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ABSTRACT Specific characteristics of the male Achroia grisella acoustic mating signal determine a
male’s attractiveness toward females. These features are genetically variable in populations, and map-
ping experiments have been used to identify loci contributing to song variation, and understand the
evolutionary forces acting on this important sexual trait. Here we built on this foundation and carried
out QTL (Quantitative Trait Locus) mapping using >1,000 recombinant individuals, genotyping this
large cohort at thousands of sequence-based markers covering the entire collection of 30 A. grisella
chromosomes. This dense marker set, coupled with our development of an annotated, draft genome of
A. grisella, allowed us to link >3,000 genome scaffolds, >10,000 predicted genes, and close to 275Mb of
genome sequence to chromosomes. Our QTL mapping confirmed a fraction of the QTL identified in a
previous study, and additionally revealed novel loci. Collectively, QTL explained only small fractions of the
phenotypic variance, suggesting many more causative factors remain below the detection threshold of our
study. A surprising, and ultimately challenging feature of our study was the low level of intrachromosomal
recombination present in our mapping population. This led to difficulty ordering markers along linkage
groups, necessitating a chromosome-by-chromosome mapping approach, rather than true interval map-
ping, and precluded confident ordering/orienting of scaffolds along each chromosome. Nonetheless, our
study increased the genomic resources available for the A. grisella system. Enabled by ever more powerful
technologies, future investigators will be able to leverage our data to provide more detailed genetic
dissection of male song variation in A. grisella.
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The advent of relatively inexpensive, high-throughput sequencing tech-
nologies has paved the way for sophisticated genetic, genomic, and
evolutionary analysis in organisms outside of humans and the traditional
model systems (Ellegren 2014). Indeed, such approaches have enabled
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the assembly and annotation of genomes for an increasingly large num-
ber of invertebrates, such as the non-model Drosophilid Drosophila
suzukii, an invasive pest species (Chiu et al. 2013), the clam shrimp
Eulimnadia texana, which has a unique sex-determination system
(Baldwin-Brown et al. 2018), and the orb-weaving spider Nephila
clavipes, which generates several different silks with diverse properties
(Babb et al. 2017). In concert, several major community efforts are
underway to sequence thousands of invertebrate and vertebrate spe-
cies (Genome 10K Community of Scientists 2009; Robinson et al.
2011; i5K Consortium 2013; Koepfli et al. 2015; Zhang et al. 2015;
Jarvis 2016). Sequencing technologies are also being used to charac-
terize genomewide variation among individuals/strains via genotyp-
ing-by-sequencing (Baird et al. 2008; Andolfatto et al. 2011; Elshire
et al. 2011), and such data allow a range of population genomic
and phylogenomic questions to be addressed. For instance, these
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approaches have been used to examine genomic signatures of local
adaptation during invasion to new habitats in the monkeyflower
Mimulus guttatus (Monnahan et al. 2015), and to understand the
diversification of snake species in the Boa complex (Card et al
2016). Genotyping-by-sequencing has also been successful in build-
ing genetic linkage maps (e.g., Koseva et al. 2017; Nie et al. 2017)
improving on maps generated using anonymous AFLP markers or
small numbers of sequence-based variants (e.g., microsatellites).
Merging genome assemblies with linkage maps constructed using
large numbers of sequence-based markers can facilitate the dissection
of complex traits in any organism.

We leverage advances in sequencing to explore genetic variation
for a complex reproductive behavior exhibited by the lesser wax
moth, Achroia grisella (Lepidoptera: Pyralidae), a honeybee symbi-
ont. In most moth species females attract males by emitting long-
distance advertisement pheromones (Greenfield 1981), and in some
species the male produces a courtship sound when he arrives in the
vicinity of the female. In contrast, A. grisella males remains station-
ary and attract females over a long distance largely via an intense
ultrasonic advertisement song (Greenfield and Coffelt 1983). While
intense sound production is found in various moth species, such
sounds are normally produced by both sexes, during flight, and in
the context of interacting with, and deterring predatory bats
(Conner and Corcoran 2012; Barber and Kawahara 2013). Although
A. grisella males and females do hear and avoid echolocating bats
(Alem et al. 2011), no evidence indicates that the male A. grisella
courtship song functions as a bat deterrent.

Male A. grisella generate their sounds using a pair of organs
called tymbals located at the base of each forewing (Spangler et al.
1984). Fanning of the wings causes the tymbals to buckle both
during the upward and downward wing strokes, in each case gen-
erating a pulse of high-frequency sound (Spangler et al. 1984).
Despite an additional pheromonal release by the male, playback
experiments using a loudspeaker have demonstrated that the male
call alone is sufficient to attract female A. grisella (Spangler et al.
1984; Jang and Greenfield 1996). Male songs can vary in the loud-
ness, or amplitude of the acoustic signal, in the rate with which the
song is produced - termed the pulse pair rate, and in the time
between the paired pulses - termed the asynchrony interval
(Jang and Greenfield 1996). A series of playback experiments
employing synthetic songs have shown that females prefer signals
that are louder (i.e., have higher amplitude), that are delivered at a
faster pulse pair rate, and that include longer intervals between the
pairs of pulses (Jang and Greenfield 1996, 1998; Limousin and
Greenfield 2009).

Each song trait exhibits significant additive genetic variance (Collins
et al. 1999; Brandt and Greenfield 2004), and three previous studies
have genetically dissected this variation, mapped QTL (Quantitative
Trait Loci), and gained insight into the selective forces acting on male
song (Limousin et al. 2012; Alem et al. 2013; Gleason et al. 2016).
However, the limited genetic toolbox of A. grisella hindered these ef-
forts. While all three prior mapping studies generated a genetic linkage
map on which to place mapped QTL, in two cases (Limousin et al.
2012; Alem et al. 2013) the maps were constructed with a genomewide
set of AFLP markers, and in the other case (Gleason et al. 2016) the map
is based on a modest number of EST-based markers. Thus, many QTL
for male song traits are mapped to anonymous locations, and cannot be
compared across studies, and some true, causative loci may have been
missed due to a failure to tag all chromosomes. In addition, without a
genome reference underlying the genetic map, one can only speculate
about the genes involved.
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In this work we expand upon the mapping study reported by
Gleason et al. (2016), examining a larger pool of phenotyped ani-
mals derived from the same mapping cross. We employ a genome-
wide set of markers derived from genotyping-by-sequencing, and
create a sequence-based genetic linkage map. We also build a draft,
de novo assembly of the A. grisella genome with a set of robust gene
annotations, and tie the annotated genome scaffolds to the linkage
map. Finally, we identify additional QTL not identified in the orig-
inal study by Gleason et al. (2016), and provide intriguing evidence
supporting a very low crossover rate in the mapping population of
A. grisella used in our study.

MATERIALS AND METHODS

QTL mapping populations

Mapping populations were derived by intercrossing inbred strains
derived from individuals collected in Kansas (KS) and in Florida (FL),
as described in Gleason et al. (2016). KS strain females were crossed
to FL strain males to generate F; progeny, and F; animals were
backcrossed individually to either the KS or FL strain to generate
a series of experimental families. The males of these families were
phenotyped and genotyped for QTL mapping. Because A. grisella
females show no germline meiotic crossing over (Suomalainen et al.
1973), to generate recombinant individuals, F; males were back-
crossed to KS females (hereafter “Kansas Backcross” or “KS-BC”)
or to FL females (hereafter “Florida Backcross” or “FL-BC”). In
addition, F; females were crossed to KS males to produce a popu-
lation of segregant individuals (hereafter “Kansas Segregants” or
“KS-8G”).

Phenotypes

All experimental backcross and segregant males were phenotyped for
three song traits that influence male attractiveness to females (pulse-pair
rate, asynchrony interval, and peak amplitude), along with development
time and body weight. Pulse-pair rate is the rate (in msec) at which the
male song pulses are emitted. Pulses are normally produced in left-right
pairs, and asynchrony interval is the time (in psec) between these paired
pulses. Peak amplitude is the highest sound pressure level recorded
during a pulse. Development time is the number of days between
oviposition and adult eclosion, and body weight (in mg) is measured
immediately following eclosion. Full details of the phenotyping is de-
scribed by Gleason et al. (2016). Recombinant males were reared and
phenotyped across 2 years, with around half of the experimental fam-
ilies being produced in 2007 and half in 2008. All segregants were
phenotyped in a single year.

Genotyping-by-sequencing library construction

We isolated DNA from 17 KS individuals, 14 FL individuals, 5 F; off-
spring, 447 KS-BC recombinants, 465 FL-BC recombinants, and
198 KS-SG segregants. The DNA was then used to generate a multi-
plexed genotyping-by-sequencing library using a modified MSG pro-
tocol (Andolfatto et al. 2011). We made two modifications. First, we
employed the restriction enzyme Asel, rather than Msel, as the former
was expected to cut less frequently, and lead to higher read counts at
marker sites. Second, we used a set of 48, 6-mer in-line barcodes (cor-
responding to the first 6-bp of the Illumina Readl sequence) in com-
bination with a set of 24 i7 index sequences added during PCR, to allow
all of our test samples to be multiplexed and sequenced together. The
multiplexed pool was sequenced over multiple lanes of an Illumina
HiSeq2500 instrument (KU Genome Sequencing Core) generating
100-bp single-end reads.
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Marker discovery

For genotyping-by-sequencing analysis we made use of the Stacks
pipeline (Catchen et al. 2011). We demultiplexed reads with the
process_radtags algorithm, and merged all reads associated with
the KS and FL parental individuals into two pools (KS-pool = 16.3
million reads, FL-pool = 13.8 million reads). We then used ustacks
to de novo assemble loci for each parental pooled sample. We pa-
rameterized ustacks to construct stacks with a minimum coverage
(m) of 5, a maximum number of differences between reads within a
locus (M) of 2, no secondary alignments (N = 0), a maximum num-
ber of stacks per de novo locus (max_locus_stacks) equal to 2, and
with the “Removal” and “Deleveraging” algorithms enabled (—r and -d,
respectively). The Removal algorithm excludes stacks that are highly
repetitive, while the deleveraging algorithm attempts to resolve over-
merged stacks. In total, 148,448 and 143,201 stacks were assembled
for the KS and FL parental strains, respectively. We then used cstacks
to merge loci from the two parental pooled samples. We set the
maximum distance allowed between loci (1) to 2, allowing for the
alleles at any heterozygous loci in the parental strains to be merged.
We interrogated this catalog and identified 72,076 entries in which
each parent contributed a single monomorphic allele. We ex-
cluded all other loci because they could represent heterozygous
loci, alleles sampled in only one of the two parental lines, or in-
correctly-merged paralogous sequences. Of the 72,076 loci, 26,905
(37.3%) were polymorphic between the FL and KS parental lines,
and represent the set of informative markers used to genotype the
recombinant and segregant progeny.

Marker genotyping

To call genotypes in the recombinant and segregant populations, we
first de novo assembled loci for each individual using ustacks with
similar parameterization to that used for the KS and FL parental
samples described above (m = 2, N = 2, -r, -d, -max_locus_stacks =
2). The loci for each individual were then matched against the cat-
alog of informative loci generated using only the parental lines.
Finally, we used the genotypes routine within Stacks to generate
genotype calls for all recombinants and segregants. Genotyping
rates in the three mapping populations were 49.5% (KS-BC),
42.0% (FL-BC), and 34.2% (KS-SG).

Assigning markers to linkage groups
To localize markers we used Lep-MAP2 (Rastas et al. 2013, 2016), first
converting the Stacks genotypes output file - containing progeny and
parents - to the required LINKAGE pedigree format (Lathrop et al.
1984). Within Lep-MAP2 we first used the Filtering module to remove
loci showing segregation distortion (dataTolerance = 0.01) in the two
recombinant backcrosses, and to remove loci/individuals with limited
genotyping data. Different filtering criteria were employed for each
backcross to maintain similar levels of missing data across the three
sets of genotypes. For the KS-BC we retained 8,132 markers and 339 in-
dividuals, for the FL-BC we retained 5,970 markers and 313 individuals,
and for the KS-SG we retained 13,295 markers and 198 individuals.
Weassigned markers to linkage groups independently for each of the
three mapping populations using the SeparateChromosomes Lep-MAP2
module, requiring a minimum LOD (logarithm of odds) score of 20,
and a minimum of 20 markers per linkage group. To establish linkage
group homology across populations we compared the assignment of
markers to linkage groups in each map. Eight (0.2%) of the 3,204 over-
lapping markers between KS-BC and FL-BC were removed entirely
from the dataset because they were inconsistent in their placement,
i.e., a marker was placed on different linkage groups in the two maps.
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Based on the remaining overlapping markers, linkage groups in KS-BC
and FL-BC were renamed to reflect the respective linkage groups in
KS-SG.

For the pair of recombinant backcross populations, markers
associated with each linkage group were then separately ordered
with OrderMarkers using the Kosambi function (useKosambi = 1;
Kosambi 1943), taking into account the achiasmatic meiosis in fe-
males (initRecombination = 0.05 0, where the first number is the a
priori probability of crossing over in males, and the second is the same
probability in females), and removing markers positioned at identical
genetic positions within each linkage group (removeDuplicates = 1).
Following this procedure, we immediately noticed that marker order
within a given linkage group was very different between backcrosses,
particularly for markers in the middle of each linkage group. We
examined this observation in multiple ways (see “Results and Discus-
sion”), concluding there are remarkably few crossover events evident
the data, precluding confident marker ordering within linkage groups.

QTL mapping

Due to the limited number of crossovers, and the inability to order
markers, we elected not to attempt traditional interval QTL mapping
(Lander and Botstein 1989) for the backcross populations. Instead, we
ignored all crossing over, and assigned a single consensus genotype to
each linkage group in each individual based on three filters: (1) at least
80% of the markers on the linkage group were given a genotype call,
(2) the minimum number of called markers for that linkage group was
30, and (3) at least 90% of the markers on that linkage group had the
same genotype. We used these “collapsed” genotypes to perform
marker regression in R/qtl (Broman and Sen 2009), effectively mapping
QTL to the chromosome level for each phenotype. Given the family
structure of the mapping populations, and given this structure is con-
founded with the year in which the experimental individuals were
generated, we included family membership as a covariate in all QTL
analyses. We additionally performed QTL mapping for both pulse-pair
rate and peak amplitude after correcting for body weight variation
(see “Results and Discussion”). Within each mapping population we
regressed weight on each of these song traits individually using the glm
function in R (R Core Team 2018), extracted the residuals, and used
these weight-corrected phenotypes for mapping. Significance thresh-
olds for QTL mapping were established by running 1,000 permutations
of the data (Churchill and Doerge 1994).

We used R/qtlDesign (Sen et al. 2007) to calculate the statistical
power we had to detect each of the QTL mapped in the study. We
used the function powercalc for each QTL we detected with the fol-
lowing parameters: (1) sample size, (2) error variance, as calculated
via the R/qtl fitgtl function for each QTL using the Haley-Knott re-
gression method, and (3) the QTL effect, also calculated via fitqtl.
The cross type was set to ‘bc’ for all power calculations.

Genome sequencing data collection

DNA was isolated from multiple males from the KS A. grisella inbred
line (Gleason et al. 2016) and pooled. We employed males, the homo-
gametic (ZZ) sex, to ensure that the Z had similar coverage to each
autosome in subsequent sequencing. Two Illumina sequencing libraries
were generated (Cofactor Genomics, Inc.); a short insert size paired end
(hereafter “PE”) library with 280-504bp inserts, and a long insert size
mate pair (hereafter “MP”) library with 3-5kb inserts. Each library was
sequenced on three lanes of an Illumina HiSeq2500 instrument, one
lane at Cofactor Genomics, Inc. and two lanes at the KU Genome
Sequencing Core. We obtained 291 million and 405 million 101-bp
read pairs for the PE and MP library, respectively (Table S1).
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Genome sequencing data processing

Read quality has a major effect on the result of de novo genome assembly
(Salzberg et al. 2012), therefore we first preprocessed the raw FASTQ
files. Initially, we removed adaptor sequences using Scythe (https://
github.com/vsbuffalo/scythe) and quality trimmed reads via Sickle
(https://github.com/najoshi/sickle), eliminating any reads containing
uncalled positions (i.e., “N” bases), or with a trimmed length below
80-bp. Any reads whose pairs were discarded in the trimming process
were saved in a separate FASTQ file which was used alongside the pairs
in downstream analyses. Subsequently, we used bowtie2 (Langmead
and Salzberg 2012) with default settings to align preprocessed reads
to the PhiX (Escherichia virus phiX174) reference genome (NCBI Ref-
erence Sequence: NC_001422.1) that was run together with our sample
as a control during Illumina sequencing, removing any contaminating
reads, and storing the unmapped reads. Finally, we corrected the set of
uncontaminated, quality-trimmed reads using Quake, a maximum-
likelihood based tool for detecting and correcting sequencing errors
(Kelley et al. 2010), setting k to 18. Overall, preprocessing removed
10% of the original reads (Table S1), slightly improving the average
base quality (Figure S1).

Genome assembly and evaluation

To assemble processed reads into scaffolds we used the de Bruijn
assembler ABySS (Simpson et al. 2009), selecting this software both
due to its low error rate when assembling a human chromosome
(Salzberg et al. 2012), and its parallel processing ability and low
memory requirements (Simpson et al. 2009). ABySS uses PE reads
to assemble contigs, and then MP reads to construct scaffolds. In
common with most de Bruijn assemblers (Pevzner et al. 2001)
ABySS requires that the user specify a k-mer size, where the optimal
k depends on the repetitiveness of the genome, its heterozygosity, and
technology-specific error rates (Chikhi and Medvedev 2014). We
used KmerGenie (Chikhi and Medvedev 2014) to estimate the appro-
priate k-mer as 93, then ran ABySS with this value, otherwise employ-
ing the default parameters, on a single cluster node with 16 processors
and 32GB of RAM. To assess completeness of the final draft assembly
we used CEGMA (Parra et al. 2007, 2009) with default parameters.

RNAseq and transcriptome assembly

To assist with genome annotation, we collected RNAseq data and
assembled transcripts from A. grisella. Total RNA was individually
isolated from two pupae from strain “Louisiana line 112” (Zhou et al.
2008). A poly-A selected, unstranded TruSeq Illumina RNAseq library
was constructed for each individual, and the pair of libraries were
sequenced over a single lane of a HiSeq2500 instrument to generate
around 175 million paired-end 100-bp reads (KU Genome Sequencing
Core). Quality trimming via Sickle (https://github.com/najoshi/sickle,
window-wise quality threshold parameter g = 40, minimum read length
post-trimming = 50-bp) retained around 96% of the reads. All quality-
trimmed reads were merged into a single FASTA file. To assemble
transcripts we used Trinity (Grabherr et al. 2011) with default param-
eters, except we turned on read normalization, and set the maximum
read coverage for normalization to 50. The assembly took <6 hr on
a 16-core node with 256 GB of RAM, and generated 96,420 transcripts
with an N50 of 2551-bp and a mean scaffold length of 1178.45 bp.

Genome annotation

We annotated our de novo genome assembly using MAKER?2 (Holt and
Yandell 2011). We provided MAKER2 with the Trinity-assembled
A. grisella transcripts, protein databases from the lepidopterans
Heliconius melpomene (Davey et al. 2016), Danaus plexippus
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(OGS2.0; http://monarchbase.umassmed.edu/), and Bombyx mori
(Xia et al. 2004), and a repeat database generated by RepeatModeler
(Smit and Hubley 2008-2015) that contains short and long inter-
spersed nuclear elements, long terminal repeat elements, small RNAs,
and other unclassified repeats. Within MAKER2 we used two gene
predictors, Augustus (Stanke and Morgenstern 2005) and SNAP
(Korf 2004). For Augustus, we employed a publicly-available param-
eter set developed for H. melpomene, which is distributed with
the software. For SNAP, we used an HMM file generated by boot-
strap training of the gene predictor over three runs of MAKER2.
Assessment of the completeness of the genome annotation was ac-
complished using BUSCO (version 3, Simao et al. 2015) using single-
copy orthologs specific to the phylum Arthropoda from OrthoDB
(version 9, Waterhouse et al. 2013) as our reference gene set.

Associating genome scaffolds with linkage groups

We created a nucleotide database from the genome assembly using
makeblastdb on a local BLAST (Altschul et al. 1990) installation. The
sequences of markers that had been placed on linkage groups were then
extracted from the Stacks cstacks catalog file, and formatted as a FASTA
file, adding the linkage group for each marker to the sequence header.
Each marker sequence was then mapped to the assembled genome
using BLASTN (—evalue 1e-30), and 9,746 markers hit just one scaffold
(59 markers with significant hits to more than one scaffold were ig-
nored), enabling us to place scaffolds onto linkage groups. Similarly, we
placed the sequences of the 75 EST-derived markers used by Gleason
et al. (2016) onto scaffolds. This allowed us to translate among the
linkage group identifiers assigned in our two studies (Table S2).

Comparing genotypes across studies

In their QTL mapping study Gleason et al. (2016) employed some of
the same recombinant individuals we used here, genotyping a set of
markers using Illumina BeadXpress technology. Because we know the
scaffolds on which all markers from this and the present study reside
(above), we could compare the accuracy of genotype calls at pairs of
markers on the same scaffold. We note that the assumption such
markers should have the same genotype is dependent on scaffolds
rarely being chimeric, and on crossovers being infrequent at the scale
of a given scaffold. We examined only those 32 Gleason et al. (2016)
markers present on scaffolds associated with the 16 linkage groups
showing an unambiguous one-to-one relationship among studies
(Table S2), minimizing the potential for marker-to-scaffold mismapping
to falsely indicate an apparently high rate of genotyping error. When
multiple markers from the present study were on one of these scaffolds
we assigned a consensus genotype call for each individual, assigning
a no-call in the case that marker-specific calls were not all identical.

Associating A. grisella linkage groups with

chromosomes from sequenced lepidopterans

The genome of B. mori (version Jan. 2017) was downloaded from
SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp/cgi-bin/index.cgi), and the
genome of H. melpomene (version 2.5), along with the accompany-
ing AGP file (A Golden Path file, which is a description of the
assembly), was downloaded from the Butterfly Genome Database
(http://butterflygenome.org/). We generated a BLASTable database
for each genome, and subsequently mapped repeat-masked A. grisella
scaffolds (with repetitive sequence replaced by runs of “N” bases)
against each database using BLAST+ with default parameters
(Camacho et al. 2009). We ignored alignments based on the follow-
ing criteria: (a) alignments of A. grisella scaffolds not assigned to
linkage groups, (b) alignments to B. mori sequences not assigned to
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Table 1 Phenotype means for each family and mapping population

Family Development time, Body weight, Pulse-pair rate, Peak Asynchrony
Popn Year?  ID? N days® mgP msecP amplitude® interval, usec?
FL-BC 2007 7 119 41.5 (3.67) 15.2 (2.31) 73.6 (6.37) 72.1 (14.39) 666.9 (353.75)
8 117 41.8 (3.90) 15.1 (2.37) 73.7 (6.45) 67.9 (14.33) 650.1 (347.15)
2008 1 133 37.9 (2.32) 15.7 (2.10) 73.9 (6.84) 67.8 (14.31) 767.4 (433.36)
2 46 40.5 (3.76) 15.6 (2.53) 74.9 (5.93) 70.3 (11.36) 670.0 (310.96)
3 41 38.0 (2.79) 15.1 (2.05) 74.7 (5.69) 67.6 (12.00) 679.3 (394.81)
KS-BC 2007 1 80 41.0 (1.21) 15.1 (1.64) 75.2 (5.44) 79.9 (15.29) 729.5 (351.30)
2 83 42.7 (4.32) 14.1 (1.94) 75.5 (6.80) 76.0 (17.64) 750.8 (359.20)
3 74 43.8 (5.28) 13.9 (2.02) 74.8 (6.71) 72.7 (14.16) 775.1 (408.93)
2008 4 78 44.9 (5.98) 11.7 (1.52) 74.9 (5.22) 66.6 (13.36) 717.6 (354.51)
5 99 43.3 (4.23) 12.0 (1.76) 75.1 (5.56) 66.5 (13.16) 756.3 (411.32)
6 31 42.6 (3.26) 11.5(1.42) 75.2 (5.97) 58.5 (8.24) 768.9 (324.56)
KS-SG 2007 4 78 43.8 (3.06) 14.1 (2.01) 75.8 (4.87) 77.4 (18.20) 709.6 (337.68)
5 67 40.4 (1.05) 15.4 (1.80) 75.3 (5.73) 76.3 (14.42) 680.2 (341.25)
6 53 40.6 (0.77) 15.5 (2.98) 76.0 (6.30) 78.3 (16.52) 652.6 (354.05)

aExperimental individuals were derived from a series of families (each derived from a single F; intercross animal) generated across two years.
Mean (standard deviation) for each phenotype in each family. Peak amplitude is relative, unit-less measure (Limousin and Greenfield 2009; Gleason et al. 2016).

chromosomes, (c) alignments with an identity percentage of <90%,
and (d) alignments <<125-bp long (for B. mori) or <100-bp long (for
H. melpomene). The remaining alignments were considered, and an
A. grisella linkage group was associated with a chromosome from one
of the other species if at least 15 alignments were identified.

Independent identification of the Z chromosome

To identify the Z using an orthogonal approach, we extracted protein
sequences of Z-linked genes from the two lepidopteran species B. mori
(Xia et al. 2004) and Melitaea cinxia (Ahola et al. 2014). Each set
of protein sequences was aligned to our assembled genome using
TBLASTN (—evalue 1e-50). Proteins mapping to a single scaffold were
used to identify a set of A. grisella scaffolds containing sequences with
strong homology to known Z-linked proteins. Since scaffolds are asso-
ciated with linkage groups (see above), we confirmed the identity of the
linkage group representing the A. grisella Z chromosome.

Data availability

We have deposited raw FASTQ files from our genome sequencing,
RNAseq, and MSG in the NCBI Sequence Read Archive under accession
SRP158931. In addition, we have deposited a data package on FigShare
that contains the following information, resources and scripts: (1) all
supplementary tables and figures described in the text, (2) phenotypes
for all individuals, (3) genotypes for all markers associated with linkage
groups, (4) genotypes for the consensus, linkage group-specific markers
used for QTL mapping, (5) sequences of all markers, all assembled
genome scaffolds, and all assembled transcripts, (6) the genome anno-
tation, and (7) custom Python scripts employed. Supplemental material
available at FigShare: https://doi.org/10.25387/g3.8072405.

RESULTS AND DISCUSSION

This study develops the previous genetic mapping of male song and life
history characters in the lesser wax moth Achroia grisella, expanding on
the sample of recombinant individuals originally described by Gleason
et al. (2016). We employed around 1,000 phenotyped males from three
mapping populations, each established from the same pair of parental
strains, used genotyping-by-sequencing to generate markers and re-
solve linkage groups for the full complement of chromosomes, and
subsequently identified several loci contributing to trait variation. In
addition, by generating a draft, annotated de novo genome assembly for
A. grisella, and linking large numbers of scaffolds to linkage groups, we
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facilitate continued genetic analysis of male song in this non-model
insect species.

Phenotypic variation

Three male song traits (pulse-pair rate, peak amplitude, asynchrony
interval) and two life history traits (development time and body weight)
were measured in two recombinant backcross populations (KS-BC and
FL-BC) and in one segregant population (KS-SG). All traits exhibited
substantial variation within populations (Table 1), as was previously
observed by Gleason et al. (2016). Using simple linear models we found
that “family” influenced development time in all three populations,
body weight in KS-BC and KS-SG, and peak amplitude in KS-BC
(Table 1; P < 0.001 in each case).

We examined correlations among all quantitative traits in each
mapping population, as this can show how variation of one trait
influences that of another, and potentially also indicates genetic corre-
lations among traits. The pattern of correlations among pairs of traits
was similar across the three mapping panels (Table 2), suggesting phe-
notypic associations are broadly maintained. Development time and
body weight were significantly negatively correlated in all three pop-
ulations (Table 2), a correlation previously reported by Gleason et al.
(2016), implying longer development time results in lower body weight.
Both backcross populations, and to some extent the segregant popula-
tion, show a positive correlation between peak amplitude and body
weight (Table 2). This correlation was already noted in several previous
studies in the A. grisella system (Jang and Greenfield 1998; Brandt and
Greenfield 2004; Alem et al. 2013; Gleason et al. 2016), and suggests
larger males are able to emit songs with a higher peak amplitude. Body
weight also shows a weak negative correlation with pulse-pair rate in all
three populations (Table 2), as previously shown by Brandt and Green-
field (2004), implying larger males generate songs with lower pulse-pair
rates on average. The effects of body weight suggest that at least some of
the variation we see in song structure in our mapping panels is due to
variation in body size.

We found just two, relatively weak correlations among the three song
traits (Table 2); a negative correlation between pulse-pair rate and peak
amplitude in the FL-BC population, and a negative correlation between
pulse-pair rate and asynchrony interval in the KS-BC population, the
latter previously reported both by Collins et al. (1999) and by Gleason
et al. (2016). The relationships among these traits have the same sign in
the other populations, but are not significant. Thus, any genetic asso-
ciation between song traits is at best extremely subtle, and these traits
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Table 2 Correlations among phenotypes within each population

Popn Phenotype Development time Body weight Pulse-pair rate Peak amplitude

FL-BC Body weight —0.240 *++

Pulse-pair rate 0.017 ns —0.095 **

Peak amplitude -0.112 = 0.287 *+= -0.112 =

Asynchrony interval —0.076 s 0.067 ns —0.027 ns 0.027 ns
KS-BC Body weight —0.216 ****

Pulse-pair rate —0.012 ns —0.081 *

Peak amplitude —0.163 ** 0.522 *++= —0.056 s

Asynchrony interval 0.057 ns 0.048 ns —0.083 * 0.062 s
KS-SG Body weight —0.386 ***+

Pulse-pair rate 0.060 ns —0.168 **

Peak amplitude —0.110 ns 0.118 ~ —0.093 ns

Asynchrony interval —0.049 ns 0.044 ns —0.005 ns —0.039 ns

Significance values for Pearson correlation coefficients are: ™, not significant at the 10% level; *, P < 0.1; **, P < 0.05; ***, P < 0.001; ****, P < 0.00001.

are most likely impacted by independent genetic and environmental
factors.

Placing markers on linkage groups

Previous attempts to genetically dissect phenotypic variation in the
A. grisella system have employed AFLP-based maps (Limousin et al.
2012; Alem et al. 2013) or relatively few markers that collectively have
not tagged the full complement of chromosomes in the system
(Gleason et al. 2016). To mark all linkage groups with sequence-based
markers we used a genotyping-by-sequencing approach to generate
thousands of markers discriminating the KS and FL parental strains,
and then used Lep-MAP2 (Rastas et al. 2013, 2016) to place 5,721-
12,801 markers on 30 linkage groups in each population (Table S3).
Thirty linkage groups is consistent with the haploid number of chro-
mosomes observed through karyotyping by Limousin ef al. (2012).

Associating linkage groups with chromosomes from

other sequenced lepidopterans

To facilitate future exploration of the A. grisella genome in the context of
other lepidopterans, we tied our linkage groups to the chromosomes of
Heliconius melpomene (Heliconius Genome Consortium 2012) and
Bombyx mori (Xia et al. 2004) by leveraging our draft genome assembly
(for full details of the assembly see below). First, we used BLAST to
place marker sequences on genome scaffolds, thereby tying scaffolds to
linkage groups. Subsequently, and again using BLAST, we associ-
ated those linkage group-associated A. grisella genome scaffolds with
H. melpomene and B. mori. This resulted in connecting 24/30 of our
linkage groups to H. melpomene chromosomes and 20/30 to B. mori
chromosomes (Table S4). Our results are consistent with the previously
reported homology between the chromosomes of H. melpomene and
B. mori (Heliconius Genome Consortium 2012).

To confirm that this analysis correctly identified the A. grisella Z
chromosome, we extracted protein sequences from known Z-linked
genes from B. mori and Melitaea cinxia (Ahola et al. 2014), and used
BLAST to associate them with our draft genome. We found that 206/
654 B. mori proteins aligned to 149 A. grisella scaffolds, and 141/572
M. cinxia proteins aligned to 116 A. grisella scaffolds. Seventy-three of
these scaffolds are in common, strongly suggesting they reside on the Z
in A. grisella. Indeed, we associated 48/73 of these scaffolds to linkage
groups (see below), and 43/48 are placed on the Z chromosome.

Our use of a population of segregants allowed us to find markers
linked to the Z chromosome, and support these homology-based
analyses. All males from the KS-SG population had one, intact
Kansas-derived Z chromosome and one, intact Florida-derived Z
chromosome. The specific pattern of inheritance of Z-linked markers
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in this population initially, and incorrectly appeared as severe
segregation distortion during the Lep-MAP2 linkage group assign-
ment, but ultimately this property allowed us to confirm that such
markers were on the Z.

Difficulty ordering markers within linkage groups

In examining marker order between the genetic maps derived from the
two backcross populations (FL-BC and KS-BC) we found considerable
inconsistency. While markers at the termini of each linkage group were
largely consistent in order between the two backcrosses, markers in the
middle of each linkage group were scrambled. Figure 1 highlights this
phenomenon for linkage group 1. If marker order were preserved be-
tween backcross populations, markers would fall along a line. We ob-
served the same pattern when using the software ALLMAPS (Tang
et al. 2015), which allowed us to map genetic markers to the set of
physical A. grisella scaffolds from our genome assembly. ALLMAPS
showed that markers common to both backcross populations always
mapped to the same scaffold, but that the marker order defined by each
backcross-specific genetic map was distinct (Figure 2 demonstrates this
pattern for linkage group 18). To explore this pattern further we plotted
genotypes for all individuals in a population at all markers, in the order
defined by the genetic map. As exemplified by linkage group 1 (Figure 3),
crossovers appear to be relatively rare in the pair of backcross pop-
ulations, but as expected are absent in the segregant population. Most
backcross individuals are either homozygous or heterozygous for an
entire linkage group, and when crossovers are evident they are near
the ends of the linkage groups. The apparent scarcity of crossover
events provided minimal information to Lep-MAP2 to assist with
marker ordering, and is likely why markers in the middle of the
linkage groups are inconsistently-ordered between backcross popu-
lations (Figures 1 and 2).

Genotyping error could also lead to a spurious reduction in crossover
rateand incorrect marker order, and we evaluated the level of genotyping
error in our dataset using two strategies. First, we took advantage of the
fact that Gleason et al. (2016) used a set of KS-BC individuals that
overlapped with the set we employed here, but genotyped a different
series of markers with an entirely different technology. We compared
genotypes between the two studies at markers jointly mapped to the
same genome scaffold via BLAST. Across 32 positions, and considering
161-359 individuals per position, the mean percentage of identical
genotypes was 96.9%, with just 1/32 having a percent identity below
94% (Table S5). Thus, the marker genotype data we employ in this
study appears to be accurate.

Second, we examined the error rate of our genotyping pipeline using
the KS-SG segregant population, as here the genotypes of all markers on
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Figure 1 Marker order is not preserved between backcross popula-
tions. The genetic positions (in ¢cM) of all markers on linkage group
1 (LG1) that are shared between the FL-BC and KS-BC populations.
If relative marker position was consistent between backcrosses, points
would appear on a line/curve.

agiven chromosome from a given individual should be identical. Indeed,
this is the pattern we observe, with all genotypes on an individual
chromosome either being typically homozygous, or typically heterozy-
gous (Figure 3; Figure S2). Nonetheless, genotyping error is not absent
from our study. In linkage group 1 of the KS-SG population (Figure 3) a
greater number of spurious “homozygous” (orange) calls occur in in-
dividuals with majority heterozygous (blue) chromosomes than the
reverse. Additionally, when we consider only those chromosomes from
KS-SG where at least 30% of markers receive a genotype call, the
average frequency of heterozygous calls on the Z is 93.8% (given the
cross design, all KS-SG Z-linked loci should be heterozygous), on ma-
jority heterozygous autosomes is 93.2%, and on majority homozygous
autosomes is 0.01%. These observations imply that our genotyp-
ing pipeline undercalls heterozygotes. This is a common issue
when applying genotyping-by-sequencing technologies to non-
inbred diploid organisms such as our backcross individuals, because
a true heterozygote may appear as a homozygote if the alternative
allele is simply not sampled by a read, whereas for a true homozygote
to appear as a heterozygote a specific sequencing error must occur.

Our use of a fairly common-cutting restriction enzyme (Asel,
ATATAAT) likely contributed to our biased genotyping error, since
it resulted in a very large number of markers, each of which we
covered only shallowly with sequencing reads. To test whether
greater numbers of crossover events, and enhanced consistency in
marker order between backcrosses, could be achieved using a dataset
with a reduced potential for genotyping error, we repeated the geno-
type calling step in all three populations, but increased the read depth
requirement from 5 to 8 (using genotypes in Stacks, see “Materials and
Methods”). This new set of genotype calls yielded a similar pattern of
apparently rare crossovers and backcross-to-backcross marker order
inconsistency.

Overall, it does not appear that genotyping error has dramatically
affected reconstruction of the haplotypes in our experimental individ-
uals. Instead, it appears that our A. grisella backcross mapping popu-
lations are subject to relatively low effective levels of intrachromosomal
recombination over the bulk of the physical length of each chromo-
some. This observation could be due to crossing over events occurring
normally, but being localized nearly exclusively to the very ends
of chromosomes. Alternatively, our population could be subject
to a very low rate of recombination initiation, such that very few
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with linkage group 18
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Figure 2 Marker order inconsistency between backcross populations.
ALLMAPS was used to map genetic markers to our genome scaffolds
separately for each backcross. Blocks in the central chromosome
represent scaffolds, and lines connect these physical positions to the
genetic positions in each map for markers on linkage group 18. The
presence of crossed lines indicates map order inconsistency, which is
particularly evident in the central portion of the chromosome.

Holliday junctions are formed, or the events that do occur could be
preferentially resolved into non-crossover molecules. Regardless of
the mechanism, the relatively short A. grisella genetic map in the
present study is supported by the map generated by Gleason et al.
(2016), who genotyped 75 SNP markers in a set of individuals that
encompasses the KS-BC population we employ here. Their map yield-
ed 20 linkage groups, 17 of which had lengths below 20-cM. The
AFLP-based mapping study of Alem et al. (2013) also yielded a short
map, with linkage groups of 12-66 cM in length. These studies sug-
gest that laboratory intercross populations of A. grisella, or poten-
tially A. grisella as a species, generate relatively few crossovers in each
meiosis that provide utility for genetic mapping. However, further
study would be required to establish the generality of our observation,
and understand the biological basis of the phenomenon.

Markers for QTL mapping

The modest number of informative crossover events per linkage group
makes it challenging to identify QTL containing limited collections of
genes. Furthermore, given we cannot be confident of genetic marker
order across the bulk of each chromosome, any sub-chromosomal
positions may be incorrect. Thus, we collapsed all genotyping data
for each individual for each linkage group to a single, consensus genotype
(see “Materials and Methods”). This approach has the advantage that it
yields a much smaller number of markers to be tested in QTL mapping
(i.e., 30), reducing the multiple testing burden over a mapping design
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Figure 3 Limited numbers of crossovers in backcross populations. The
panels on the left show genotypes for individuals (rows) and markers
(columns) for each mapping population for linkage group 1 (LG1).
Heterozygous genotypes (FL/KS) are shown in blue, homozygous
genotypes (either FL/FL or FL/KS) are shown in orange, and no-calls
are shown in white. Only a subset of individuals and markers are
presented in the figure to minimize the number of no-call genotypes
shown. In the recombinant, backcross populations, with few excep-
tions (generally near the ends of the linkage groups), the majority of
individuals exhibit the same genotype call for the entire chromosome.
This is particular clear in the panels on the right, which show the
fraction of called genotypes in each individual that are heterozygous.

with hundreds to thousands of markers. Additionally, in the event that
all causative loci on a linkage group act in the same direction (e.g., all
KS-derived alleles increase phenotype), testing for associations between
phenotypes and entire chromosomes increases power to detect effects,
since the effects of multiple, small-effect QTL on a chromosome are
aggregated. Of course, since our approach relies on the net effect of a
chromosome being different from zero, chromosomes harboring loci of
equal and opposite effect on phenotype will not be detected.

A clear drawback of our approach is that we cannot map QTL to sub-
chromosomal positions, although we contend that the recombination
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landscape of our A. grisella populations does not readily allow this.
Nonetheless, considering the number of linkage groups (N = 30)
and the number of genes in our genome annotation (estimated to be
15,848 - see below), mapping a QTL to a chromosome resolves to
a few hundred genes. This is approximately the same resolution
achievable in an equivalent backcross or F, QTL study in the elite
Drosophila melanogaster model system (Mackay 2001).

QTL mapping results

Using marker regression, and accounting for variation due to family by
including a covariate during analysis, we mapped variation for our five
phenotypes to chromosomes in each of the three mapping panels.
Additionally, given the significant correlations between body weight
and both pulse-pair rate and peak amplitude (Table 2), we also attemp-
ted to map QTL for these song traits after correcting for body weight
variation (see “Materials and Methods”). We set genomewide LOD
thresholds for significance via permutation testing (Churchill and
Doerge 1994), employing three thresholds; a=0.05, the generally-
accepted significance level for detection of QTL, and additionally
a=0.1 and a=0.2 that allowed us to explore weaker QTL effects.

We identified a number of strongly-supported and suggestive chro-
mosomal effects for the three male song traits, pulse-pair rate, peak
amplitude, and asynchrony interval, and the two life history traits,
development time and body weight (Table 3). Considering only those
effects surviving the most stringent level of statistical significance
(a=0.05) we identified two QTL for pulse-pair rate on linkage groups
11 and 13 in KS-BC (both of which are retained following correction for
body weight, Table S6), one for asynchrony interval on linkage group
20 in KS-BC, one for development time on linkage group 7 in KS-BC,
one for body weight on linkage group 12 in KS-BC, and an additional
body weight QTL on linkage group 28 in KS-SG. The effects of these
QTL are all fairly modest, each explaining 2.37-8.68% of the pheno-
typic variance in the mapping population (Table 3), with the largest
effect seen for the development time QTL in KS-BC. Similarly low effect
sizes were estimated at QTL mapped in Gleason et al. (2016). Given the
relatively low mapping power we have to identify small-effect loci
(Table 3), and since our target traits show significant heritability
(Collins et al. 1999; Brandt and Greenfield 2004), our results suggest
all traits measured are highly polygenic, with genetic contributions to
phenotype from an array of variants, many with very small effects on
phenotype.

To attempt to uncover other phenotypically-relevant loci, and
specifically to identify associations with other traits at those QTL
positions that survive a more rigorous genomewide threshold, we
employed less stringent levels of statistical significance («=0.1, @=0.2).
In the KS-BC population we identified a suggestive QTL for body
weight on linkage group 7 that co-localized with the large develop-
ment time QTL (Table 3). Gleason et al. (2016) also identified this
pair of QTL (see Table S7 for a list of the QTL mapped in this prior
study, and their relationship to peaks identified in the current work).
We also saw a suggestive QTL for development time in KS-SG on the
same chromosome (linkage group 12) that harbors a body weight
QTL in KS-BC. These pair of overlapping QTL may reflect the strong
correlation between these two life history traits (Table 2), and suggest
either the presence of a locus controlling variation in both traits, or
closely-linked loci with distinct effects on each trait. The only other
evidence for overlapping QTL was the presence of a weak QTL for
peak amplitude on linkage group 11 in the KS-SG population (main-
tained following body weight correction, Table S6), coincident with
a QTL for pulse-pair rate in KS-BC (Table 3). Given the minimal evi-
dence for phenotypic correlation between these song traits (Table 2),
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Table 3 Summary of mapped QTL

Popn Phenotype Linkage group LOD Threshold (o) Variance Expl (%) Effecte Powerf

FL-BC Development time 14 1.84 0.1 1.08 -1.20 0.38
Body weight 8 2.14 0.1 1.92 —-0.95 0.80

Pulse-pair rate 152 1.86 0.1 1.55 2.68 0.79

Peak amplitude 42 1.74 0.2 2.38 6.92 0.96

52 1.67 0.2 2.13 6.41 0.91

KS-BC Development time 7b 8.71 0.05 8.68 -3.84 1.00
Body weight 7b 1.96 0.1 0.27 0.33 0.02

12 2.33 0.05 3.53 1.17 0.98

Pulse-pair rate 11¢ 2.66 0.05 2.83 —2.78 0.90

13¢ 2.18 0.05 2.41 —-2.82 0.91

Asynchrony interval 20 2.16 0.05 2.37 167.52 0.86

22 1.70 0.2 1.66 —137.07 0.57

KS-SG Development time 12 1.97 0.1 4.90 1.66 0.81
19 1.68 0.2 4.74 —1.69 0.83

Body weight 28 2.60 0.05 7.27 1.82 0.97

Peak amplitude 11¢ 1.85 0.1 4.47 10.03 0.74

®These QTL are not replicated after correcting phenotypes for body weight variation (see Table Sé).
QTL for these phenotypes on these linkage groups were identified previously by Gleason et al. (2016).
“These QTL replicate after correcting phenotypes for body weight variation (see Table Sé).

e‘Calcula‘ced via the R/qgtl fitgtl function.

f

Calculated via the R/qgtl fitgt/ function. Describes the phenotypic effect of substituting a FL-derived allele for a KS-derived allele.

The statistical power to detect a QTL of the stated effect using our experimental design (see “Materials and Methods").

the positional overlap is most likely due to chance, and not due to any
similarity in the genetic control of trait variation.

Aside from these three instances of across-trait or across-
mapping population QTL overlap, even when considering sugges-
tive QTL, no other pairs of QTL map to the same chromosome.
Alem et al. (2013) similarly observed limited QTL overlap at the
chromosomal level in a previous study that examined the same
male song and life history traits in an independent A. grisella
mapping population. There are several explanations for this lack
of co-localization. First, some traits may be under independent
genetic control, and overlap would not be expected. Indeed, Table 2
shows that variation for many of our traits is not strongly corre-
lated in our mapping panels. Second, even when the phenotypic
correlation of two traits is high, the QTL we map have modest
effects (Table 3). Our power to detect such QTL was often low
(Table 3), limiting our ability to detect the same effect in more
than one population. Third, like any QTL study we are subject to
the Beavis effect (Beavis ef al. 1991; Beavis 1994), the phenomenon
that the percentage of phenotypic variance explained by QTL that
reach a specified level of statistical significance will be overesti-
mated, particularly if the study has a modest sample size. (Other
studies have referred to this property as the “winner’s curse”, e.g.,
Zollner and Pritchard 2007). This suggests that even our small
estimated QTL effects are larger than the true effects, compounding
the difficulty resolving overlapping pairs of QTL. Fourth, dominance
may be a barrier to identifying QTL across reciprocal backcross pop-
ulations. For instance, even a large effect, but dominantly-acting QTL
mapped in the KS-BC population is expected to be invisible in the
FL-BC population. Finally, an important technical concern with our
chromosome-by-chromosome mapping approach is that if more than
one causative locus is present on a chromosome, and the direction of
the individual effects sums close to zero, a single consensus chromo-
some test will reveal no effect. Only much larger mapping panels that
incorporate much greater numbers of crossover events, perhaps gen-
erated by some kind of advanced intercross design (Darvasi and Soller
1995), are likely to be successful at identifying small effect loci impact-
ing behavioral and morphological variation in A. grisella.
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Comparison to previous QTL maps

We compared our QTL results with other studies mapping the same
traits in A. grisella. Two were based on genetic maps derived solely
from anonymous AFLP markers (Limousin et al. 2012; Alem et al.
2013), so we were unable to resolve chromosome homology among
studies, making chromosome-by-chromosome comparison impos-
sible. We were able to directly compare our data to Gleason et al.
(2016) who used gene-based markers, so we could establish which of
their markers map to our de novo assembled scaffolds, and translate
among their and our linkage group identifiers (Table S2).

Gleason et al. (2016) identified eight QTL in a Kansas backcross
mapping population, of which our KS-BC individuals were a subset.
Just two QTL were apparently identified in both studies (Table 3,
Table S7); our development time QTL on linkage group 7 (also our
largest-effect QTL), and our suggestive QTL for body weight also on
linkage group 7 overlapped QTL for the same traits in Gleason et al.
(2016). The other six QTL identified by Gleason et al. (2016) are not
recapitulated in the current study. In two cases - QTL for body weight
and pulse rate - this may be because the linkage group these QTL are
mapped to in Gleason et al. (2016) is split into two linkage groups in
our genetic map (Table S2, Table S7). A possibility is that these QTL are
spurious, and were generated by incorrectly joining linkage groups due
to limited marker density in the previous study. The remaining four
QTL identified by Gleason et al. (2016), and not identified here, all have
small effects (Table S7) and may not have been found simply due to
power deficits, particularly because the number of KS-BC individuals
we employed was slightly lower than used by Gleason et al. (2016). In
addition, the two studies used radically different marker sets (75 SNPs
vs. thousands of markers), and employed very different analytical meth-
odologies; Gleason et al. (2016) used composite interval mapping
(Zeng 1993, 1994), whereas we used chromosome-by-chromosome
marker regression. Such technical differences could easily explain the
differences in result, particularly if our traits are highly polygenic,
because the identification of small-effect functional loci might be
particularly sensitive to the precise mapping strategy applied.

Similar methodological and power concerns might explain why we
were able to identify novel QTL (Table 3) not identified by Gleason et al.
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Table 4 Genome assembly statistics

Number of scaffolds All 74,159

>1-Kbp 12,067 (16.3%)
>10-Kbp 6,202 (8.4%)
>100—Kbp 1,117 (1.5%)

Scaffold length (bp) N502 87,338
Summed? 418,422,425
Longest 731,388
Mean 5,642
Median 185

Fraction of N bases in assembly (%) 2.22

GC content of assembly (%) 32.4

@Half of the bases in the assembly are in scaffolds at least this long.
The summed, end-to-end length of all scaffolds.

(2016). In addition, we also examined the reciprocal backcross (FL-BC),
so if any loci we map segregate for dominantly-acting alleles in the
cross, the ability to find such variants in reciprocal backcross popula-
tions will differ.

Genome assembly and annotation

A goal of any mapping project is to enable the identification of genes
contributing to trait variation. Hence, we assembled a draft genome of
A. grisella (Table 4) using both short- and long-insert sequencing li-
braries and short-read (100-bp) Illumina sequencing. The total, end-to-
end length of the assembled scaffolds is 418-Mb, half of the bases are
in scaffolds 87.3-Kb or longer, and the assembly has a GC content of
32.4%, which is on par with other sequenced lepidopteran genomes
(e.g.» Zhan et al. 2011). To assess completeness of the set of scaffolds we
used CEGMA (Parra et al. 2007, 2009), and showed that our assembled
scaffolds contain 196/248 (79.03%) intact core eukaryotic genes. Inves-
tigators could likely obtain a more contiguous, and more complete
assembly by adding long-read, single molecule sequencing data to
our short-read sequencing dataset in the future (Chakraborty et al.
2018; Baldwin-Brown et al. 2018).

To localize scaffolds to linkage groups we mapped our set of
genetic markers to the genome assembly using BLAST, tying 3,099
scaffolds to linkage groups using this approach. While this represents
a small minority of the total number of assembled scaffolds (4.2%,
Table 4), the scaffolds linked to linkage groups comprise 63.1% of
the total length of the assembly. Thus, our genetic markers placed
the majority of long scaffolds onto linkage groups. Unfortunately,
given our inability to confidently generate an ordered genetic map
due to the apparent lack of crossovers in our mapping population,
we cannot accurately order or orient scaffolds within linkage groups.
If very long scaffolds could be produced in the future via single
molecule sequencing, it would be straightforward to physically or-
der markers along linkage groups, better connect the physical and
genetic maps, and perhaps increase the resolution of the QTL maps
we were able to produce. To facilitate such work we have released
all raw and processed genome data associated with this study (see
“Data availability”).

To annotate scaffolds we used MAKER2 (Holt and Yandell 2011),
identifying 15,848 predicted genes. The number of genes we found is
not dissimilar to the 12,669 predicted protein-coding genes identi-
fied in H. melpomene (Heliconius Genome Consortium 2012) or the
12,901 identified in B. mori (Xia et al. 2004). MAKER?2 scores an-
notated gene models on a 0-1 Annotation Edit Distance (AED) scale
(Eilbeck et al. 2009), where lower values indicate better agree-
ment between the annotation and the supporting evidence. The
AED scale provides a useful statistic for understanding the quality
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of an annotation (Holt and Yandell 2011). We found that 91.5% of the
predicted genes in our A. grisella draft genome have AED values less
than or equal to 0.5, suggesting that a large fraction were accurate.
Using BUSCO (Simao et al. 2015) we sought to identify known single-
copy, arthropod genes (see Waterhouse et al. 2013) among our an-
notated gene set. BUSCO identified 80.7% (860/1066) of such genes as
complete, with all but 18 of the 860 being single copy in our annota-
tion. A further 12.6% (134/1066) of the test genes were present in our
annotation, but fragmented, while 6.8% (72/1066) were missing en-
tirely. Thus, our annotation pipeline has likely identified the bulk of
the protein-coding genes in A. grisella.

Nearly two thousand of the genes were assigned a predicted func-
tion based on sequence similarity with a gene annotated in a related
organism, including an array of conserved enzyme genes, genes encoding
subunits of the basal transcription machinery, genes for cuticular proteins,
detoxification cascade components (e.g., cytochrome P450s), odor and
gustatory receptors, and so on. Yet despite this sophisticated genome
annotation, most of the genes in the A. grisella draft genome were not
associated with any predicted function. Notably, even in elite model
genetic systems such as D. melanogaster, subjected to significant gene-
by-gene and genomewide functional exploration, a significant fraction of
known genes still have only a basic annotation. The functional annota-
tion of the A. grisella draft genome we have constructed would be en-
hanced by a more detailed comparison of the predicted gene sequences
with those from the array of related, lepidopteran and insect genomes
that have now been sequenced, and the data we provide should facilitate
such comparisons. However, even then there will be no substitute for
detailed, functional gene characterization directly within the A. grisella
system, using both genome-scale technologies (e.g., RNAseq, ATACseq),
and gene-specific functional tools (e.g., CRISPR/Cas9 editing which has
been successful in lepidopteran systems, see Zhang et al. 2017).

By virtue of linking scaffolds to linkage groups we were able to
associate between 100 and 576 genes with each linkage group (Table S8),
although just over five thousand genes are resident on scaffolds that
could not be placed on linkage groups using the present set of markers.
While we have only succeeded in elucidating a fraction of the genes on
each linkage group, these will ultimately assist with associating genes to
the loci mapped for male song and life history traits in this, and in future
studies in the A. grisella system.

Concluding thoughts

Our study brought the strengths of next-generation sequencing tech-
nologies to a non-model insect species, Achroia grisella, to better char-
acterize the genome of the organism, improve the genetic and genomic
resources available to the community, and build upon previous work
dissecting the genetic basis of a sexually-selected behavioral phenotype
exhibited by males of the species. We were able to assemble an accurate,
although fragmented, draft genome of A. grisella that has an N50 length
of >87Kb. Following annotation of the assembled scaffolds we identi-
fied nearly 16,000 genes, which evidence suggests represent the bulk of
the protein-coding genes of the organism. By virtue of generating a
large number of progeny from a cross between a pair of inbred lines,
and genotyping these animals for a genomewide set of sequence-based
markers, we were also able to assign hundreds of markers to each of the
30 linkage groups harbored by A. grisella. In turn, the high marker
density allowed us to assign >3,000 long scaffolds to the linkage
groups, and associate >63% of the total length of the de novo assembly,
and >10,000 annotated genes with chromosomes. To facilitate future
exploration by investigators we have tied our linkage groups to chro-
mosomes from the sequenced lepidopterans H. melpomene and
B. mori, and have made all our data publicly available.
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The principal difficulty we faced, which made it challenging to
produce a high-resolution genetic linkage map, order and orient
scaffolds along the length of chromosomes, and carry out QTL
mapping at sub-chromosomal resolution, was the surprisingly low
frequency of crossovers we observed in our data. Multiple lines of
evidence indicated this observation was due to rare intra-chromo-
somal recombination in individuals from our mapping population,
and was not the result of inaccurate genotype data. While previous
genetic mapping studies in A. grisella also indicate a relatively
short map length, indicative of low crossover frequency, given
the modest sample of genotypes interrogated by laboratory map-
ping studies, we cannot be confident our results highlight a spe-
cies-wide phenomenon. Using the resources we outline in the
present study future investigations could examine crossover fre-
quency in backcross or F, populations derived from an array of
A. grisella strains, or perhaps directly examine recombination rate
in outbred, wild-caught individuals. If low effective crossover rates
are a feature of the species, then whatever the mechanistic basis
behind this phenomenon, genetic dissection of male song in
A. grisella will continue to be challenging. Advanced generation
recombinant mapping populations will need to be established by
multiple generations of interbreeding in order to produce a map-
ping population harboring larger numbers of recombination
breakpoints throughout the physical length of the genome. To take
advantage of these additional crossovers, long-read, single mole-
cule sequencing would additionally be desirable. Such data would
lead to a more contiguous genome, would allow markers to be
physically ordered along chromosomes, and would allow true in-
terval QTL mapping techniques to be employed.
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