, the number of 
GRMs was as small as 48, indicating that the DRGs were 
synchronized into fewer expression patterns in response to 
the external stimulus. Under EGF+SHH+ we had almost 
the same number of expression patterns. This indicates 
that EGF must have a stimulating effect on a wider set of 
DRGs, which synchronizes their response, and that EGF 
was the dominant stimuli in the combined stimulation 
condition.

Previously, we discussed the importance of large 
size GRMs over small size GRMs [1]. The large size 
modules (LS-GRM) are related to performing various 
fundamental biological functions and have a consistent 
pattern across individuals under the same experimental 
condition representing the state-transition patterns in 
response to the stimuli. On the other hand, small-sized and 
single-gene GRMs tend to perform homeostasis activities 
and have an oscillatory temporal response. Here, we 
defined an LS-GRM as a GRM with 70 or more DRGs; 
each of the experimental conditions had at least 6 LS-
GRMs while EGF+SHH+ co-stimulation resulted in seven 
LS-GRMs (Table 2). We performed pathway analysis and 
functional classification by using the DAVID functional 
annotation clustering tool on the 5 major LS-GRMs 
in the CTRL group (Figure 1). Each GRM contained 
genes enriched for the following GO terms: GRM_C1, 
cell signaling and transcriptional factors; GRM_C2, cell 
proliferation/division; GRM_C3, cell cycle and DNA 
replication; GRM_C4, cell function and transcriptional 
factors; and GRM_C5, stress responses (Supplementary 
Figure 1). We paired these LS-GRMs between conditions 
(Figures 1 and 2). The patterns of the large modules 
under CTRL paired well with those of SHH+ (Figure 1), 
while those under EGF+ matched with EGF+SHH+ 
(Figure 2). Thus, SHH+ had a marginal effect on altering 
overall baseline expression patterns seen under the CTRL 
condition and exerted its effect through a narrow subset of 
the gene population. In contrast, EGF+ drastically altered 
the expression profile of the gene population and had the 
predominant effect when both EGF and SHH receptors 

were stimulated. We further examined the number of 
genes that clustered into these LS-GRMs. Under EGF+ 
and SHH+EGF+, the first six LS-GRMs included 94% 
and 89% of the 3,000 DRGs, while under SHH+ and 
CTRL, they had 63% and 59% of the DRGs, respectively 
(Table 2).

EGF stimulation dominates over SHH in gene-
to-gene comparisons

The histograms for Spearman’s correlation of the 
top 3,000 DRGs under each condition were compared 
with the same genes under other conditions (Figure 3). 
A left-skewed histogram indicates a preponderance of 
genes behaving identically under the two experimental 
conditions, while a symmetric (normal) histogram 
indicates a preponderance towards modified expression 
of most genes. The SHH+ vs CTRL histogram was left-
skewed and more preponderant compared with the EGF+ 
vs CTRL histogram. Thus, even at the gene level (gene-to-
gene comparison), we found that SHH exerts its influence 
by modifying the expression of a far smaller set of genes 
than EGF. The distribution under co-stimulation was only 
marginally left-skewed compared to the CTRL and SHH 
stimulation, but extremely left-skewed when compared 
to EGF only, showing that, under the combined stimuli, 
most genes behave differently than in CTRL and SHH 
only stimulations, but behave similarly to the EGF only 
condition. Thus, stimulating SHH in an already EGF+ 
condition does not significantly change the expression of 
most DRGs. However, expression of the gene population 
under the SHH+ condition was greatly altered by the 
addition of EGF, thereby significantly altering the 
pathophysiology of the cell. These findings were further 
confirmed by comparing the number of common DRGs 
and genes with similar or dissimilar time-course behaviors 
between SHH+/EGF+SHH+ and EGF+/EGF+SHH+ 
conditions. Among the top 3,000 DRGs under SHH+, 
only 23% were overlapped with EGF+SHH+; in contrast, 
54% of the top 3,000 DRGs under EGF+ were overlapped 
with EGF+SHH+. In addition, among the 3,000 top 
DRGs under SHH+, only 9% had similar gene expression 
behaviors under EGF+SHH+ condition (p > 0.7); 78.8% 
of the top 3,000 DRGs under EGF+ had similar behaviors 
under EGF+SHH+ condition (Table 3).

EGF stimulation increases regulatory activity

The network analysis of our analytic pipeline [3] 
showed that EGF+ causes the gene network to become 
more dense and interrelated, increasing the interaction 
between different GRMs and thereby providing greater 
regulation of the gene population’s expression (Table 4). 
The same thing happened when EGF was added to the 
SHH+ condition. As described in Section 2.1, EGF+ 
induced twice as many genes to become dynamic as 
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compared to CTRL or SHH+ and altered their expression 
patterns. Furthermore, it reduced the overall number of 
independent expression patterns that the genes may take. 
This would require EGF to not only affect a large number 
of genes but also for those genes to have considerable 
interactions with one another so that their expression 
becomes harmonized in response to a single stimulus. 
Moreover, the network analysis showed a possible 
mechanism for how this was achieved. EGF+ created a 
far denser and interconnected network. EGF stimulation’s 
downstream cascading effects activated many more 
genes, and these genes, in turn, regulated each other to 
synchronize their expression dynamically over time 
in response to the original stimulus. Furthermore, this 
possible mechanism clarified the network-wide effect of 
how EGF+ effects dominate the SHH+ effects, even in 
genes that were common to both pathways.

Transcription factors are included in cross-talk 
between SHH and EGF

One of the main purposes of this study was to 
identify genes that exhibited unique expression patterns 
after co-stimulation with SHH and EGF as compared to 
stimulation with SHH or EGF alone. These genes showed 
agonistic or antagonistic behavior with temporal patterns 
different from the initial pattern observed under either 
of the single stimulation conditions. We extracted two 
groups of genes, cross-talk genes and co-activation genes, 
from the list of DRGs. The cross-talk genes are those 
that were differentially expressed under SHH+ or EGF+ 
compared to CTRL; however, they exhibited completely 
different expression patterns under the SHH+EGF+ 
condition. Co-activation genes were defined as genes 
that were not initially differentially expressed under the 

individual stimuli, but were differentially expressed under 
combined stimuli. The mean curves of the GRMs were 
used to identify GRMs that exhibit cross-talk expression 
patterns and those that exhibit co-activation patterns. 
We further checked the expression patterns of genes in 
these GRMs to ensure that they also exhibited the same 
respective expression patterns (Supplementary Figure 4). 
We considered all 10,770 DRGs under SHH+, returning 
455 distinct GRMs. To identify GRMs crucial to the 
gene regulatory network, the top 20 important GRMs 
for each network criteria were selected (Table 5). They 
can be referred to as GRMs that regulate most GRMs, 
are regulated by most other GRMs, or are most frequent 
intermediaries in GRM regulation pathways. These GRMs, 
“important GRMs,” were chosen on the basis of out-
degree, in-degree, and betweenness values, respectively, 
as characteristics of the regulatory network.

The genes identified as DRGs included ones already 
known to be in the Hedgehog pathway, namely BCL2, 
BMP2, BMP4, CSNK1E, DISP2, FBXW11, FKBP8, 
GAS1, HHIP, MTSS1, NPC1, OTX2, PRKACB, PTCHD1, 
RAB23, SHH, SUFU, WNT1, WNT5B, WNT7B, WNT8B, 
and WNT9B, indicating the validity of our approach. 
Among these genes, SHH was identified as both a cross-
talk gene and a network-important gene. Although 
screening the GRMs and genes according to co-activation 
criteria did not retain any genes, 160 GRMs (out of the 455 
GRMs), which comprised 179 genes, exhibited a cross-
talk expression pattern that included transcription factors 
and proinflammatory factors, such as TLX1 and IL25, 
respectively (Table 6). TLX1 is required for organogenesis 
of the spleen and neuronal cell fates and is linked to 
leukemia [17]. Cytokine IL-25 is a proinflammatory factor 
and induces NF-kappaB and IL-8 expression [18]. The 
detailed functional annotation is available in Figure 4.

Table 1: Number of GRMs
Condition # GRMs # GRMs > 70 # genes GRM1
CTRL 216 6 617
SHH 237 6 752
EGF 48 6 952
EGF-SHH 51 7 975

The first and second columns present number of GRMs based on the first 3,000 DRGs, and number of large size GRMs, 
respectively, for under each condition. Third column presents the number of genes in the largest GRM under each condition.

Table 2: Number (%) of DRGs out of 3000, clustered into the major GRMs
First 6 First 8 First 12

EGF 2,816 (0.94) 2,884 (0.96) 2,936 (0.98)
EGF-SHH 2,668 (0.89) 2,847 (0.95) 2,915 (0.97)

SHH 1,893 (0.63) 1,984 (0.66) 2,135 (0.71)
CTRL 1,782 (0.59) 1,899 (0.63) 2,066 (0.69)

First column gives the number (%) of DRGs clustered into the first 6 GRMs (the largest 6 GRMs) under each condition. The 
last two columns include similar numbers (%) for the first 8 and first 12 GRMs, respectively. 
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Twenty of the 179 cross-talk genes were also found 
in important GRMs: DENND5A, PAK3, IFT80, DEFB113, 
STAMBP, ERMN, DNAH14, NRG2, EXOD1, SHH, C1D, 
C9ORF47, FIGLA, NLRP1, XPR1, SPAG11A, C15ORF44, 
S100A13, KIF2B, and OR5H14. These GRMs also 
included thirteen transcription factors, AHRR, ARID1A, 
ATF6B, NCOA5, NFIC, PAX1, SKI, TLX1, ZNF302, 
ZNF562, ZNF598, ZNF611, and ZNF92.

Genes regulated under SHH and EGF Co-
stimulation have different biological functions 
than seen with individual stimulation

Among DRGs under SHH+, we compared the 
functional enrichment of genes that were already 
significant under CTRL versus those that became 
significant only after SHH stimulation (Figure 1). Those 

Figure 1: Gene response modules under Control and SHH+ conditions. Matching large size GRMs under Control (left column) 
or SHH+ (right column). The Spearman correlation between the mean curves (red curves) is also reported for each pair.
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already significant genes under CTRL are involved with 
cell-cycle, cell-division, DNA damage, and DNA repair 
(Supplementary Figure 2A), while those genes that 
became significant only after SHH stimulation enriched 
for terms such as nucleotide-binding, kinases, protein 
phosphorylation, transcription regulation, and DNA 
binding (Supplementary Figure 2B). In addition, SHH+ 
induces transcription regulating activity. Furthermore, we 
looked at those genes that became silent after the addition 
of EGF (ie, genes that are DRG under SHH+ but are not 

DRG under SHH+EGF+ co-stimulation). These genes 
enriched for transcription factors, mainly the Cys2His2 
zinc finger genes (Supplementary Figure 2C).

Genes identified in silico show identical patterns 
in biological context

To validate the findings from the in silico analysis, 
we performed cell culture experiments according to a 
previous report [8]. To collect Shh-N conditioned media, 

Figure 2: Gene response modules under EGF+ and EGF+SHH+ conditions. Matching large size GRMs under EGF+ (left 
column) or EGF+SHH+ (right column). The Spearman correlation between the mean curves (red curves) is also reported for each pair.
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HEK293 cells were transfected with Shh-N plasmid 
and the cell culture supernatant was collected on three 
consecutive days. The presence of SHH protein in the 
conditioned media was confirmed by western blotting 
(Supplementary Figure 3). Then, human medulloblastoma 
Daoy cells were treated with 4 different conditions: 
Control, EGF (5 ng/ml), Shh-N conditioned media, 
and EGF plus Shh-N conditioned media. Cells were 
collected for quantitative RT-PCR (qRT-PCR) analysis 
at 14 different time-points over the next 24 hours. We 
analyzed the expression of a small list of genes presented 
in Figure 5. Panels (5A–5C) show that, for NCoA5, SKI, 
and BCAN, activation of EGF dominates the effects of 
SHH in EGF+SHH treatment after a certain point. Panel 
5D confirms the effect of co-activation, where, under 
EGF+SHH, behavior of ATP1B3 diverges from that under 
EGF or SHH after hour 12. We also analyzed IL8 as a 
negative control for our in silico analysis (Supplementary 
Figure 4), confirming the synergism results in [8]. As 
anticipated, the expression pattern of IL8 did not differ 
in co-treatment versus any of the single treatments. These 
results indicate that our in silico approach identifies 
biologically important gene expression patterns and that 
the results of the in silico studies could be validated in a 
biological setting.

DISCUSSION

In this study, we implemented an analytic pipeline 
approach to understand the extent to which SHH and EGF 
pathways cross-talk. We re-analyzed publicly available 

data using a well-developed computational pipeline, and 
it led to several compelling results. In order to compare 
our results with those in a previous report [8], we must 
keep in mind that we were not aiming to find quantitative 
synergistic effects, rather, our focus was on trends in how 
expression patterns change over time. For this reason, the 
main findings of the previous report on the synergistic 
effects of selective genes GLI, PTCH, HHIP, MMP7, 
VEGFA, and IL8 did not show up in our cross-talk list as 
they were only distinguished by quantitative comparison 
of expression level. In contrast, the genes identified and 
validated in this study (Figure 5) might not appear when 
using conventional methods, because their expression was 
not significantly changed if one were to only compare the 
initial and final conditions. This illustrates the value of our 
method because these genes might be important of cell 
function and cancer progression.

The power of statistical hypothesis tests that target 
differences in quantity is highly dependent on sample 
size. For a large enough sample size, even an ignorable 
difference in values might be presented as a significant 
change. Such a statistical limitation might partly affect 
our methodology as well, especially where we used 
a statistical F-test to identify DRGs. Seven to 8 time 
points are required at minimum for the methodology to 
be valid. The dataset analyzed here has 14 time points, 
more than enough to identify trends. However, due to this 
requirement, we were limited to only studying the dataset 
used here because there was no other cell line or patient 
datasets that met this requirement. This is one limitation 
of the current study.

Figure 3: Spearman correlation of DRGs. Each panel shows the distribution of the Spearman correlations for the 3,000 DRGs under 
the first conditions (in panel title) with the same 3,000 genes under the second condition (in panel title).
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We explored the expression profile of all genes 
under four different conditions: CTRL, SHH+, EGF+, 
and SHH+EGF+. Under the CTRL condition, as we 
expected, genes related to regular cell cycle activities were 
dynamically active. Due to the artificial condition of cell 
culture in 24 hours, the genes in CTRL showed various 
expression patterns. Some genes decreased expression 
(GRM_C2), and some genes temporally increased 
expression before decreasing (GRM_C3), probably due 
to the depletion of nutrients in the culture media. The 
expression of other genes involved in cell signaling 
or stress responses were increased in various patterns 
(GRM_C1, C4, and C5). Our enrichment analysis also 
detected that SHH+ stimulus induced a response through 
transcriptional changes. In addition, we identified genes 
that become dynamically silent upon co-stimulation, and 
these genes were generally transcriptional factors. This is 
a novel finding and the genes identified in this study have 
the potential to be explored further as therapeutic targets. 

Furthermore, we showed the extent of the influence of 
SHH+ and EGF+ on the dynamic activity of the gene 
population. EGF+ has considerably greater influence than 
SHH+ in modifying the activity of genes, and during co-
stimulation, EGF+ plays a dominant role, overshadowing 
most of the SHH effects as seen by the high correlation 
between the EGF+ and SHH+EGF+ expression profiles 
for most genes.

During co-stimulation, several genes altered their 
expression profile in a manner that was not similar to 
that observed under SHH+ or EGF+. These cross-talk 
genes can be used as markers to study or test for the co-
stimulation effects of EGF in an SHH+ environment. 
These genes could also be new targets for cancer 
treatment. Five of these genes (AHHR, ARID1A, NCOA5, 
NFIC, and SKI) [19–23] have been determined to be 
tumor suppressors in major studies, and 13 of them are 
transcription factors (AHRR, ARID1A, ATF6B, NCOA5, 
NFIC, PAX1, SKI, TLX1, ZNF302, ZNF562, ZNF598, 

Table 3: The number (%) of genes behaving similarly (ρ > 0.7) and those behaving differently (ρ < 
–0.7) out of 3,000 DRGs

ρ > 0.7(%) ρ < –0.7(%) –0.1 < ρ < 0.1(%) Other (%)

SHH+ vs CTRL 742 (24.7) 2 (0.1) 261 (8.7) 1,995 (66.5)

I SHH+ vs EGF+ 238 (7.9) 17 (0.6) 482 (16.1) 2,263 (75.4)

SHH+ vs EGF+SHH+ 260 (8.7) 17 (0.6) 469 (15.6) 2,254 (75.1)

CTRL vs EGF+ 182 (6.1) 19 (0.6) 541 (18) 2,258 (75.3)

II CTRL vs SHH+ 736 (25.4) 1 (0) 262 (8.7) 2,001 (66.7)

CTRL vs EGF+SHH+ 233 (7.8) 16 (0.5) 479 (16) 2,272 (75.7)

EGF+ vs SHH+ 160 (5.3) 15 (0.5) 526 (17.5) 2,299 (76.6)

III GF+ vs CTRL 136 (4.5) 15 (0.5) 566 (18.9) 2,283 (76.1)

EGF+ vs EGF+SHH+ 2339 (78) 1 (0) 25 (0.8) 635 (21.2)

EGF+SHH+ vs CTRL 172 (5.7) 14 (0.5) 512 (17.1) 2,302 (76.7)

IV EGF+SHH+ vs EGF+ 2,356 (78.5) 0 (0) 18 (0.6) 626 (20.9)

EGF+SHH+ vs SHH+ 182 (6.1) 14 (0.5) 538 (17.9) 2,265 (75.5)

First three rows (block I) compare the trend of 3,000 DRGs under SHH+ with their trend under CTRL, EGF+, and 
EGF+SHH+, respectively. The latter blocks (II, III, IV) present similar numbers based on comparing the 3,000 DRGs under 
CTRL, EGF+, and EGF+SHH+ with the same genes under other three conditions.

Table 4: The network statistics: mean clustering coefficient and density for the networks under 
each condition
Condition mean Cl coeff Density
EGF 0.385 0.442
EGF-SHH 0.380 0.487
SHH 0.297 0.174
CTRL 0.288 0.198

Clustering coefficient measures how the neighboring GRMs are interconnected, and density shows the proportion of potential 
regulating edges among the GRMs.
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ZNF611, and ZNF92). The genes that were further 
validated by biological experiments were selected solely 
on the basis of the correlation measures in the initial 
screening and not by their biologic importance nor by 
their influence in cancer progression. However, a quick 
literature search revealed that they have been a focus 
of studies by many researchers for their significant role 
in progression of various types of cancer. Specifically, 
Gao et al. [21] showed that reduced NCOA5 expression 
is associated with a fraction of human hepatocellular 
carcinoma cancers (HCC) and argued that susceptibility to 
both glucose intolerance and HCC increases with NCOA5 
deficiency. Li et al. [24] reported higher expression of 
ATP1B3 protein in gastric cancer tissues than in normal 
matched tissues, and its knockdown significantly inhibits 
cell proliferation, colony-formation ability, migration, and 
invasion, and also increases apoptosis in human gastric 
carcinoma cell lines. BCAN (Brevican) has been used as 
a target for immunotherapy in glioma, as its knockdown 
reduced late-stage glioma tumor aggressiveness [25, 26]. 
CMAS, which is in the sialic acid pathway, has a key 
role in breast cancer and is significantly associated with 
decreased breast cancer patient survival. Also, low CMAS 
gene expression is correlated with reduced recurrence-
free survival in a human colorectal cancer cohort [27, 
28]. XCL2 expression increases with the degree of 
malignancy of lung cancer, indicating that it could be an 
important target in gene therapy for lung cancer [29]. SKI 
has been described as a potent negative regulator of TGF 
beta signaling [30]. Although upregulation of SKI has 
been reported in many cancers such as colorectal cancer, 

it is labeled as a tumor suppressor by many studies. SKI 
was also identified as a target gene of the hematopoietic 
transcription factor c-MYB, which is involved in the 
proliferation and differentiation of progenitor cells 
of myeloid and lymphoid lineages. NRG2 and PAK3 
belong to ErbB signaling pathway. NRG2 clustered 
with DNAH14, also a cross-talk gene, in a GRM with 
high in-degree (Regulated by 18% of all GRMs), while 
PAK3 clustered with DENND5A, another cross-talk 
gene, in a GRM that was important with respect to out-
degree (Regulating 36% of all GRMs). NRGs belong to 
the large family of EGF ligands, and are implicated in 
brain development activities by interacting with ErbB 
[31] and regulating HER2, HER3, and HER4 (ERBB2, 
ERBB3 and ERBB4, respectively, in mice), all of which 
have been linked to different types of cancers in the  
literature [32].

Our statistical and computational methods have 
been tested and confirmed via multiple simulation studies. 
In addition, in this study, we validated our in silico results 
with cell culture experiments in a biological context. These 
results indicate that our approach has the power to identify 
novel therapeutic targets from publicly available datasets 
in a more credible manner than conventional methods.

MATERIALS AND METHODS

Expression profile data

In this study, we re-analyzed the experimental 
data in which, human medulloblastoma cell lines were 

Table 5: Important GRMs: obtained as the set of first 20 GRMs with highest in-degree (I), out-
degree (O) and betweenness (B) coefficients
GRM Importance GRM Importance GRM Importance
M119 O, B M278 O M384 I
M124 O M290 B M392 O
M133 O, B M300 I M404 I, B
M142 I, B M307 I, B M407 I
M156 O M319 O, B M408 O
M168 B M322 O, B M414 O
M178 O M326 I, B M416 I
M189 O, B M330 I M422 I, B
M19 O, B M331 O M431 I
M198 B M337 O M432 O
M225 B M362 I M436 O
M235 I, B M37 B M438 I, O
M244 B M372 I, B M454 I
M250 O M374 I, B M455 I
M265 O M375 I M72 I

In-degree (Out-degree) shows the number of GRMs regulating (regulated by) the GRM of interest. Betweenness shows the 
number of time that a GRM is a bridge between two other GRMs.
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exposed to four experimental conditions (CTRL, SHH+, 
EGF+, and SHH+EGF+) and sampled over 24 hours after 
the exposure to the agents. Gene expression data was 
generated with an Illumina microarray platform. There 
were three biological replicates available and we chose to 
take the median of the replicates for the analysis, since it 
is robust to unexpected variations. The fold-change ratios 
were calculated with respect to time 0 under the control. 
Further details of the experimental materials and methods 

are described in the literature [8]. The data set is available 
on the GEO website with the series name GSE46045.

Data analysis

For our analysis, we used a pipeline developed in 
our previous report [3]. There are three main steps: First, 
dynamic response genes (DRG), ie, genes that exhibit 
significant changes over time, were identified by statistical 

Table 6: List of 179 cross-calk genes
ABCD4 CHD8 GAD2 NECAP2 SERP1
ABHD9 CHTF8 GDE1 NFIC SERPINB7
AGGF1 CLEC4A GRIP2 NLRP1 SHH
AHRR CNKSR3 HHLA2 NLRP12 SIGLEC16
ALDH1A1 CNPY2 HIST1H4J NPS SKI
ALOX12P2 COMT HSD11B1 NRG2 SLC7A9
AMAC1L1 CRISP1 HSPC072 OPA3 SLC9A6
AMELX CS HTA OR2T3 SNORA23
ANPEP CSF1 IFNA2 OR5H14 SNORA26
APLF CUEDC1 IFT80 OR6C1 SPAG11A
APOC1 CYB5A IL12RB2 OR6M1 SRP54
ARID1A DAAM1 IL25 P2RXL1 STAMBP
ARMC6 DAOA KBTBD4 PAK3 SUCNR1
ATF6B DCTN4 KCNC2 PAK6 SULT1A1
ATIC DDX11 KCNH2 PATE3 SYNGR1
ATP1A1 DEFB104A KIAA1109 PAX1 TLX1
AVP DEFB113 KIF2B PDE8B TMED8
BCAP29 DENND5A KIF5A PDLIM5 TMEM225
BTBD8 DKFZP686J0529 KIR3DP1 PFTK2 TPRG1L
BTD DMGDH LLGL2 PHF8 TRPM2
C11ORF58 DNAH14 LSR PKP2 TSLP
C14ORF183 DUOX1 MAP3K3 PLEKHB2 TTC33
C15ORF21 ECSIT MGC119295 PPM1K UBXN10
C15ORF44 EEF1A1 MGC33948 PRAMEF22 VWA5A
C1D EEF1A1 MGLL PRKAA1 WFDC2
C1ORF185 ERMN MIDN PRSS7 XPR1
C1ORF186 EXOD1 MIR1281 PSG6 ZCCHC5
C9ORF47 F5 MPPED1 RAET1L ZNF302
CCDC64 FAM160A1 MRPL14 RASEF ZNF562
CCNB1IP1 FAM3B MRPL43 RGPD4 ZNF598
CCNY FFAR3 MSH3 RNF39 ZNF611
CD63 FIGLA MSL3 RPLP0 ZNF66
CD7 FLCN MYCBP RPP38 ZNF92
CD86 FLJ37078 NCCRP1 S100A13 ZNRD1
CDC2L5 FLJ45340 NCOA5 SAE1 ZWILCH
CGREF1 FLNC NEBL SEC14L1
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hypothesis testing. Then, the DRGs were clustered into 
gene response modules (GRM), clusters of one or many 
genes that follow a similar expression pattern over time. 
Finally, a gene regulatory network (GRN) between the 
GRMs was built by using ordinary differential equations. 
In addition, we used Spearman correlation to study the 
differences in the expression profile among genes or 
GRMs under the four experimental conditions.

Identification of the Dynamic Response Genes 
(DRG)

Suppose the centered expression profile of the gene, 
ith belonging to subject j, Xi,j (t),  is a smooth function over 
time, and the time course gene expression measurements 
are discrete observations from this smooth function, 
which have been distorted by noise, i. e.,Yi,j (tk ) − μi,j = 
Xi,j (tk) + Ei,j (tk), for i = 1, . . . , n, j = 1, . . . , N and k 
= 1, . . . , Ki,j, where n is the number of genes, N is the 
number of subjects, and Ki,j is the number of time points 
observed for the ith gene, belonging to subject j. The noise 
denoted by  Ei,j (tk) is assumed to be independently and 
identically distributed (i.i.d.) with mean 0 and variance 
σ2. The pipeline obtains the functional entity Xi,j (t) by 
spline smoothing [33]. It chooses a subset of the genes 
that exhibit time course patters that have relatively smooth 
trajectories that do not fluctuate widely. Then these genes 
are ranked by their interquartile range and select the 
top genes for the estimation subset. It is reasonable to 
include only these responsive genes in the analysis, since 
many genes have a flat trajectory and so not carrying 
any information; hence the pipeline uses the following 
statistical hypothesis testing to identify DRGs.

Clustering DRGs into GRMs

As many of the DRGs exhibit similar expression 
patterns over time we clustered them into temporal 
gene response modules by using the Iterative Hierarchal 
Clustering (IHC) method. IHC identifies inhomogeneous 
clusters, captures both the large and very small clusters, 
and provides an automated selection of the optimal 
number of clusters. This step is biologically interpretable 
as genes tend to act in collaboration with each other, 
and for computational purposes, it reduces the size and 
dimensionality of the problem.

Discovery of the high-dimensional Gene 
Regulation Network (GRN) by using differential 
equation models

A gene regulatory network attempts to map how 
different genes control the expression of other genes. The 
gene regulations can be modeled by rate equations,

where α0,q,j is the intercept for the qth gene response 
module, belonging to the subject j, and the coefficients 

{ }Mp,q,j
p

Q

=1
  quantify the regulation effects of the pth gene 

response module on the instantaneous rate of change in qth 
gene response module. This model can appropriately 

H X t       vs      H X ti,j a i,j0 0 0: ( ) : ( )≡ ≡

DM M for       qq,j 0,q,j

p=

Q

p,q,j  p,j           = + =∑α α
1

1 2, , ,,Q,

Figure 4: Enrichment cluster analysis of the cross-talk genes. Enrichment cluster analysis of cross-talk genes showed up-
regulation of transcription-related pathways.
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capture both up and down regulation as well as up and 
down self-regulation. Typically, only a few gene response 
modules will affect the instantaneous rate of change in qth 

gene response module, thus only a few of the { }Mp,q,j
p

Q

=1
 

will be non-zero. We first perform a model selection that 

determines which { }Mp,q,j
p

Q

=1
 are non-zero and then we 

estimate their coefficients to determine the regulation 
effects. Here we use the ordinary differential equation 
(ODE) modelling approach in order to reconstruct the 
high-dimensional GRN [34–36].

Comparisons

The pipeline uses the Spearman correlation between 
the expression values of two genes to measure the level 
of their similarity, a measure which is also exploited for 
the clustering purposes in Section 4.3. A large positive 
correlation indicates small or no change, while a large 
negative value and small correlation close to zero (in 
absolute value) implies significant change in the temporal 
behavior of the gene under two different conditions. 
Supplementary Figure 5 demonstrates three selected 
genes: HLA-DMB, KHDC1, and ZC3HAV1 under two 

different conditions (CTRL and EGF) with correlations 
–0.92, 0.94, 0.002.

Cross-talk algorithm, notations, and definitions

A gene is said to have differential activity under condition 
1 compared to condition 2, if the Spearman correlation between 
the mean curve under the two conditions is less than 0.7.

“Important GRMs” are defined as those GRMs with 
at least one of their In-degree, Out-degree, and 
Betweenness coefficients in the 95th percentile. For each 
GRM (as a vertex in the regulatory network), In-degree is 
the number of the GRMs regulating that GRM. Out-degree 
is the number of GRMs regulated by that GRM, and 
Betweenness quantifies the number of times it acts as a 
bridge along the shortest path between two other nodes. 
For node ν it is calculated as

Where, σst is total number of shortest paths from 
nodes to node t and σst  (v) is the number of those paths 
that pass through v.

An expression profile over time is said to have 
“significant variation” if its range of variation is not 

Bet v = v
s v

st

st
( ) ( )

≠
∑ σ

σ

Figure 5: qRT-PCR validation of proposed cross-talk genes. qRT-PCR results of cells treated with EGF (purple), Shh-N 
conditioned media (gold), or a combinational treatment with Shh-N and EGF (blue). Panels (A–C) show that EGF dominates the effects of 
SHH in EGF+SHH treatment after a certain point. Panel (D) shows the effect of co-activation, where under EGF+SHH treatment behavior 
diverges form that under EGF or SHH at and after 12 hours. n = 3/group, and data are expressed as mean ± SEM.
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smaller than 1.96. The critical value 1.96 is motivated by 
the significance critical value of a normal distribution at 
the 0.05 level.

Cross-Talk expression pattern: where, the expression 
curve shows;

● Differential activity under SHH+ vs CTRL
● Significant variation under SHH
● Differential activity under EGF+ vs CTRL
● Significant variation under EGF+
● Differential activity under EGF+SHH+ vs SHH+
● Differential activity under EGF+SHH+ vs EGF+
Co-activation expression pattern: where, the 

expression curve shows;
● No differential activity under SHH+ vs CTRL
● No differential activity under EGF+ vs CTRL
● Differential activity under EGF+SHH+ vs SHH+

Cell culture

Daoy cells (ATCC: HTB-186) and HEK293T cells 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) containing 10% fetal bovine serum (FBS) and 
1% antibiotics. Hyper-confluent Daoy cells were pre-
starved for 24 hours in DMEM plus 0.5% FBS, and then 
were treated with EGF (5 ng/ml), Shh-N conditioned media 
(50% v/v), a combination of both, or a control media. 
For the SHH enriched condition medium preparation, 
HEK293T cells were transfected with a Shh-encoding 
plasmid (37680, Addgene) by using lipofectamine 2000 
(ThermoFisher) [21]. The cell culture supernatant was 
collected every 24 hours for 3 days, centrifuged, and the 
supernatant was prepared as a condition media and stored 
in –80°C. To monitor the SHH synthesis and presence 
in the harvested conditioned media, western blots were 
carried out with 30 ul of conditioned media.

qRT-PCR analysis

Total RNAs were extracted from Daoy cells with an 
RNA STAT-60 (Tel-Test) and RNeasy mini kit (QIAGEN), 
according to the manufacturer protocols. The quantity and 
purity of the RNA were determined by using a NanoDrop 
spectrophotometer (ThermoFisher). Total RNA was 
treated with DNase I, followed by cDNA synthesis with 
reverse transcriptase and random hexamers. Quantitative 

RT-PCR reactions were performed with 25 ng cDNA, 150 
nM of each primer, and SYBR Green PCR Master Mix 
(Invitrogen) in triplicate by using a Quant Studio 6 Flex 
instrument (Applied Biosystems). Relative mRNA levels 
were calculated by using the comparative CT method 
normalized to cyclophilin. The primers were designed 
using Primer Express Software (Applied Biosystems) as 
shown in Table 7.

Abbreviations

SHH: Sonic hedge hog; EGF: Epidermal growth 
factor; ANOVA: Analysis of covariance; ODE: Ordinary 
differential equation; DGEs: Dynamic response genes; 
GRMs: Gene response modules; FBS: Fetal bovine serum; 
ATP1B3: ATPase Na+/K+ transporting subunit beta 3; 
NCoA5: Nuclear receptor coactivator 5; SKI: SKI proto-
oncogene; BCAN: Brevican; IL-8: Interleukin-8.
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Table 7: Primer sequences used for qRT-PCR analysis
Gene Forward Primer Reverse Primer

ATP1B3 TTC CAA AAC CAG TGA CCG CAT TG AGT GCT CCA TCA GGA CAG ACT G
BCAN TAA GCA CAG CCG CTT CAA CGT C CTC TGT CAC TGT GAC GAT AGC C
NCoA5 AGA TTC ACC GCT CCT GCA CAG T CTG TCT GGC AAT CTC CTC ACG T

SKI CCT TCC GAA AAG GAC AAG CCG T GCT CTT TCT CAC TCG CTG ACA C
IL8 GAG AGT GAT TGA GAG TGG ACC AC CAC AAC CCT CTG CAC CCA GTT T

Cyclophilin GGA GAT GGC ACA GGA GGA A GCC CGT AGT GCT TCA GTT T
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