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High density mechanical energy storage
with carbon nanothread bundle
Haifei Zhan 1,2, Gang Zhang3✉, John M. Bell4, Vincent B. C. Tan5 & Yuantong Gu 1,2✉

The excellent mechanical properties of carbon nanofibers bring promise for energy-related

applications. Through in silico studies and continuum elasticity theory, here we show that the

ultra-thin carbon nanothreads-based bundles exhibit a high mechanical energy storage

density. Specifically, the gravimetric energy density is found to decrease with the number of

filaments, with torsion and tension as the two dominant contributors. Due to the coupled

stresses, the nanothread bundle experiences fracture before reaching the elastic limit of any

individual deformation mode. Our results show that nanothread bundles have similar

mechanical energy storage capacity compared to (10,10) carbon nanotube bundles, but

possess their own advantages. For instance, the structure of the nanothread allows us to

realize the full mechanical energy storage potential of its bundle structure through pure

tension, with a gravimetric energy density of up to 1.76 MJ kg−1, which makes them appealing

alternative building blocks for energy storage devices.
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Energy storage is a key bottleneck in the supply of renewable
energy resources to the wider economy. Currently, extensive
research is in progress, directed towards solving the supply

of renewable energy by utilizing industrial waste heat, solar
photovoltaic energy and harvesting mechanical energy in the
environment. Diverse energy harvesters have been developed,
such as electromagnetic electric energy generators, mechanical
energy harvesters and electrochemical harvesters. However, the
storage of intermittent renewable energy supplies means that
large-scale energy storage is becoming an essential component of
the twenty-first century energy system. The high strength and
high modulus of carbon nanotube (CNT) makes the utilization of
CNT-based fibres as a mechanical energy storage medium1, and
as an energy harvester2 viable. Comparing with the electro-
chemical batteries (e.g. Li-ion batteries)3, CNT fibre-based
mechanical energy storage medium allows fast efficient energy
charging and discharging, and tends to be much more stable and
reversible (with a high cycle performance)4. These unique fea-
tures make them promising building blocks for artificial muscles5,
soft robotics6 and flexible electronics7.

In general, CNT fibres are comprised of axially aligned and
densely packed individual CNTs, which can be fabricated through
either a spinning8 or twisting/rolling technique9. Depending on
the applied techniques, different CNT fibre structures have been
reported, such as knitted structures10, parallel structures or
twisted structures11. Due to the complexity of their structures and
various post treatments (e.g. liquid shrinking, infiltration12,
functionalization, etc.), there is a large variation in the mechanical
performance of CNT fibres13. Their strength ranges from 0.23 to
9.0 GPa, and the modulus ranges from 70 to 350 GPa14. Very
recent work reported the fabrication of CNT bundles with a
tensile strength over 80 GPa, based on ultralong defect-free
CNTs15. With CNTs of large diameters, such as the most abun-
dant (10,10) and (18,0) CNTs, the corresponding CNT bundle/
ropes are metastable due to the flattening of the constituent CNTs
during deformation16. Such flattening phenomenon will adversely
affect the mechanical performance of the fibre. As such, extensive
efforts have been made to fabricate CNT fibres with good and
controllable mechanical performance17.

In 2015, a class of one-dimensional (1D) carbon nanostructure
—the carbon nanothread—was reported18. Although experi-
mental efforts are still ongoing to characterize the atomic struc-
tures of carbon nanothreads19,20, first-principle calculations have
systematically enumerated the potential configuration of carbon
nanothreads, including the fully saturated (or degree-6) and
partially saturated (or degree-4) structures21,22. Unlike the sp2

bonding in CNT, the carbon nanothread is an ultra-thin sp3-
bonded carbon structure. They offer an exciting opportunity to
overcome the limitations of CNT fibres and can be fabricated
with consistency into high strength carbon nanothread bundles. It
has a fully hydrogenated surface that allows for the introduction
of interfacial covalent bonds between carbon nanothreads23,
while retaining the thread-like morphology and their excellent
mechanical properties24. Its non-smooth surface can trigger
strong mechanical interlocking effect between carbon nanoth-
reads25, or with a polymer matrix26. Preliminary studies have
shown that nanothreads have excellent mechanical properties
comparable with those of CNT, for example, a high stiffness of
~850 GPa and a bending rigidity of ~5.35 × 10−28 N·m2 27,28, and
a structural-dependent ductility29. The carbon nanothread is
also reported to possess a tailorable thermal conductivity30,31.
Particularly, researchers have already reported the synthesis of
single-crystalline packing of nanothreads (across hundreds of
microns)32. This opens up a facile way to exfoliate nanothread
bundles. It is thus of great interest to assess the mechanical energy
storage capacity of a nanothread bundle. With a combination of

large-scale molecular dynamics (MD) simulations and elasticity
theory, this work explores contributions from different defor-
mation modes to the energy storage capacity in nanothread
bundles. It is shown that mechanical energy storage of nanoth-
read bundles in a pure tensile mode surpasses that of advanced
Li-ion batteries.

Results
Considering the 1D nature of carbon nanothread, we first com-
pare the energy storage capacity of nanothread bundles with the
extensively studied CNT bundles and take the most abundant
(10,10) armchair CNT as the benchmark. There are different
approaches being developed to describe the mechanical defor-
mation of bundle structures, such as the analytical33,34 and the
theoretical models16,35. The former requires additional well-
defined properties of nanothreads under continuum description,
such as Poisson’s ratio and bending moment, which are ambig-
uous for ultra-thin nanothreads. On the other hand, theoretical
models can be based on the general Hooke’s law, which bypasses
the direct continuum approximation and focuses on the linear
elastic deformation regime. This work adopts the theoretical
model to assess the energy storage of the nanothread bundle
structure following the framework established previously by
Tománek and co-authors16,35 for CNT. For this purpose, we first
acquire the mechanical properties and energy storage capability
of an individual nanothread under four different deformation
modes that are occurring in a bundle structure under torsion,
including torsion, tensile, bending and radial compression, and
then assess the mechanical energy storage of a twisted bundle
structure. The commonly used metric–gravimetric energy density
(also known as specific energy density) was adopted to describe
the energy storage capacity.

Mechanical strain energy in an individual nanothread. Figure 1a
illustrates the two different nanothreads being considered, which
are denoted as nanothread-A and -C, respectively. Nanothread-A
has a symmetrical cross-section and linear morphology, while
nanothread-C possesses an initial helical morphology. Several
studies already reported the mechanical behaviours of individual
nanothreads under tensile and bending; here we re-visit these
deformation modes for comparison consistency. Figure 1b com-
pares the strain energy density ΔEt=m (kJ kg−1) as obtained from
MD simulation for the two selected nanothreads under torsion.
Owing to its small diameter, the nanothread is able to achieve a
very high torsional angle before any bond breakage, ~25.55 and
17.28 rad for nanothread-A and -C, respectively. Here, the
dimensionless torsional strain is adopted to measure the defor-
mation of the sample, which is calculated from εt ¼ φD0=l0, with
D0 and l0 as the equivalent diameter and length of nanothread and
φ as the twist angle. The torsional elastic limit is thus defined as
the maximum dimensionless torsional strain before the occur-
rence of irreversible deformation (i.e. fracture or bond breakage),
and the gravimetric energy density refers to the strain energy
density at the elastic limit. We found that nanothread-A has a
slightly higher gravimetric energy density (~884 kJ kg−1) than that
of nanothread-C (~737 kJ kg−1), and the torsional elastic limit
εt;max for nanothread-A is ~0.71, which is also higher than that of
the nanothread-C (~0.51), that is, nanothread-A can sustain larger
torsional deformation. Note that nanothread-C is twisted along
the direction of the spiral in Fig. 1b, which is referred as clockwise
torsion and being emphasized in this work (see Supplementary
Fig. 1 for the anti-clockwise torsion of nanothread-C).

Compared with nanothread, CNT has a large fracture strain of
~0.92, while the corresponding torsional angle is much smaller
(only ~10.11 rad). Most importantly, CNT is found to exhibit
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flattening at a very small torsional angle of only 0.63 rad (i.e.
εt ~ 0.06), which does not occur in nanothreads. The gravimetric
energy stored is only ~65 kJ kg−1 before flattening, more than
one order smaller than the nanothread at the elastic limit. We
associate the limit of the elastic regime with the onset of
flattening. Further inspection of the atomic configuration reveals
that CNT undergoes three distinct elastic deformation stages
before fracture, including initial elastic deformation, flattening,
and torsion without further flattening (see Supplementary Fig. 2).
The eventual failure of CNT occurs when εt � 0:92 with a high
gravimetric energy density of 2720 kJ kg−1.

Figure 1c compares the tensile deformation of the two
nanothreads. Here, the engineering tensile strain is adopted,
which is calculated from εs ¼ ðl � l0Þ=l0, with l0 and l as the
length of the initial and stretched nanothread, respectively. The
elastic limit is ~0.18 and 0.15 for nanothread-A and -C,
respectively, which are consistent with that reported in the
literature28,36. Compared with torsion, the nanothread exhibits a
much higher strain energy storage capacity under tensile
deformation. The gravimetric energy density is ~2051 and 906
kJ kg−1 for nanothread-A and -C, respectively. For CNT(10,10),
MD predicts an elastic limit of ~0.22, which is consistent with the
results from first-principle calculations35. The experimentally
measured elastic limit of ~0.12 is much smaller than the predicted
value due to the existence of defects37. This yields to a strain
energy density of ~2374 kJ kg−1 in Fig. 1c. From the MD
simulation, the maximum energy density is ~6810 kJ kg−1 for
CNT before bond breakage is observed.

Figure 2 shows the bending strain energy density ΔEb=m (kJ kg−1)
as a function of the bending strain. The bending strain is defined as
εb ¼ D0=R (with R as the local radius of the bending curvature) and
the bending direction is along y-axis as shown in Fig. 1a. According
to the atomic configurations, the bending elastic limit is ~0.34 and

0.26 for nanothread-A and -C, respectively. These correspond to a
low gravimetric energy density of ~468 and 288 kJ kg−1, respectively.
In line with previous works38, CNT experiences apparent bending
induced buckling at a very small strain of ~0.05 (see Supplementary
Fig. 3 for more details), which corresponds to a bending strain energy
density of only ~49.3 kJ kg−1. The maximum curvature before any
bonds breakage is ~0.23 (with the structure experiencing severe
buckling), which yields to a high energy density of 618.6 kJ kg−1.

Figure 3 shows that the radial compressive strain energy
density ΔEc=m (kJ kg−1) increases with decreasing separation
distance or increasing radial compressive strain. The radial
compressive strain in the linear regime of small deformations is
estimated from εc;ij ¼ 1� dij=d0. Here, dij is the nanothread
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inter-tubular distance under different pressure. Nanothread-A
exhibits a very high elastic limit of ~0.19 together with a high
gravimetric energy density of ~6051 kJ kg−1. In comparison,
nanothread-C shows a smaller elastic limit of ~0.18 and a
gravimetric energy density of ~3063 kJ kg−1. The big difference
between these two nanothreads stems from their structural
differences. As shown in Fig. 3b, c, nanothread-C with its initial
helical morphology experiences a substantial lateral deformation,
which leads to earlier bond breakage with the further increment
of pressure (see Supplementary Fig. 4 and Supplementary
Videos 1 and 2 for more details).

According to the simulation results, CNT experiences struc-
tural change or flattening once the radial pressure exceeds ~1.4
GPa. Because of the flattening, the compressive strain of CNT
changes suddenly from ~0.017 to 0.04 when the radial pressure
increases from 1.4 to 1.5 GPa (Fig. 3a) because of the remarkable
change in the inter-tubular distance. The compressive strain
before the structural change is only ~0.017, corresponding to an
extremely small strain energy density of ~14.1 kJ kg−1. The final
fracture strain where bond breakage and formation occurs is
~0.33 (with an energy density of 4053 kJ kg−1), when all CNTs
are completely flattened (see Supplementary Fig. 4). As the CNT
experiences flattening during compression, the radial compressive
strain relative to the initial inter-tubular distance after flattening
is only intended as a placeholder for the strain calculation (as a
convenient convention for discussion).

Mechanical strain energy in carbon nanothread bundles. Fol-
lowing, we consider the mechanical energy stored within twisted
nanothread bundles. Different bundles are denoted as bundle-n
with n representing the filament number varying from 2 to 19.
Figure 4a, c compare the strain energy density ΔEtot=M (kJ kg−1)
as a function of the dimensionless torsional strain for different
nanothread-A and -C bundles (with ΔEt and M as the total strain
energy and the total mass of the bundle, respectively). As
expected, nanothread bundles with larger number of filaments
possess higher strain energy density at the same torsional strain
(within the elastic regime). For each bundle, the strain energy
density exhibits a parabolic relationship with the torsional strain.
More interestingly, the elastic limit (and the gravimetric energy
density) of the nanothread bundles decreases remarkably when
the number of filaments increases. The dimensionless torsional
strain limit is ~0.47 for nanothread-A bundles with three

filaments (with a gravimetric energy density of 991 kJ kg−1),
which is more than 2.5 times higher than its counterpart with 19
filaments (~370 kJ kg−1 with a dimensionless torsional strain
limit of ~0.14). Similar results are also observed for nanothread-C
bundles, that is, the bundle with three filaments has an elastic
dimensionless torsional strain limit of ~0.43; it is only ~0.14 for
the counterpart with 19 filaments. Surprisingly, the CNT(10,10)
bundles are found to possess similar gravimetric energy density as
that of nanothread counterparts, although individual CNT(10,10)
has a much higher Young’s modulus. For example, the bundle
with 19 filaments has an elastic limit of ~0.13 and a gravimetric
energy density of ~577 kJ kg−1. Unlike nanothread bundles, the
flattening of individual CNT during torsion causes a deviation of
the energy density profile from a parabolic relationship with the
torsional strain (see Fig. 4c). It is notable that although the elastic
limit of CNT bundle in terms of dimensionless torsional strain is
comparable with that of nanothreads, the actual torsional angle is
very small. For instance, the torsional angle at the elastic limit is
~4.92 and 4.71 rad for bundle-19 constructed from nanothread-A
and -C, respectively, whereas the CNT-based bundle can only
sustain less than one-third of this torsional deformation (~1.47
rad).

Figure 4b, d, f illustrate the representative deformation
processes of nanothread and CNT bundles (also see Supplemen-
tary Videos 3–5). For nanothread-A bundles, each initial filament
is straight and the deformation of the bundle is similar to that
constructed from continuum straight rods33,39. It is found that
the stress accumulates faster at the outer layer of nanothread
bundles during torsion, which experiences the earliest fracture.
Further simulations show that the sample length exerts negligible
influence on the torsional behaviour of the investigated bundles
in this work (see Supplementary Fig. 5, Supplementary Fig. 6 and
Supplementary Note 1 for details). It is interesting that the
fractured nanothreads (at the outer surface) remain in a curved
profile for a certain torsional strain. According to the atomic
configurations at the twist angle of 5.24 rad in Fig. 4b (right
panel), the axial stress is largely released after fracture. In other
words, the curved profile is maintained by the inter-filament van
der Waals (vdW) interactions, which further suggests a low
bending stiffness of the nanothread-A. In comparison, due to its
helical characteristic, the nanothread-C bundles are analogous to
second-level hierarchical helical structures. During torsion, each
filament will coil further, leading to smaller pitch length and local
torsion-induced buckling. Again, outer layer filaments experience
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higher stress and earlier fracture. From the atomic configuration
at the torsional angle of 5.24 rad in Fig. 4d (right panel), the stress
status of each nanothread-C filament is analogous to that under
tensile deformation, that is, they exhibit a double-helix stress
distribution with one helix experiencing tensile and the other
experiencing minor compressive stress28. In line with the low
bending stiffness, nanothread-C is also observed to retain a
curved profile after fracture. As expected, the CNT bundle
exhibits a similar deformation process, while individual CNTs
experience severe flattening during torsion that is not seen in
nanothread based bundles.

Mechanical energy storage under continuum elasticity
description. Hooke’s law is adopted to describe the deformation
of an individual nanothread under each deformation mode in
the linear elastic regime, following the framework established
for CNT16,35. Generally, the strain energy density is related to
the strain through ΔEX=m ¼ kXε

2
X , where ΔE is the strain energy;

m is the sample mass; k is the elastic constant (in the unit of MJ
kg−1); ε is the strain; and X stands for the torsion, stretching,

bending, and compression. The constant k that is related to each
deformation mode can be obtained from quadratic fitting func-
tions based on the MD results. For the twist deformation
(Fig. 1b), the torsional constant (kt) is ~2.70MJ kg−1 for
nanothread-C and 1.78 MJ kg−1 for nanothread-A. As shown
earlier, the elastic deformation of CNT(10,10) can be divided into
three stages, which correspond to a torsional constant of ~19.76
MJ kg−1 (with εt < 0:06 before the occurrence of flattening), 4.74
MJ kg−1, and 2.78MJ kg−1, respectively (see Supplementary
Fig. 2).

For tensile deformation (Fig. 1c), the strain energy curve of
nanothread-A follows the parabolic relationship initially, and
then exhibits a softer response, which is similar to the tensile
deformation of an individual CNT16. In comparison, nanothread-
C shows an enhanced response after the initial harmonic regime,
which is caused by its helical morphology28. The helical nature of
the structure causes the nanothread to undergo a combination of
torsion and tension when it is stretched33. Based on the quadratic
fitting, nanothread-A has a tensile constant (ks) of 77.60MJ kg−1

and nanothread-C has a ks of 34.81 MJ kg−1. In comparison, the
CNT(10,10) exhibits a tensile constant of 183.51MJ kg−1. In
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terms of bending deformation (Fig. 2), bending constants (kb) of
5.12 and 6.04 MJ kg−1 are obtained for nanothread-A and -C,
respectively. For the CNT(10,10), the MD results are best
reproduced by a kb of 24.11MJ kg−1 before the occurrence of
buckling (εb < 0:05). From Fig. 3, compression constants (kc) of
43.74 and 31.80MJ kg−1 are derived for nanothread-A and -C,
respectively. For the CNT(10,10), the compression constant is
~48.72MJ kg−1 before the occurrence of structural change.

Table 1 lists all mechanical properties extracted and fitted from
MD simulation results. It is worth noting that the elastic constants
and the gravimetric energy densities of CNT related to torsion,
tension and bending are all larger than those of the carbon
nanothreads, suggesting that CNT has better energy storage
capacity under these deformation scenarios. Based on Hooke’s
law, the total strain energy for a twisted bundle with n filaments can
be quantified from ΔEtot ¼

PðΔEt þ ΔEs þ ΔEb þ ΔEc;ijÞ for
small deformation. Considering the total mass of the bundle
M ¼ nm, the strain energy density ΔEtot=M is derived as16,35,

ΔEtot=M ¼ 1
n

nktε
2
t þ ks

Xn
i¼1

ε2s;i þ kb
Xn
i¼1

ε2b;i þ kc
X
i<j

ε2c;ij

" #
:

ð1Þ

Here, εt ¼ φD0=l0; εs;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρiφ=l0

� �2q
� 1; εb ¼ D0=R, with

Ri ¼ ρi½1þ l0=φρi
� �2�40; εc;ij ¼ 1� dij=d0; D0 is the equivalent

diameter of nanothread; and n is the filament number. For the
torsional deformation within a bundle configuration, each filament
has a constant rotational or coil radius ρi, which is the equilibrium
separation distance between the filament axis and the rope axis. For
simplicity, we consider each filament has the same equilibrium
distance d0 to its closest neighbours. It is thus evident that the
dimensionless torsional strain (εt) is the same for each nanothread
filament, which equals to the overall torsion strain. The coil radius
can be related to the closest neighbour inter-tubular distance (dij)
through ρi ¼ dij=2sinðπ=nÞ if the filament number n is <7. As such,
both tensile strain and bending strain can be correlated with the
dimensionless torsional strain and compressive strain using Taylor
series. Here, we consider the bundles with n≤ 7 filaments (see
Supplementary Fig. 7 and Supplementary Note 2 for more details
and bundles with larger n), which form a regular polygon cross-
section (such as the bundle-3 or bundle-4). In this regard, the
tensile strain and bending strain can be re-expressed as εs;i ¼
η2d20 1� εcð Þ2ε2t;i=2D2

0 and εb;i ¼ ηd0ð1� εc;ijÞε2t;i=D0, respectively.

Here, η ¼ 2 sin π=n1ð Þ½ ��1. Thus, the total strain energy density can

be written as a function of compressive strain and torsional strain:

Etot εt; εcð Þ=M � 1
n

nktε
2
t þ n1

ks
4

ηd0
D0

� �4

1� εcð Þ4ε4t
"

þ n1kb
ηd0
D0

� �2

1� εcð Þ2ε4t þ nckcε
2
c

#
;

ð2Þ

where n1 is the number of filaments experiencing tension and
bending (which equals to n� 1 and n for the bundle with and
without a central filament, respectively), and nc is the number of
pair filaments. For a given torsional strain εt, the compressive strain
εc can be calculated by considering the system with a minimum
strain energy, that is, ∂Etot=∂εc ¼ 0.

Figure 5 compares the theoretically predicted strain energy
components for the nanothread bundle-3, -7 and -19 at different
torsional strains. Focusing on the low strain region (e.g. with
εt < 10%), good agreement is observed between the predicted
strain energy and MD simulation results. This demonstrates the
capability of the theoretical model to quantitatively describe the
strain energy storage and to distinguish the contributions from
different deformation modes in the linear elastic region. From
Fig. 5, torsion and tension are the two dominant modes for the
mechanical energy storage for both nanothread-A and -C
bundles. Specifically, torsion dominates energy storage at low
strain for bundles with a small filament number, and the tension
becomes dominant when the filament number increases (as
illustrated in insets of Fig. 5a, b). Such observation is reasonable
as the tensile strain increases faster than torsional strain for
bundles with large filament number due to the increased bundle
radius. For all bundles examined, the compression exhibits a
negligible contribution to the total deformation energy, followed
by the bending deformation.

Despite the fact that the theoretical model (Eq. 2) is established
for the linear elastic regime with small deformation, we find that
the predicted energy density curves are in good agreement with
those obtained from MD simulations when εt is extended to the
elastic limit (Table 1). For instance, the predicted maximum
gravimetric energy density is ~1190, 471 and 366 kJ kg−1 for
nanothread-A bundles with 3, 7 and 19 filaments, respectively,
which are very close to those obtained in the simulation (~991,
474 and 370 kJ kg−1, respectively). Similar results are found for
nanothread-C based bundles. This consistent result suggests the
applicability and effectiveness of the theoretical model for a
qualitative analysis of the strain energy storage in the nanothread
bundle configuration (see additional discussions in Supplemen-
tary Note 3).

Table 1 Mechanical properties of carbon nanothreads and CNT(10,10) as derived from MD simulations.

Deformation mode Type Elastic constant k (MJ kg−1) Elastic limit εmax Gravimetric energy density ΔE/m at εmax (kJ kg−1)

Torsion A 1.78 0.71 884
C 2.70 0.51 737
CNT 19.76 (4.74a, 2.78b) 0.06 (0.92) 65 (2720)

Tension A 77.60 0.18 2051
C 34.81 0.15 906
CNT 183.51 0.12 (0.22) 2374 (6810)

Bending A 5.12 0.34 468
C 6.04 0.28 288
CNT 24.11 0.05 (0.23) 49.3 (618.6)

Compression A 43.74 0.19 6051
C 31.80 0.18 3063
CNT 48.72 0.017 (0.33) 14.1 (4053)

A and C represent nanothread-A and nanothread-C, respectively.
a,bThe torsional elastic constants for CNT at the second and third elastic deformation stages. For CNT, the values within the parentheses refer to the elastic limit and the corresponding gravimetric energy
density before the onset of fracture, and the values outside the brackets refer to the elastic limit and the corresponding gravimetric energy density before structural change, that is, flattening or buckling.
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Compared with nanothreads, the theoretical predictions for
CNT exhibit a relatively big deviation from the MD simulations.
Here, the torsional energy density constant of 19.76MJ kg−1

(with εt < 0:06) is adopted in the theoretical model. According to
Fig. 5c, the theoretical predictions agree well with MD
simulations at small strain (e.g. εt < 10%), but deviates from
MD simulation results at the elastic limit. Such deviation
originates from the nonlinearities induced by the twist-induced
flattening, which also affect the bending, compression and tensile
deformation of CNT. Despite that, torsion is also shown as the
dominant deformation mode, but the contribution from the
tensile deformation only increases slightly with the increase in
filament number. It is noticed that the actual mechanical energy
storage density never approaches the maximum magnitude (when
all deformation modes meet their elastic limit) for both nanoth-
reads and CNTs. For instance, the maximum gravimetric energy
storage density is ~3.65MJ kg−1 for nanothread-A bundles (from
Table 1), which is significantly higher than that obtained from
MD simulations (1.19MJ kg−1 bundle-3) or theoretical predic-
tions (0.99 MJ kg−1). Moreover, the gravimetric energy density
decreases with the filament number. Such observations are due to
the fact that different deformation modes are coupled in the
bundle, and the energy storage limit is controlled by their failure
mechanisms, which varies from bundle to bundle.

Optimum mechanical energy storage in nanothread bundle.
The above analyses suggest that the energy stored in a twisted
nanothread bundle is likely to be well below the maximum value
because it is assumed that all elastic limits are achieved. Under
torsion, the outermost filaments experience the most severe
tensile and bending deformation and all nanothread filaments
experience the same amount of torsion. Assuming a same com-
pressive strain between each pair of nanothreads, we can assess
the strain status for the outermost nanothreads through the
theoretical model (focusing on the small strain range). Take the
nanothread-A bundle as an example, it is surprisingly that the
bending strain grows faster than the tensile strain for the bundle
with n< 7 (Fig. 6). Increasing the filament number further leads
to a much larger coil radius for the outermost filaments, which
results in a more rapid increase in the tensile strain (as seen in
bundle-19). In comparison, the compressive strain exhibits a
gradual increase for all nanothread-A bundles. Consistent results
are observed for nanothread-C and CNT bundles (see Supple-
mentary Fig. 8).

Based on the relationships between different deformation
modes (Eq. 1), the ideal failure mode of nanothread bundles can
be qualitatively assessed by examining which strain component
reach its elastic limit first. It is found that the fracture of thinner
bundles (n < 7) is limited by bending for nanothread-A, but by
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torsion for nanothread-C. For larger bundles, the elastic regimes
of both nanothread-A and -C bundles are limited by tensile
strain. CNT bundle is found to share similar fracture mechanisms
as nanothread-A bundles (see Supplementary Fig. 9). The results
above indicate that the energy stored in a twisted nanothread
bundle is dominated initially by torsion, and the stored tensile
energy rapidly dominates as the filament number increases.
Although the bending strain shows a faster increase than the
tensile strain for bundles with small filament number (n ≤ 7, see
Fig. 6), the relatively small bending constant (kb) results in minor
contribution to the total mechanical energy storage (Fig. 5). Recall
in Table 1 the maximum energy storage for an individual
nanothread under pure tension is much higher compared with
other deformation modes (~2.05 and 0.91MJ kg−1 for
nanothread-A and -C, respectively). Thus, a straightforward
way to maximize the energy storage capacity of nanothread
bundle is to utilize the full tensile potential of each constituent
nanothread filaments. It is noted that experimental studies have
shown that the carbon nanothreads can be partially saturated41,
which could increase their elastic limit42. This provides the
possibility of using partially saturated nanothreads at the
outermost layer of the bundle to enhance the mechanical
performance of a twisted bundle. The torsional performance of
the bundle structure could also be improved by adopting a multi-
level hierarchical structure or introducing certain pre-strain to the
outermost filaments.

To illustrate, we conducted another set of pure tensile MD
simulation for nanothread-A and -C bundles with varying
filament number. Comparing with torsion, a very high gravi-
metric energy density is observed for the tensile deformation of
nanothread-A and -C bundles with 19 filaments (~1.76 and 0.81
MJ kg−1, respectively). From Fig. 7, the normalized gravimetric
energy density (ηEG ) of a bundle structure (either under tension
or torsion) is lower than that of an individual structure under
tension. Here, ηEG ¼ EG

n =E
G
t1 and EG

n and EG
t1 represent the

gravimetric energy density of a bundle-n structure under torsion
or tension, and the gravimetric energy density of the correspond-
ing individual nanothread under tension, respectively. Under
torsion, the gravimetric energy density experiences a remarkable
reduction of ~40% for both nanothread-A (ηEG decreases from
~57% to 18%) and nanothread-C (ηEG decreases from ~73% to
28%) when n increases from 2 to 19. In comparison, the
gravimetric energy density for both nanothread-A and -C under
tension only shows a reduction of within 10%, for example, ηEG

decreases from 94% to 86%. The amount of reduction in the
bundle structure under pure tension is regarded as originating
from the change of inter-tubular interactions, which is different
from the tension of an individual nanothread. We also extend the
calculation for CNT bundles under pure tension and obtained
similar results, that is, maintaining a high energy storage capacity
with increasing number of filament (see Supplementary Fig. 10).

Discussions
Generally, it is found that the gravimetric energy density of the
nanothread bundle decreases with the number of filaments, and
torsion and tension are the two main players for the mechanical
energy storage. Specifically, tension dominates the energy storage
for larger bundles. Though individual CNTs exhibits better
mechanical properties than nanothreads, our results show that
the nanothread bundle has a comparable mechanical energy
storage capacity with CNT bundles under torsion. In particular,
nanothread bundles exhibit their own advantages compared with
CNT bundles in terms of mechanical energy storage. Firstly, CNT
bundles experience structural instability at a very small strain,
which does not occur in nanothread bundles. Secondly, the
maximum elastic torsional deformation that the CNT can sustain
is much smaller than that of the nanothread. Thirdly, the intrinsic
structure of nanothread enables the possibility of activating the
optimum mechanical energy storage capacity in the bundle
structure through pure tension. This is due to the fact that the
hydrogenated surface of nanothread bundle facilitates the estab-
lishment of inter-thread bonds. Experiments have already
demonstrated the feasibility of functionalizing nanothreads with
–NH2 groups23, which decorate the exterior of the nanothreads
and acts as potential linkers for adjacent nanothreads. DFT cal-
culations43 show the possibility of functionalizing with various
functional groups (e.g. –CH3, –NH2 –OH, and –F), while
retaining the mechanical properties of nanothreads.

It is noted that due to the low simulation temperature, the
elastic limits of different deformation modes are likely over-
estimates of the behaviour of actual CNT and carbon nanothreads
at room temperature, and consequently there is an overestimation
of the energy storage capacity at room temperature. A future
study is needed to justify the influence of temperature. Pre-
liminary studies show that the mechanical properties of CNT
(10,10)44 are less sensitive to temperature than that of the carbon
nanothreads28. However, considering the large varieties of
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nanothreads, it is still an open question whether CNT bundles
can outperform nanothread bundles at finite temperature, espe-
cially for the bundles constructed from thinner CNTs. Addi-
tionally, although the applied strain rate in this work is
sufficiently small to allow confidence in the simulation results, it
is still huge compared with that in experiments. Literature show
that the elastic limit will increase slightly at higher strain rates,
while the elastic modulus is normally insensitive to the strain
rate28,29. As such, a slight reduction of energy storage capacity is
expected under lower strain rates.

Overall, the gravimetric energy density of the nanothread bundle
can reach 1.76MJ kg−1 under pure tension, which is 4 to 5 orders
higher than that of a steel spring (~0.14 kJ kg−1)45 and up to three
times compared to Li-ion batteries (~0.43–0.79MJ kg−1)46. An
application for such pure tension scenario for bundle structures was
proposed previously for CNT bundles1 based on an escapement
mechanical system that is commonly seen in pendulum clocks47.
With this mechanical system, the nanothread bundle can be con-
nected by a right-handed and a left-handed screw. By turning the
screw, the nanothread bundle will experience pure extension and
thereby act as the mechanical energy storage system1. Considering
the large variety of carbon nanothreads, nanothread derivatives
(such as the carbon nitride nanothreads)48, and the huge variety of
bundle configurations (with a mixture of threads of varying chir-
ality), it is of great interest to carry out further experiments and
theoretical works to explore the applications of carbon nanothread
bundles for mechanical energy storage.

Methods
Sample selection and general settings. Theoretical calculations predict 50 kinds
of carbon nanothreads, among which 15 have a relatively low energy and are
classified into two classes, namely, chiral and achiral.21 For comparison purposes,
two representative carbon nanothreads (one from each class) were selected in this
work, including the achiral polymer I (135462), and the chiral nanothread 134562,
which are denoted as nanothread-A and nanothread-C, respectively. The six
integers (some underscored) represent the bonding topology in the structure,
which is used as a standard nomenclature for nanothread21. It should be noted that
the mechanical performance of the selected nanothreads is not expected as gen-
eralizable to other nanothreads, that is, the results in this work only intend to
demonstrate the capability of the new carbon nanothreads for mechanical energy
storage. A comprehensive understanding of the capacity of other carbon nanoth-
reads requires future investigation.

In order to consider a larger sample size, large-scale MD simulations were
adopted. The widely used AIREBO potential was employed to describe the C-C and
C-H atomic interactions49,50. The potential includes short-range interactions, long-
range vdW interactions (as described the Lennard–Jones term) and dihedral terms,
which have been shown to well represent the binding energy and elastic properties
of carbon materials. It accurately reproduces the elastic properties of carbon
systems, such as the twisting of CNT51, and tension-twisting deformation of
CNTs52, and has been reported to reasonably capture the vdW interactions in CNT
bundles53. It is noted that the Lennard–Jones term is reported to be deficient in
describing the sp2 interlayer interactions with changes in the interlayer registry54.
However, this will not affect our results as this work focuses on DNTs and they are
sp3 carbon structures. It is important to mention that AIREBO potential usually
suffers from a non-physical high tensile stress under bond stretching due to the
switching function55. A conventional way to overcome this is to extend the original
cut-off value of 1.7 to ~1.9–2.0 Å56,57. In this work, a cut-off of 2.0 Å was adopted.
It is expected that a higher elastic limit (before fracture or failure) would be
obtained if a smaller cut-off was selected. A comprehensive discussion on the
influence from different cut-off distances can be found in our previous work29. The
real magnitudes of the mechanical properties are supposed to experience certain
deviations from the MD results because of the nature of the empirical potential,
which is usually fitted from experimental measurements or first-principle
calculations when experimental data is absent.

To limit the influence of thermal fluctuations, a low temperature of 1 K was
adopted for all simulations. This is also commonly applied in literature when
investigating the mechanical properties of nanomaterials in order to remove the
thermal influence. The literature shows that the temperature normally exerts small
or negligible influence on the elastic modulus28,58, whereas the elastic limit will
normally experience a nontrivial decrease when the temperature increases28,36. A
small time step of 0.5 fs was used for all calculations with all MD simulations being
performed using the software package LAMMPS59.

During the simulation, the commonly used virial stress was calculated, which is
defined as60
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Here, Ω is the volume of the system as calculated from Ω ¼ P
ωi with ωi

representing the effective volume of atom i; mi and vi are the mass and velocity of
atom i; Fij and rij are the force and distance between atoms i and j; and the indices
α and β represent the Cartesian components. The atomic virial stress can be
obtained by replacing the system volume with the effective volume of atom (i.e. ωi)
in Eq. (3). Considering the sophisticated stress status that the atoms experience in
the deformed nanothread bundle, the atomic Von Mises stress was also calculated
based on the atomic virial stress. The system volume of the nanothread is estimated
by approximating an individual nanothread as a solid cylindrical beam with an
effective radius of r0. In this case, the equivalent cross-sectional area of a
nanothread equals to λV0, with V0 as the reference atomic volume for carbon atom
in bulk diamond (~5.536 Å3/atom)61 and λ as linear atom density (in the unit of
atoms/Å)21,62. As such, the overall cross-sectional area of the nanothread bundle is
approximated by nλV0, where n is the number of filaments. Adopting different
approaches to calculate the volume of the nanothread bundle would lead to
different absolute stress values, but not affect their relative magnitudes.

Bundle model construction. Based on the equilibrium inter-tubular distance,
different nanothread bundles are constructed with the filament number n varying
from 2 to 19 (denoted as bundle-n). This filament number range is selected to
enable full consideration of the close-packing morphology allowed by the trian-
gular lattice without excessive computational costs. The CNT or carbon nanoth-
read bundles has a close-packed configuration, that is, a triangular lattice, which
has the lowest system energy and is being widely adopted for CNT bundles63. A
series of relaxation simulations under isothermal–isobaric ensemble were per-
formed to identify the inter-thread separation distances between two filaments. The
inter-thread separation distance refers to the distance between the centres of the
two adjacent parallel nanothreads. For instance, two carbon nanothread models
with different initial distances in lateral and longitudinal directions, and different
orientations (or relative angles) were examined. The inter-thread separation dis-
tance was ~16.91, 6.25 and 7.25 Å for CNT(10,10), nanothread-A and -C,
respectively. The bundle structures were then constructed based on these inter-
thread separation distance values following the triangular lattice.

Torsional deformation. Individual nanothread samples or bundles were firstly
optimized by the conjugate gradient minimization method and then equilibrated
using the Nosé-Hoover thermostat64,65 for 1000 ps. Periodic boundary conditions
were applied along the length direction during the relaxation process. Thereafter, a
constant torsional load (i.e. 2π/12,000 rad/ps) was applied to both ends of the
sample in opposite directions (equal to a period of 6000 ps along its axis) to
continuously twist the sample. All torsion simulations were carried out by
switching to non-periodic boundary conditions and one end of the sample was
fully fixed with the other end free in the longitudinal or axial direction. A similar
initial deformable length (~15 nm) was chosen for all examined structures.

Tensile deformation. The nanothread samples or bundles were firstly minimized
and equilibrized with periodic boundary conditions in the length direction. The
periodic boundary conditions were then switched off and a constant velocity
(0.005 Å/ps) was applied to one end of the sample with the other end being fixed.
This introduces a constant tensile strain rate to the structure. The nanothread
sample or structure has a deformable region with a length of ~15 nm. The applied
constant velocity yields to a strain rate of 3 × 10−7 fs−1, which is very large if
compared with in situ experiments. However, for the simulation with a time step of
0.5 fs, the sample was only elongated by 1.5 × 10−5% each simulation step, which is
nearly a quasi-static deformation.

This work only focuses on the perfect bundle structure with same filaments,
whereas tensile deformation in experiments may trigger slippage between filaments
due to their different lengths or pre-existing structural defects. Assessing the slip
phenomenon would require large bundle samples (e.g. hundreds of nm in
diameter), which could consume huge computational resources for MD
simulations. In this regard, the coarse-grain method previously being applied to
probe the bundle behaviours of CNTs66, is a promising alternative approach, which
will be discussed in our future work.

Bending deformation. Two different approaches have been adopted to perform
bending simulation. For nanothreads, an initial curvature was introduced to bend
the sample. A short sample size ~4 nm was chosen in order to reach a relatively
large bending curvature. Due to their relatively low bending stiffness, the curvature
of the nanothread was maintained by bonding the sample to an idealized surface
with the wall–atom interactions described by an LJ 9/3 potential, that is,
E ¼ ξ½2 σ=rð Þ9=15� σ=rð Þ3�. Here, ξ and σ were chosen as 0.65 eV and 2 Å,
respectively27. Curvatures ranging from 0.006 to 0.14 Å−1 were considered for the
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nanothread. After energy minimization, the bending energy can be derived by
comparing with the unbent nanothread adhered to the same idealized wall. No
periodic boundary condition was applied during the simulation.

For CNT(10,10), an initial curvature was also introduced to bend the sample.
With both ends of the sample being fixed, the bent CNT was optimized by the
conjugate gradient minimization method. The bending energy is then derived by
comparing with the unbent CNT. A sample size of 8 nm was adopted, with the
curvature varying from 0.027 to 0.136 Å−1. For both nanothreads and CNT, the
initial bent structures were built by assuming pure bending deformation, that is, the
length of the central line of the sample was a constant.

Radial compression. To probe radial compression, a close-packed infinite trian-
gular lattice of the nanothread with sixfold symmetry was considered. The trian-
gular lattice was constructed by first obtaining the equilibrium inter-tubular
distance d0 through a series of relaxation simulations under isothermal–isobaric
ensemble25, that is, tuning the model with different initial distances in lateral and
longitudinal directions and orientations. For nanothread-A, the inter-thread
separation distance is ~6.25 Å, which agrees well with previous simulation results
and experimental measurements20,48. A larger d0 of ~7.25 Å was found for
nanothread-C, which presumably is due to its helical morphology.

A series of five-stage simulation of the nanothread lattice was conducted under
isothermal–isobaric ensemble (NPT, with constant atom number, constant
pressure and constant temperature), that is, relaxation at pressure 0, compressing
the lattice from zero pressure to pressure P, relaxation at pressure P, releasing the
pressure from P to 0 and relaxation at zero pressure. During the simulation, a same
lateral pressure (coupled in x- and y-axis) was applied simultaneously to the
nanothread lattice. Each stage was performed for the same simulation time of 250
ps. A total of 38, 23 and 34 tests were conducted for nanothread-A, -C and CNT,
respectively. Periodic boundary conditions were applied in all directions to the
triangular lattice and the temperature was kept as 1 K. The nanothread triangular
lattice was optimized by the conjugate gradient minimization method both prior
and after the five-stage simulation.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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