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Abstract: Common wheat originated from interspecific hybridization between cultivated
tetraploid wheat and its wild diploid relative Aegilops tauschii followed by amphidiploidization.
This evolutionary process can be reproduced artificially, resulting in synthetic hexaploid wheat
lines. Here we performed RNA sequencing (RNA-seq)-based bulked segregant analysis (BSA) using
a bi-parental mapping population of two synthetic hexaploid wheat lines that shared identical
A and B genomes but included with D-genomes of distinct origins. This analysis permitted
identification of D-genome-specific polymorphisms around the Net2 gene, a causative locus to hybrid
necrosis. The resulting single nucleotide polymorphisms (SNPs) were classified into homoeologous
polymorphisms and D-genome allelic variations, based on the RNA-seq results of a parental tetraploid
and two Ae. tauschii accessions. The difference in allele frequency at the D-genome-specific SNP
sites between the contrasting bulks (∆SNP-index) was higher on the target chromosome than on the
other chromosomes. Several SNPs with the highest ∆SNP-indices were converted into molecular
markers and assigned to the Net2 chromosomal region. These results indicated that RNA-seq-based
BSA can be applied efficiently to a synthetic hexaploid wheat population to permit molecular marker
development in a specific chromosomal region of the D genome.
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1. Introduction

Wild relatives of common wheat (Triticum aestivum L.), including Aegilops species, constitute
important genetic resources for common wheat breeding. Notably, Aegilops tauschii Coss. is the
D-genome progenitor of common wheat, and a limited number of Ae. tauschii strains appear to
have contributed to the speciation of common wheat through interspecific crossing to the cultivated
tetraploid wheat (Triticum turgidum L. ssp. durum) strains carrying the A and B genomes and
subsequent amphidiploidization about 8000 years ago in the Fertile Crescent [1,2]. Artificial replication
of this evolutionary process can be achieved by generation of synthetic hexaploid wheat derived from
the interspecific crosses between cultivated tetraploid wheat and Ae. tauschii [3]. Thus, agriculturally
useful alleles of Ae. tauschii are directly available for common wheat breeding via the transmission
from synthetic hexaploid wheat to common wheat [4–10]. In common wheat, the D genome is known
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to harbor much lower genetic diversity than do the A and B genomes, whereas introgression of the
Ae. tauschii natural variation via synthetic hexaploid wheat has been used successfully to enlarge
D-genome diversity [11–14].

Ae. tauschii is widely distributed, and is present from northern Syria and southeastern Turkey
to western China [15,16]. Recent studies on the population structure of Ae. tauschii showed that only
one (TauL1) of three major lineages has contributed to the wide species range [2,17,18]. The other
two major lineages, TauL2 and TauL3, are restricted to the Transcaucasus/Middle East region.
TauL2 includes both subspecies tauschii and subspecies strangulata, and the TauL3 accessions are
limited in Georgia [18]. The Ae. tauschii strains associated with the origin of common wheat are
assumed to be the TauL2 lineage [2,17], and only limited reproductive barriers are thought to exist
between tetraploid wheat and many of the TauL2 accessions [19]. TauL1 accessions frequently carry
a hybrid incompatibility gene, designated Net2, that triggers low-temperature-induced necrotic cell
death upon interspecific hybridization with tetraploid wheat, impeding the generation of synthetic
hexaploid wheat [20,21]. Thus, Net2 is a major reproductive barrier for breeding use of the TauL1
accessions, and the development of markers closely linked to Net2 is needed for efficient use of the
TauL1 gene pool. A fine map for the Net2 chromosomal region already has been constructed on the
short arm of chromosome 2D [22].

Genomic approaches using next-generation sequencing (NGS) techniques have been applied to
analysis of the genomes of the wild relatives of domesticated crops, expanding the genetic resources
available for crop improvement [23]. In common wheat, the D-genome markers remain much less
developed than those of the A and B genomes, whereas recent progress using the NGS technique has
facilitated an increase in the number of D-genome markers [24]. RNA sequencing (RNA-seq) of the
Ae. tauschii accessions has generated a huge number of genome-wide polymorphisms, including single
nucleotide polymorphisms (SNPs) and insertions/deletions (indels); the genome-wide SNPs and
indels can be efficiently anchored to the chromosomes of barley and Ae. tauschii [25–27]. The SNP- and
indel-based markers are available for construction of linkage maps in the target chromosomal regions
of not only Ae. tauschii but also the D genome of hexaploid wheat including synthetic wheat [26,27].

Bulked segregant analysis (BSA) combined with NGS allows efficient development of molecular
markers linked to a genomic region associated with the target phenotype in cereals [28–31]. In maize,
for example, an RNA-seq-based BSA approach has been used to construct high-density linkage
maps and to screen among candidate genes for a target locus [32–34]. Hexaploid wheat has three
closely related genomes (designated A, B, and D), each of which carries a set of highly similar genes
(homoeology). Due to the genome complexity via allopolyploidy and the large proportion of repetitive
DNA in polyploid wheat, whole-genome resequencing is still unviable and reduced-representation
methods of NGS data have been employed in this species [35]. Recently, RNA-seq-based BSA was
employed successfully for the development of molecular markers closely linked to target chromosomal
genes such as a grain protein content gene (GPC-B1), a yellow rust resistance gene (Yr15), and a
powdery mildew resistance gene (Pm4b) in tetraploid and common wheat [36–38]. However, a limited
amount of information has been reported for the RNA-seq-based BSA approach in polyploid wheat.
Here, we employed the RNA-seq-based BSA method to develop a molecular marker closely linked
to Net2. This process used a mapping population generated from a cross of two synthetic hexaploid
wheat lines that shared identical A and B genomes but contained diverse D genomes originating from
two distinct pollen parents.

2. Results and Discussion

Two synthetic hexaploid wheat lines were derived from interspecies crosses of tetraploid wheat
cultivar Langdon (Ldn) and two Ae. tauschii accessions (KU-2075 and KU-2025). Ldn/KU-2075
and Ldn/KU-2025, respectively, showed normal phenotype (wild-type) and type-II necrosis
phenotype [20]. To obtain novel molecular markers tightly linked to Net2, RNA sequencing of
four bulks of synthetic hexaploid wheat was performed (Figure 1). Each bulk was composed of
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ten Net2-homozygous individuals or non-carriers (net2-homozygous) selected from two F5 populations
between Ldn/KU-2075 and Ldn/KU-2025 (hereafter referred to as Segregating Populations SP1 and
SP2). The two bulks of each SP (Net2-SP1, non-carrier-SP1, Net2-SP2, and non-carrier-SP2) were
sequenced twice; the bulks were designated as follows: Net2-SP1-1st, Net2-SP1-2nd, non-carrier-
SP1-1st, non-carrier-SP1-2nd, Net2-SP2-1st, Net2-SP2-2nd, non-carrier-SP2-1st, and non-carrier-SP2-2nd
(Table 1). In each experiment, 4.06 million to 5.22 million paired-end reads were generated. After quality
filtering, 2.80 million to 3.71 million high-quality reads were acquired. These reads were aligned with
transcripts of the two parental synthetic hexaploid Ae. tauschii accessions, KU-2075 and KU-2025,
transcriptomes that had been de novo assembled in our previous study [23]. In each experiment,
2.02 million to 2.76 million and 1.93 million to 2.68 million reads were aligned to the KU-2075 and
KU-2025 transcriptomes, respectively. The alignment output files of the first and second runs were
merged for each alignment pair of bulk and transcript. On average, 292,678 and 278,690 SNPs were
detected on KU-2075 and KU-2025 transcripts, respectively (Table 2). Of these, 290,712 (99.33%) and
276,700 (99.29%) SNPs on the KU-2075 and KU-2025 transcripts (respectively) were anchored to the
Ae. tauschii genome. SNP sites in the eight alignment pairs of bulk and transcript (e.g., Net2-SP1
vs. KU-2075), as shown in Table 3, were integrated with the genome sequence, yielding a total of
319,808 non-redundant (NR) SNP sites on the seven chromosomes (Table 3). This section may be
divided by subheadings. It should provide a concise and precise description of the experimental
results, their interpretation as well as the experimental conclusions that can be drawn.

To distinguish D-genome-specific variations from homoeologous polymorphisms between the
tetraploid AB and diploid D genomes, the RNA-seq raw read data of Ldn, the tetraploid parental
accession of the synthetic wheat lines, were processed as described above. Out of the total of 6.32 million
read pairs obtained, 4.37 million read pairs passed the quality filtering (Table 1). To KU-2075 and
KU-2025 transcripts, 2.97 million and 2.66 million reads were aligned, respectively.

Table 1. Summary of RNA sequencing results for four pairs of bulks of synthetic hexaploid wheat and
for tetraploid wheat cv. Langdon.

Samples Total Read Pairs
Filtered Read

Pairs (%) a

Aligned to the Ae. tauschii Transcripts b

(%) c

KU-2075 KU-2025

Synthetic hexaploids

non-carrier-SP1-1st 4,202,114 2,799,202 (66.61%) 2,020,405 (72.18%) 1,930,400.5 (68.96%)
non-carrier-SP1-2nd 4,059,840 2,858,956 (70.42%) 2,062,291 (72.13%) 1,971,110.5 (68.95%)
non-carrier-SP2-1st 4,492,358 2,953,088 (65.74%) 2,164,656 (73.3%) 2,083,120 (70.54%)
non-carrier-SP2-2nd 4,115,352 2,864,271 (69.60%) 2,098,383 (73.26%) 2,020,752.5 (70.55%)

Net2-SP1-1st 4,710,499 3,148,652 (66.84%) 2,208,392 (70.14%) 2,110,452.5 (67.03%)
Net2-SP1-2nd 4,403,630 3,108,568 (70.59%) 2,178,403 (70.08%) 2,082,004 (66.98%)
Net2-SP2-1st 4,828,182 3,249,596 (67.30%) 2,420,056 (74.47%) 2,348,814 (72.28%)
Net2-SP2-2nd 5,216,082 3,709,478 (71.12%) 2,763,471 (74.5%) 2,684,019 (72.36%)

Tetraploid wheat

cv. Langdon 6,316,174 4,372,660 (69.23%) 2,974,277 (68.02%) 2,661,487 (60.87%)
a The ratio of the filtered read pairs to the total read pairs. b Nishijima et al. [27]. c The ratio of the aligned reads to
the filtered read pairs.
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Figure 1. Workflow of the RNA sequencing analysis in this study.

Table 2. The number of single nucleotide polymorphisms (SNPs) detected in four bulks of
synthetic hexaploid wheat and tetraploid wheat cv. Langdon compared to the two parental
Ae. tauschii transcriptomes.

Transcripts a KU-2075 KU-2025

The Number of SNP Total Anchored to the Genome b (%) Total Anchored to the Genome b (%)

Synthetic hexaploids

non-carrier-SP1 277,605 275,799 (99.35%) 262,966 261,128 (99.30%)
non-carrier-SP2 276,564 274,772 (99.35%) 269,175 267,249 (99.28%)

Net2-SP1 318,046 315,859 (99.31%) 296,819 294,739 (99.30%)
Net2-SP2 298,496 296,419 (99.30%) 285,798 283,684 (99.26%)

Tetraploid wheat

cv. Langdon 429,346 421,957 (98.28%) 350,871 345,657 (98.51%)
a Nishijima et al. [27]. b Luo et al. [39].
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Table 3. The number of SNPs classified into three categories, including D-genome-specific allelic
variations, homoeologous polymorphisms, and unclassified (those falling into neither of the other
two classes).

Chr. D-genome-Specific Homoeologous Unclassified Total

1D 1674 29,307 11,760 42,741
2D 2295 33,822 13,975 50,092
3D 1611 31,932 15,532 49,075
4D 1698 28,781 11,776 42,255
5D 2936 34,961 14,336 52,233
6D 3730 24,534 10,966 39,230
7D 3983 28,593 11,606 44,182

Total 17,927 211,930 89,951 319,808

Out of the 429,346 and 350,871 SNPs identified on KU-2075 and KU-2025 transcripts (respectively),
421,957 (98.28%) and 345,657 SNPs (98.51%) (respectively) were anchored to the Ae. tauschii genome
(Table 2). Based on these SNPs derived from tetraploid wheat reads, and on the SNPs between the two
Ae. tauschii accessions reported in our previous study [27], NR SNPs identified in synthetic hexaploid
bulks were classified into homoeologous polymorphisms and D-genome-specific allelic variation.
Out of the 319,808 SNPs, 17,927 were assigned to the allelic variation on the D genome, and 211,930
were grouped into the homoeologous polymorphisms, while the remained 89,951 did not fall into
either of these two classes (“unclassified”; Table 3).

SNP-index values were computed for each of the eight alignment pairs, and then ∆SNP-index
values were calculated for the comparisons between Net2-homogenous bulks and non-carrier bulks,
yielding indices for Net2-SP1 minus non-carrier-SP1 and Net2-SP2 minus non-carrier-SP2. The average
of the four ∆SNP-index values at each SNP site was mapped to the Ae. tauschii genome (Figure 2).
The ∆SNP-index distribution on the chromosomes indicated that SNPs with high ∆SNP-index
values tended to be located on the short arm of chromosome 2D, where the Net2 locus resides
(Figure 2). Comparison of ∆SNP-index values among D-genome-specific SNPs showed that the
D-genome-specific SNPs on chromosome 2D possessed significantly higher (Steel-Dwass test, p < 0.001)
∆SNP-index values than those on the other six chromosomes (Figure 3). Theoretically, homozygous
chromosomal regions account for 87.5% of the total genome in an F4 individual derived from two
parents. D-genome-specific SNP sites with low ∆SNP-index values appeared to already have been
fixed as homozygous for the KU-2075 or KU-2025 allele by the F4 generation of the synthetic hexaploid
populations. The ∆SNP-index values of D-genome-specific SNPs on chromosome 2D also were
significantly higher (Steel-Dwass test, p < 0.001) than those of homoeologous and unclassified SNPs
(Figure 3). Moreover, most of the homoeologous and unclassified polymorphisms showed ∆SNP-index
values of approximately zero (Figure 3), indicating that homoeologous polymorphisms had been
efficiently removed from candidate SNPs for development of molecular markers, since such candidate
SNPs should have possessed high ∆SNP-index values. Low ∆SNP-index values at homoeologous
polymorphic sites were likely due to the similar allele frequency of A- and B-genome-derived reads
between the Net2-homogenous and non-carrier bulks, which thereby offset the SNP-index values of
each other.
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Figure 3. Box and dot plots for ∆SNP-index values based on the seven chromosomes and on the
SNP classifications in Figure 2. D-genome-specific SNPs on chromosome 2D had significantly higher
∆SNP-index values than SNPs on the other six chromosomes, homoeologous SNPs, and unclassified
SNPs. *** p < 0.001 by the Steel-Dwass test.
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To assess whether SNPs with high ∆SNP-index values can be used as molecular markers for
the Net2 locus, derived cleaved amplified polymorphic sequence (dCAPS) markers were designed
from these SNPs. Within the physical region from 81.8 Mb to 83.3 Mb on chromosome 2D that was
defined by the two markers noted in our previous study [22], 208 SNPs were detected in the present
study, including 10 D-genome specific, 144 homoeologous, and 54 unclassified SNPs. The ∆SNP-index
values of this subset of SNPs ranged from −0.4025 to 0.5425. Four of the D-genome-specific SNPs
with ∆SNP-index values higher than 0.38 were converted into dCAPS markers (Table 4), and three
of these markers (designated bsa1, bsa2, and bsa4) were successfully genotyped and mapped in the
Ldn/KU-2025//Ldn/KU-2075 population (Figure 4). All three of these markers were anchored within
2.5 cM distal to the Net2 locus, and two of these markers were closer to Net2 than to scaf52, the most
closely linked markers in our previous study [22]. This result indicates that SNPs derived from
RNA-seq-based BSA of synthetic hexaploid wheat can be used for molecular marker development in a
specific chromosomal region of the D genome.

Table 4. List of the derived cleaved amplified polymorphic sequence (dCAPS) markers developed in
this study.

Marker Name Primer Sequence (5′ to 3′) Restriction Enzyme

bsa1 TCATGACCTGCTGGTTTGTT StyI
GATTCCAATGTTATTTCTGAACCCT

bsa2 TCACAACATTCGCAGGTCAT HpaII
TGGTTCTGTTGATCTCACTGCC

bsa4 ACAAGTCGGATATCGCCAAA HinfI
CAGCTAAAAACTGTTTGCTTGAGA

The distribution of ∆SNP-index values was not continuous (Figure 2), even in a single transcript.
The discontinuous pattern was due to the homoeologous and nonpolymorphic RNA-seq reads,
which could be derived from homoeologous regions in the A and B genomes and overlap with
the reads containing the D-genome-specific SNPs. For complete masking of the overlapping reads from
the A and B genomes, precise alignment to all three genomes of hexaploid wheat would be needed.
In the present study, although transcripts of the parental diploid species were used as the reference
sequences, our strategy succeeded in efficiently detecting candidate SNPs on a specific chromosomal
region of synthetic hexaploid wheat. Therefore, this strategy of RNA-seq-based BSA is expected to
be applicable to other synthetic polyploids derived from crosses among tetraploid and/or diploid
wheat relatives.

Taken together, these data demonstrate that RNA-seq-based BSA can be applied to synthetic
hexaploid wheat for the development of molecular markers in specific chromosomal regions. The use
of a single tetraploid wheat cultivar as a parental line for synthetic hexaploid wheat effectively
cancelled the increase in ∆SNP-index values at homoeologous polymorphic sites. To date, a large
number of synthetic wheat hexaploids have been produced as part of efforts to enlarge the D-genome
genetic diversity [5,6,40]. Epistatic interactions can occur between the parental genomes in the newly
synthesized allopolyploids [41], and several phenotypes specific to the synthetic wheat hexaploids have
been reported [20,42]. RNA-seq and subsequent de novo transcriptome assembly can be performed
even in wild diploid wheat relatives with no reference sequences. This strategy would facilitate
molecular marker development in diverse wheat synthetics with various genome constitutions. Thus,
RNA-seq-based BSA is expected to serve as a rapid and efficient approach for genetic evaluation of
target traits from wild wheat relatives with allopolyploid backgrounds.
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3. Materials and Methods

3.1. Plant Materials

Two synthetic hexaploid wheat lines derived from interspecies crosses of tetraploid wheat cultivar
Langdon (Ldn) and two Ae. tauschii accessions (KU-2075 and KU-2025) were used in this study.
These lines were produced in our previous study [21]. A synthetic hexaploid line (Ldn/KU-2075)
showed normal growth, whereas another synthetic hexaploid line (Ldn/KU-2025) exhibited the type-II
necrosis phenotype when grown at low temperature [21]. An F2 mapping population was generated
through a cross of the two synthetic hexaploid lines [22]. Subsequently, the F3 and F4 generations
were developed from selfing F2 and F3 individuals (respectively) heterozygous for the chromosomal
region of Net2, a type-II necrosis-causing gene [22]. Two F5 populations (SP1 and SP2) were generated
through selfing of two independent F4 individuals heterozygous for the Net2 region (Figure 1).

3.2. Library Construction and RNA Sequencing

Ten Net2-homozygous individuals and ten non-carriers (net2-homozygous) each were selected
from the SP1 and SP2 populations. Total RNA was extracted from leaves of each of the forty selected
plants at the seedling stage using a Plant Total RNA Extraction Miniprep System (Viogene, Taipei Hsien,
Taiwan, ROC). The resulting RNA preparations were pooled independently into four bulk preparations
according to the genotype of the Net2 region and to the SP source population (Net2-SP1, non-carrier-SP1,
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Net2-SP2, and non-carrier-SP2). A total of 8 µg of each bulk preparation of RNA was used to construct
paired-end libraries using TruSeq RNA Library Preparation Kit v2 (Illumina, San Diego, CA, USA).
The libraries were sequenced twice for 300 cycles × 2 on an Illumina MiSeq sequencer with 300-bp
paired-end reads. The read data was deposited to the DDBJ Sequence Read Archive under the accession
number DRA007501. RNA sequencing data of Ldn, which was obtained in our previous report [43]
and deposited under the accession number DRA007097, also was used for the subsequent analysis.

3.3. Alignment of RNA-seq Reads to de Novo Assembled Transcripts of the Parental Ae. tauschii Accessions

Low-quality bases (average Phred quality score per 4 bp < 30), adapter sequences,
and reads < 100 bp were removed from the short reads using the Trimmomatic version 0.32 tool [44].
RNA-seq analysis of KU-2075 and KU-2025 for de novo transcriptome assembly was described in our
previous study [27], and the corresponding sequencing data was obtained from the DDBJ Sequence
Read Archive DRA004604. The quality-filtered reads of each bulk and Ldn were aligned to the
transcripts of KU-2075 and KU-2025 using the Bowtie2 tool [45] with local alignment, obtaining
bam outputs.

3.4. Identification of D-genome Specific SNPs and Calculation of ∆SNP-Index

After merging the two bam files of each bulk library using SAMtools software (version 1.9;
La Jolla, CA, USA) with the command “samtools merge”, SNPs were called from the alignment files
using SAMtools and Coval software (version 1.5; Iwate, Japan) with option “-freq 0.1 -m 1000000 -n
10” [46,47]. The bam files of the synthetic hexaploid bulks were supposed to hold homoeologous
polymorphisms and allelic variations on the D genome, whereas the alignment outputs of Ldn
would contain homoeologous polymorphisms only. We assumed that, of the SNPs derived from
the bulks, SNPs also detected in the pairwise comparison of KU-2075 and KU-2025 would represent
D-genome specific polymorphisms, and SNPs also found in the alignment files of Ldn would represent
homoeologous polymorphisms. The transcript sequences of the two Ae. tauschii accessions were
mapped to the reference genome of Ae. tauschii [39] using GMAP version 2013-03-31 software (South
San Francisco, CA, USA) [48,49], and the identified SNPs were anchored to the Ae. tauschii genome
based on the GMAP outputs. The allele frequency at the SNP sites, a value designated as the
SNP-index [28,29], was calculated in each of the eight respective alignment pairs, and the difference in
the SNP-index values of the contrasting bulks (Net2-homogenous minus non-carrier bulk alignment,
e.g., Net2-SP1-KU-2075 minus non-carrier-SP1-KU-2075) was defined as the ∆SNP-index by analogy to
the work of Takagi et al. [29]. RStudio ver. 0.99.902 [50] with R software ver. 3.3.1 [51] was used for
statistical analyses and ∆SNP-index plotting of the Ae. tauschii chromosomes.

3.5. Molecular Marker Development and Genotyping

In our previous study [22], the Net2 locus was fine-mapped within a 0.6-cM region on the short
arm of chromosome 2D. The two most closely linked markers were assigned to the Ae. tauschii
genome [39] using the BLASTN search function of the BLAST+ software (Bethesda, MD, USA) [52]
to define the physical region where the Net2 locus was assumed to reside. D-genome-specific SNPs
of high ∆SNP-index values within this chromosomal region were converted into derived cleaved
amplified polymorphic sequence (dCAPS) markers (Table 4), and these novel markers were used
to genotype 788 individuals of the Ldn/KU-2025//Ldn/KU-2075 population, as described in our
previous report [22]. The genotyped markers were assigned to the genetic map around Net2 using the
MAPMAKER/EXP version 3.0 package (Cambridge, MA, USA) [53].
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