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Abstract: Circulating epithelial tumor cells (CETC) are considered to be responsible for the formation
of metastases. Therefore, their importance as prognostic and/or predictive markers in breast cancer
is being intensively investigated. Here, the reliability of single cell expression analyses in isolated
and collected CETC from whole blood samples of patients with early-stage breast cancer before
and after radiotherapy (RT) using the maintrac® method was investigated. Single-cell expression
analyses were performed with qRT-PCR on a panel of selected genes: GAPDH, EpCAM, NANOG,
Bcl-2, TLR 4, COX-2, PIK3CA, Her-2/neu, Vimentin, c-Met, Ki-67. In all patients, viable CETC were
detected prior to and at the end of radiotherapy. In 7 of the 9 (77.8%) subjects examined, the CETC
number at the end of the radiotherapy series was higher than before. The majority of genes analyzed
showed increased expression after completion of radiotherapy compared to baseline. Procedures and
methods used in this pilot study proved to be feasible. The method is suitable for further investigation
of the underlying molecular biological mechanisms occurring in cells surviving radiotherapy and
possibly the development of radiation resistance.

Keywords: circulating tumor cells; gene expression analysis; radiotherapy; early-stage breast cancer;
prognostic marker

1. Introduction

In breast cancer patients, adjuvant radiotherapy has been shown to reduce not only
the risk of locoregional recurrence but also the risk of distant metastases, thus to reducing
breast cancer mortality (Early Breast Cancer Trialists’ Collaborative, Darby [1]). Adjuvant
irradiation destroys subclinical disease in the breast and possibly in locoregional lymph
nodes, which is believed to prevent seeding of tumor cells from persistent reservoirs of
locoregional disease and thus avoid metastasis formation.

Tumor cells circulating in the bloodstream (CTC) are considered to be responsible
for the formation of metastases [2,3]. Therefore, their importance as prognostic and/or
predictive markers in breast cancer is being intensively investigated [4–10].

The determination of circulating epithelial tumor cells (CETC) promises real-time
monitoring of treatment effects—including effects of radiotherapy—as well as longitudinal
monitoring of treatment response and early detection of tumor relapse [11]. In patients
with metastatic breast cancer, CTC have been proposed as prognostic biomarkers [12,13].
To date, the method has, however, not been implemented in routine clinical practice as
a basis to guide treatment decisions, which is partly due to a lack of standardization in
analysis approaches [14,15].

Next to the number of CETC, the molecular characterization of CETCs is crucial to
relate molecular characteristics of individual CETC to molecular characteristics of the
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primary tumor, but also to follow the fate of circulating tumor cells during treatment.
Equally important is the description of relevant genetic changes that may be caused by
treatment-related effects in CETC. However, due to the relative rarity and heterogeneity of
circulating tumor cells, their isolation and characterization at the molecular and genetic
level is challenging and technically difficult [16–18].

In this study the maintrac® method was used to analyze changes in the number of
CETC before and after adjuvant radiotherapy in a group of prospectively enrolled patients
with breast cancer. The study further investigated changes of molecular characteristics and
expression of a panel of selected genes of isolated CETCs before and after the radiotherapy
series. The study demonstrates the reproducibility of the method for single cell expression
profiling during monitoring of the influence of radiotherapy in preparation of a larger
study that will allow inclusion of a higher number of patients.

2. Materials and Methods

The study is designed as a biology-driven translational trial to investigate the feasibil-
ity of isolating and collecting circulating epithelial tumor cells from whole blood samples
before and after radiotherapy using the maintrac® method, and to analyze possible up-
and/or down-regulation of a panel of selected cancer-related genes.

2.1. Inclusion Criteria

Patients with histologically-proven, primarily non-metastasized breast cancer were
eligible if adjuvant radiotherapy after breast-conserving surgery was planned. Other
eligibility criteria were age ≥ 18 y, WHO performance status ≤ 2, no severe concomitant
disease, and in particular no additional tumor diseases. There were no restrictions with
respect to preceding systemic treatments like (neo)adjuvant cytostatic or antihormonal
drugs if indicated according to current guidelines. All patients gave informed consent prior
inclusion in the study. The trial was approved by the Ethics Committee of the University
Hospital Jena (1 September 2012) under No. 0921-08/02 and is registered (2 May 2019) at
trials.gov under NCT03935802.

2.2. Study Procedures

Routine clinical parameters were prospectively collected, including baseline history,
breast cancer specific procedures and treatments, as well as radiotherapy. Patients were
prospectively followed for local control, metastasis-free survival, and overall survival for a
minimum of 5 years after diagnosis.

2.3. Radiotherapy

All patients received adjuvant radiotherapy according to current guidelines [19]. The
breast and chest wall were irradiated with a 3D-conformal technique using tangential
opposing fields to a total absorbed dose of 50.0 Gy in 25 fractions. In cases where a boost
was indicated, the tumor bed received an additional dose of 16.0 Gy in 8 fractions.

2.4. Sample Processing and Analysis

Blood samples were drawn as part of routine laboratory checks on the first and the
last day of radiotherapy, where 10 mL blood (EDTA-tube, Sigma-Aldrich Co., Munich,
Germany) were additionally taken for analysis within this trial.

Samples were processed for picking viable, epithelial cell adhesion molecule (EpCAM)-
positive cells and analysis of selected messenger ribonucleic acids (mRNAs), which are
typically found in breast cancer cells, as detailed in Figure 1.

Each sample was analyzed with respect to:

• quantitative immunofluorescence detection of viable CETC and
• quantitative gene expression analysis of single CETC by qRT-PCR to analyze for

differential expression of selected genes.

trials.gov
trials.gov
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 quantitative gene expression analysis of single CETC by qRT-PCR to analyze for dif-
ferential expression of selected genes.  

 
Figure 1. Workflow of antibody staining, cell isolation, and determination of mRNA contents. 

2.5. Immunofluorescence Assay and Quantification 
Isolation of individual cells from whole blood was carried out by employing a 

method previously described by Pachmann et al. [11,17,20]. Briefly, 1 mL whole blood 
drawn into Sarstedt EDTA tubes (SARSTEDT AG & Co., Nümbrecht, Germany) for anti-
coagulation was mixed with 10 mL lysis buffer (QIAGEN, Hilden, Germany) for erythro-
cyte lysis followed by centrifugation at 300 rcf to separate the cellular fraction from the 
plasma fraction of blood samples. The cellular fraction was re-suspended in 500 µL phos-
phate buffered salt solution (QIAGEN, Hilden, Germany) and incubated with 20 µL of 
master mix (120 µL EpCAM-FITC, 100 µL 10% BSA, 4 µL 7AAD (500 µg/mL), and 776 µL 
PBS-EDTA) (fluoroisothiocyanate (FITC)-conjugated anti-epithelial cell adhesion mole-
cule (EpCAM) antibody (CD-326, Miltenyi, Bergisch Gladbach, Germany) and 7-Amino-
actinomycin D (7AAD, Sigma-Aldrich Co., Taufkirchen, Germany)). Finally, 20 µL of this 
suspension were transferred to a 96-well plate (Eppendorf twin.tec PCR plate 96, Eppen-
dorf AG, Hamburg, Germany) and mixed with a PE-formalin solution (10% Formalin so-
lution and PBS-EDTA 1:1). 

After 1 h of sedimentation, immunofluorescence detection was initiated using a mi-
croscope-based imaging platform for fully automated image acquisition (ScanR Olympus 
IX81 ZDC, Olympus GmbH Hamburg, Germany). Each well was scanned by taking 94 

Figure 1. Workflow of antibody staining, cell isolation, and determination of mRNA contents.

2.5. Immunofluorescence Assay and Quantification

Isolation of individual cells from whole blood was carried out by employing a method
previously described by Pachmann et al. [11,17,20]. Briefly, 1 mL whole blood drawn into
Sarstedt EDTA tubes (SARSTEDT AG & Co., Nümbrecht, Germany) for anti-coagulation
was mixed with 10 mL lysis buffer (QIAGEN, Hilden, Germany) for erythrocyte lysis
followed by centrifugation at 300 rcf to separate the cellular fraction from the plasma
fraction of blood samples. The cellular fraction was re-suspended in 500 µL phosphate
buffered salt solution (QIAGEN, Hilden, Germany) and incubated with 20 µL of master mix
(120 µL EpCAM-FITC, 100 µL 10% BSA, 4 µL 7AAD (500 µg/mL), and 776 µL PBS-EDTA)
(fluoroisothiocyanate (FITC)-conjugated anti-epithelial cell adhesion molecule (EpCAM)
antibody (CD-326, Miltenyi, Bergisch Gladbach, Germany) and 7-Aminoactinomycin D
(7AAD, Sigma-Aldrich Co., Taufkirchen, Germany)). Finally, 20 µL of this suspension
were transferred to a 96-well plate (Eppendorf twin.tec PCR plate 96, Eppendorf AG,
Hamburg, Germany) and mixed with a PE-formalin solution (10% Formalin solution and
PBS-EDTA 1:1).
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After 1 h of sedimentation, immunofluorescence detection was initiated using a
microscope-based imaging platform for fully automated image acquisition (ScanR Olympus
IX81 ZDC, Olympus GmbH Hamburg, Germany). Each well was scanned by taking
94 individual images using a 20×-objective and analyzed for the presence of EpCAM-
positive cells. Due to the different emission intensities of the markers (515–545 nm for FITC
and 635–655 nm for 7AAD), objects with exclusively EpCAM-positive surface staining
(viable cells) and combined EpCAM- and 7AAD-stained avital cells could be automatically
detected. In addition to the automatic detection and classification (viable vs. nonviable) of
cells, up to 100 EpCAM-positive cells per sample were controlled visually in a randomized
fashion for accuracy of classification. From the number of viable EpCAM-positive cells
detected per well, the number of cells/mL was calculated.

We additionally examined blood samples of 9 healthy subjects without tumor disease
as a control group. In none of these subjects, EpCAM-positive cells were detected.

2.6. Single Cell Isolation and Quantitative Real-Time PCR

From an aliquot of the above stained cells, single EpCAM-positive cells were separated
from other white blood cells using a semi-automated fluorescence microscope (Olympus,
Hamburg, Germany). A drop of cell suspension containing cells of possible tumor origin
was placed on a microscope slide, and EpCAM-positive cells were detected under the
microscope (Figures 2 and 3). To only collect viable cells, cells with morphologically intact
cell membrane and nucleus as well as an intense EpCAM signal were selected. The cell
suspension was prepared to allow aspiration of only one cell into the capillary. Selected
cells were individually aspirated semi-manually with an MMI CellEctor (MMI, Eching,
Germany) into 100 nL buffer solution into a glass capillary and transferred into a 100 µL
PCR cup, making sure that only this one cell was deposited before being stored individually
at −18 ◦C.

Curr. Oncol. 2021, 28, 4 
 

 

individual images using a 20×-objective and analyzed for the presence of EpCAM-positive 
cells. Due to the different emission intensities of the markers (515–545 nm for FITC and 
635–655 nm for 7AAD), objects with exclusively EpCAM-positive surface staining (viable 
cells) and combined EpCAM- and 7AAD-stained avital cells could be automatically de-
tected. In addition to the automatic detection and classification (viable vs. nonviable) of 
cells, up to 100 EpCAM-positive cells per sample were controlled visually in a randomized 
fashion for accuracy of classification. From the number of viable EpCAM-positive cells 
detected per well, the number of cells/mL was calculated.  

We additionally examined blood samples of 9 healthy subjects without tumor disease 
as a control group. In none of these subjects, EpCAM-positive cells were detected. 

2.6. Single Cell Isolation and Quantitative Real-Time PCR 
From an aliquot of the above stained cells, single EpCAM-positive cells were sepa-

rated from other white blood cells using a semi-automated fluorescence microscope 
(Olympus, Hamburg, Germany). A drop of cell suspension containing cells of possible 
tumor origin was placed on a microscope slide, and EpCAM-positive cells were detected 
under the microscope (Figures 2 and 3). To only collect viable cells, cells with morpholog-
ically intact cell membrane and nucleus as well as an intense EpCAM signal were selected. 
The cell suspension was prepared to allow aspiration of only one cell into the capillary. 
Selected cells were individually aspirated semi-manually with an MMI CellEctor (MMI, 
Eching, Germany) into 100 nL buffer solution into a glass capillary and transferred into a 
100 µL PCR cup, making sure that only this one cell was deposited before being stored 
individually at −18 °C. 

 
Figure 2. High-performance stereomicroscope and preparation platform MMI CellEctor plus™ with 
a three-dimensionally-controllable micromanipulator. 

Figure 2. High-performance stereomicroscope and preparation platform MMI CellEctor plus™ with
a three-dimensionally-controllable micromanipulator.

Cell lysis and subsequent cDNA amplification were performed using the whole
transcriptome amplification kit according to protocol A of the manufacturer (CellAmp™
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Whole Transcriptome amplification kit (Real Time) TaKaRa Bio Inc., Otsu, Japan). cDNA
amplification was performed in 21 cycles using a Mastercycler® (Eppendorf realplex4,
Mastercycler eppgradient S, Eppendorf AG, Hamburg, Germany). The resulting 25 µL of
cDNA amplification reaction mix was stored at −20 ◦C.

Subsequently, quantitative real-time PCR (qRT-PCR) was performed in 96 well plates
using the LightCyclerR 480 SYBRGreen 1 Master Kit (Roche Diagnostics GmbH, Mannheim,
Germany). A known concentration of beta-actin was used in control reactions to calculate
absolute values [21]. Following the manufacturer´s instructions, 1 µL of amplified cDNA
was pipetted into wells of a 96-well plate, 19 µL of master mix were added, and the sample
was cooled to 4 ◦C. Amplified cDNA from one cell was tested for specific mRNAs in eight
separate wells containing one primer pair each. qRT-PCR reactions were performed for
40 cycles. A melting curve was generated for quality control. Absolute quantification
and analysis of melting curves were undertaken using the qRT-PCR machine’s software
package (Eppendorf realplex4, Mastercycler eppgradient S, Mastercycler ep realplex 2.0,
Eppendorf AG, Hamburg, Germany). The resulting gene product was verified by gel
electrophoresis. Sequences of the 11 selected primer pairs are summarized in Table 1. All
primers were produced individually (Jena Bioscience GmbH, Jena, Germany). Negative
control experiments were undertaken using 1 µL RNase-free water.
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Figure 3. Steps of micromanipulation: (A) the cell to be picked is located in fluorescent light and
(B) is circled by the software. (C,D) The cell is located in transmitted light. (E) The opening of the
capillary is positioned over the cell and aspirates the cell. (F) The droplet with the cell is blown
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Table 1. Gene expression analysis and respective primer sequences.

Gene Name Sequence (5′–3′) Sense (s)—Antisense (a) Product Length
Base Pairs (bp)

GAPDH s: GAC AGT CAG CCG CAT CTT CT
a: GCG CCC AAT ACG ACC AAA TC 104 bp

EpCAM s: GGG AAA TAG CAA ATG GAC ACA
a: CGA TGG AGT CCA AGT TCT GG 219 bp

NANOG s: GGA TCC AGC TTG TCC CCA AA
a: TGC ACC AGG TCT GAG TGT TC 674 bp

Bcl-2 s: TTT GTG GAA CTG TAC GGC CC
a: CCG GCC AAC AAC ATG GAA AG 519 bp

TLR4 s: GGT CAG ACG GTG ATA GCG AG
a: ATT AGG AAC CAC CAC GC 179 bp

COX-2 s: GAT GAT TGC CCG ACT CCC TT
a: TGA AAA GGC GCA GTT TAC GC 274 bp

PIK3CA s: CCC AGG TGG AAT GAA TGG CT
a: CCA AAA GCA GGC CAA ACC TC 925 bp

HER2 s: AGG TAA CCC TGG CCC CTT T
a: TTC AGC GGG TCT CCA TTG TC 539 bp

Vimentin s: TCC GCA CAT TCG AGC AAA GA
a: ATT CAA GTC TCA GCG GGC TC 161 bp

Ki-67 s: CCT CAG CAC CTG CTT GTT TG
a: TCC CTG AGC AAC ACT GTC TTT 466 bp

c-Met s: GGT CTT CAA GTA GCC AAA GCG
a: TTC TTG CAG CCA AGT TGT 73 bp

2.7. Statistical Analysis

Single cell analysis is associated with variability of the measured values. The mRNA
amount of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in our study showed
a large variability between the single cells as expected. Due to the biology of cellular
transcription, data normalization using housekeeping genes is not meaningful when
quantifying single cells [22]. The absolute values of the cDNA concentrations of the 8 cells
per patient as well as the measurement time points were mapped as absolute values. The
quotient was then calculated from the values of the 8 cells collected prior to and after
radiotherapy for all genes serving as a measure of gene activity and compared to the
mean values.

In all examined cells, GAPDH-mRNA could be detected with at least 7.20 copies/µL.
This result confirmed selected CETC to be viable cells. We used the SPSS21 software
package (IBM Statistics, SPSS Inc., New York, NY, USA) for comparative statistics.

3. Results

Nine eligible patients were included in the trial between September 2011 and Septem-
ber 2012 [23]. All but one patient exhibited estrogen receptor positive tumors and had
already received endocrine treatment during the period of radiotherapy. Estrogen receptor
positivity was not determined in the circulating tumor cells. The mean follow-up was
in 88 months (38 months–100 months). During follow-up, two patients experienced a
second tumor diagnosis: patient 2 was diagnosed with colon carcinoma 84 months after
radiotherapy, patient 5 suffered from a local relapse, and patient 6 was diagnosed with
malignant melanoma 17 months after radiotherapy for breast cancer. All patients were
alive at the time of the last visit. Patient characteristics are summarized in Table 2.

3.1. Changes in CETC Number

In all patients, viable CETC were detected prior to and at the end of radiotherapy (de-
tection rate: 100%) and the cell number was determined. Blood samples from nine healthy
subjects, who volunteered as a control group without tumor disease, were additionally
examined. In none of these subjects, EpCAM-positive cells were detected.
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Table 2. Patient characteristics.

Pat.
ID

Age
[Years]

Date of First
Diagnosis

Initial Tumor Stage
and Tumor

Characteristics

Receptor
Status of

Tumor Cells

Endocrine
Therapy

during RT

Locoregional
Recurrence
after 5 Years

Distant
Metastasis

after 5 Years

1 60 05/2012 pT1c pN0(0/1sn) cM0
L0 V0 R0 G2

ER: 80%
PR: 100%
HER2: 0

Anastrozol - -

2 73 02/2012 pT2 pN0(0/2sn) cM0
L0 V0 R0 G2

ER: 85%
PR: 85%

HER2: 1+
Letrozol - -

3 68 03/2012 pT1c pN0(0/1sn) cM0
L0 V0 R0 G2

ER: 80%
PR: 0%

HER2: 2+
Letrozol - -

4 52 03/2012 pT1c (m) pN0(0/1sn) cM0
L0 V0 R0 G2

ER: 80%
PR: 70%

HER2: 1+
Tamoxifen - -

5 46 06/2012 pT1b(m) pN0(0/1sn) cM0
L0 V0 R0 G1

ER: 90%
PR: 90%

HER2: 2+
Tamoxifen

Local relapse
78 months

after RT
-

6 55 04/2012 pT1b pN0(0/2 sn) cM0
L0 V0 R0 G2

ER: 90%,
PR: 80%

HER2: 1+
Letrozol - -

7 59 10/2011 pT1a+Tis pN0(0/1sn) cM0
L0 V0 R0 G1

ER: 100%
PR: 100%
HER2: 1+

Letrozol - -

8 51 11/2011 pT1c pN0(0/3 sn) cM0
L0 V0 R0 G3

ER: 0%
PR: 0%

HER2: 0
- - -

9 41 11/2011 pT2 pN0(0/1 sn) cM0
L0 V0 R0 G3

ER: 45%
PR: 70%

HER2: 2+
Tamoxifen - -

In seven of the nine (77.8%) subjects investigated, the CETC number was higher in the
blood sample drawn at the end of the radiotherapy series as compared to the CETC number
prior to the start of radiotherapy (Table 3). Statistical evaluation showed a significantly
increased number of viable CETC at the end of the radiotherapy series compared to the
CETC number before start of radiotherapy (p = 0.009). The fold increase (quotient) was
moderate as compared to that observed in patients with primary breast cancer under
adjuvant chemotherapy (6).

3.2. Gene Expression Profiles of Single Circulating Epithelial Cells

In two patients, isolation of single cells was not possible due to logistical reasons. In
the remaining seven patients, a maximum of eight vital CETC per patient were picked
prior to as well as after the end of the radiotherapy series for gene expression analysis.
As shown in the materials and methods section, the approach for picking individual cells
ensured that only the targeted cell was aspirated and deposited. Previous studies showed
that cells isolated in this way carry the same mutations as their corresponding primary
tumor and also express its tumor tissue characteristics [17,24].

The expression of a panel of selected genes, which encode for proteins involved in
processes necessary for metastatic spread, such as proliferation, differentiation, migration,
adhesion, and apoptosis, were analyzed in these individually isolated cells. A total of 1505
individual gene copy numbers were measured (copy number > 0/µL) from 131 EpCAM-
positive cells most probably of tumor origin. Each individual cell could be assigned a
defined copy number of the respective gene.
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Table 3. Mean number of CETC.

Pat.
ID

before
Radiotherapy

after
Radiotherapy

Quotient
Number of Viable CETC/mL

Whole Blood
Number of Viable CETC/mL

Whole Blood

1 3170 8640 2.72

2 2200 5860 2.66

3 2440 6100 2.50

4 18070 17340 0.96

5 1460 1220 0.83

6 2690 5150 1.91

7 4200 11480 2.73

8 2930 4150 1.42

9 11720 18120 1.55

A typical example of the heterogeneity in upregulation of gene expression of 11 genes
in eight cells from Pat. ID 2 is shown in Table 4. In some cells, several genes were highly
upregulated, e.g., cell 6: GAPDH, BCL-2, Cox2, PIK3CA, and TLR 4 whereas EpCAM,
NANOG, Her2, Vimentin c-Met, and Ki-67 were only moderately upregulated. In cell 7,
GAPDH, Cox-2, and TLR 4 were strikingly highly upregulated.

Table 4. Copy numbers of Pat. ID 2.

Cell
Number

GAPDH EpCAM NANOG BCL-2

before RT after RT before RT after RT before RT after RT before RT after RT

1 10.20 29.40 13.00 32.60 88.60 123.00 9.40 33.90
2 15.50 53.30 9.13 69.50 106.00 182.00 7.43 28.40
3 9.94 553.00 10.60 29.70 80.80 186.00 7.81 20.7
4 146.00 16.20 10.70 17.50 84.10 264.00 7.76 33.70
5 47.60 25.60 14.90 28.50 111.00 164.00 11.40 29.50
6 14.40 298.00 10.60 52.20 103.00 150.00 6.27 199.00
7 15.30 404.00 16.00 104.00 91.60 189.00 15.30 233.00
8 12.90 200.00 15.20 45.30 75.20 170.00 8.22 72.40

Cell
Number

COX-2 PIK3CA HER2 Vimentin

before RT after RT before RT after RT before RT after RT before RT after RT

1 5.09 4.41 1.31 6.71 2.28 1.87 4.98 17.55
2 2.25 5.56 2.86 21.80 1.55 2.72 3.84 21.50
3 1.75 4.48 3.28 7.64 1.69 1.73 3.41 7.22
4 2.41 6.69 1.51 13.50 2.35 1.69 3.98 109.00
5 4.00 18.60 11.00 43.00 1.78 137.00 7.52 34.70
6 3.00 407.00 8.97 147.00 2.66 71.60 3.85 33.50
7 3.40 508.00 2.09 107.00 2.40 134.00 7.24 56.30
8 1.41 16.20 1.25 127.00 2.36 9.14 3.40 134.00

Cell
Number

c-Met Ki-67 TLR 4

before RT after RT before RT after RT before RT after RT

1 4.93 6.44 15.80 27.40 3.03 5.55
2 3.24 6.42 14.10 68.80 29.80 7.27
3 3.41 7.32 10.23 43.90 1.70 25.40
4 3.93 4.94 16.80 30.00 4.01 24.90
5 5.52 13.10 27.10 67.40 3.60 85.60
6 3.85 32.20 23.90 104.00 2.30 724.00
7 7.42 53.30 18.10 131.00 3.44 864.00
8 3.70 19.10 17.40 87.00 1.34 93.20



Curr. Oncol. 2021, 28 3515

Relative quantification showed that patients exhibiting an increased cell number under
radiotherapy also showed overexpression of almost all genes investigated (Table 5). The
two patients without an increase in CETC numbers (Pat. ID 4 and ID 5) showed the lowest
relative gene expression apart from NANOG in patient ID 4. The extent of increase of
expression in selected genes differed considerably between patients.

A decrease of expression for several genes was observed only in one patient whose
CETC number decreased after radiotherapy (Pat. ID 4) in comparison to the CETC number
prior to radiotherapy.

Since the number of copies in patients ID 2 and ID 4 varied particularly strongly for
some genes (especially BCL2, HER2, Vimentin), they were censored in the statistical analy-
sis. Considering the extreme values, a symmetrical distribution of the mean values could
be achieved (Shapiro–Wilk test: p ≤ 0.05, boxplot diagram of the mean value difference
symmetrical). It was possible to use the T-test for connected samples.

The different expression level of the single cells is shown in the example of NANOG
for all patients in Figure 4. The variability of expression between individual cells in the
patients is shown. The copy number amplitudes are higher after RT, indicating an increase
in gene expression.
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Table 5. Quotient (Q) of the CETC number (first row) and quotient of the copy number of genes
before and after the end of irradiation.

Pat. ID CETC
Number GAPDH EpCAM NANOG BCL-2 COX-2

1 2.72 1 3.97 8.12 4.26 8.79 18.67

2 2.66 5.81 3.79 1.93 8.84 41.65

3 2.50 3.59 2.31 1.36 3.00 4.69

4 0.96 1.85 0.67 10.45 0.87 0.51

5 0.83 1.12 1.56 1.65 1.63 1.58

6 1.91 1.30 1.70 1.04 1.63 2.69

7 2.73 4.70 6.01 3.93 4.41 4.90

Average 2.04 3.19 3.45 03.52 4.17 10.67
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Table 5. Cont.

Pat. ID PIK3CA HER2 Vimentin c-Met Ki-67 TLR 4

1 5.74 10.46 6.59 8.03 3.96 9.31

2 14.68 21.07 10.83 3.97 4.19 37.18

3 6.47 4.65 1.27 2.25 1.14 3.27

4 0.25 0.16 0.50 0.84 2.82 0.23

5 1.17 0.98 2.26 1.95 1.24 1.82

6 1.78 2.05 1.99 4.90 1.05 1.33

7 2.40 15.16 1.57 7.47 4.28 5.16

Average 4.64 7.79 3.57 4.20 2.67 8.33
1 Red: Q ≥ 10, Yellow: 5 ≤ Q < 10, Green: 1 ≤ Q < 5, Blue: Q < 1.

The distribution of the mRNA copies for each gene is shown below in the box plot
diagrams (Figure 5). Although the measured values varied, the mean values of the mRNA
copy numbers are higher after irradiation in all the genes investigated. Except for PIK3CA,
ERBB2, and Vimentin, statistically significant changes in gene activity could be detected.
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All results of the RT-PCR were verified by gel-electrophoresis where the corresponding
gene product could be detected.

4. Discussion

Potential changes of the tumor cell activation during the course of a disease render
longitudinal analysis of circulating tumor cells promising for a more complete understand-
ing of the complex processes underlying treatment response or relapse. Consequently,
CETC numbers and their relevance as prognostic or predictive factors were investigated
in numerous studies [4,11,25,26]. Further characterization of CETC on a molecular and
genetic level may reveal their potential role as an indicator of response to treatment [27–29].
Molecular characterization of CETC is, however, technically challenging as is their un-
equivocal mapping with cells of the primary tumor or even metastases. Hence, following
the fate of tumor (sub-)clones during the course of disease is not currently possible [30].

Therefore, in this study, radiation-related changes in CETC numbers after curative
breast-conserving surgery and alterations in expression of selected genes in individual
EpCAM-positive CETC were prospectively investigated using the maintrac® method.

Since this was a feasibility study, both the number of patients included and the number
of cells studied were considered sufficient. The number of patients included so far allows
a first description of the observed effects, but is not high enough for definite conclusions.
Confounding factors could influence CETC counts and gene expression profiles in addition
to radiotherapy.

4.1. Comparison of Methods for Detection of CETC

Different approaches exist for the identification and characterization of circulating
tumor cells, where genetic and immunological methods need to be distinguished. A fre-
quently used enrichment method is immunomagnetic separation using the CellSearch™
system. It has been approved by the FDA as a tool for the detection of CTC in metastatic
breast cancer [31–33]. The CellSearch™ system variably defines a threshold of 1–5 cells/7.5 mL
blood (≥0.67 cells/mL blood) in patients with primary or metastasized tumors as a sign of
poor prognosis [34,35].

In contrast to the method used in this work, the CellSearch™ system aspirates the
blood into special CellSave tubes with additional fixation solution instead of standard
EDTA monovettes. The fixation solution in the CellSave tubes seems to strongly influence
the detectable amount of circulating tumor cells. It has been shown that the use of CellSave
tubes reduces the detection of EpCAM-positive cells by more than 10-fold compared to
the maintrac® method. According to other studies, a high proportion of cell fragments is
detected using the CellSearch™ method, which is, however, attributed the same prognostic
significance as intact, vital cells [36].

In our study using the maintrac® method, an approach omitting fixation and en-
richment steps, the number of EpCAM-positive cells was much higher with 1220 and
18,070 cells/mL blood in clinically non-metastatic women. This included cells with very
low EpCAM expression, which may be lost by enrichment steps. In spite of confirmed
metastatic breast cancer, the CellSearch™ method detects circulating tumor cells in only
10–60% of cases in blood or bone marrow [37]. The maintrac® method detects CETC in 90%
of cases of primary non-metastatic breast cancer and an increase in these numbers during
therapy is highly significantly correlated with relapse [11].

The number of circulating tumor cells determined by various methods is controver-
sially discussed [38]. Given the heterogeneous results concerning the number of detected
circulating tumor cells with various methods of analysis, standardization of test methods
is of utmost importance [39]. The high number of CETC detected with the method applied
here is advantageous with respect to micromanipulation for isolation of individual cells in
patients with early breast cancer [17,29,40] to analyze intra-individual changes in CETC
numbers during the course of treatment and to amplify mRNA from the individually
isolated cells.
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The possibility of false positive results in light of the high detection rate must be
considered. However, the fact that mRNA of the candidate genes could be amplified from
the individually isolated cells suggests that these cells are viable.

4.2. Expression Pattern of EpCAM

The EpCAM antigen used in the maintrac® process is not exclusively expressed on
the surface of breast cancer cells, but also on normal epithelial cells, e.g., of the gut and the
lung. EpCAM overexpression in breast cancer correlates with tumor mass, lymph node
status, and the presence of estrogen receptors [41]. The EpCAM antigen is also found
in other cancers such as lung or colorectal carcinoma [42–44]. Therefore, the detected
cells comprise circulating tumor cells but the presence of additional nonmalignant cells
cannot be completely excluded. EpCAM-positive cells are usually not detectable in healthy
subjects, as confirmed in our study in blood samples from healthy subjects.

By labeling the CETC with EpCAM and subsequently picking EpCAM-positive cells,
PCR results could be assigned exclusively to the respective cells. It has been assumed
in the past that the detection of tissue-specific mRNA in peripheral blood indicates the
presence of circulating tumor cells [45,46]. However, irrespective of the enrichment method
used, samples are contaminated with white blood cells, resulting in reduced specificity,
especially in the analysis of mixed populations of cells allowing only for cross-sectional
information. In contrast, our analysis of individual cells displays the heterogeneity of
the circulating tumor cells. Since mRNA is transcribed only in viable cells and degraded
very rapidly during cell decay, the combination of upstream individual cell isolation and
subsequent multiplex PCR using single cells in this study minimized these sources of error
and increased sensitivity and specificity [7,18,47].

4.3. Quantitative Polymerase Chain Reaction

With regard to the qRT-PCR results, difficulties arise especially with genes which
are expressed at low levels. Intercellular differences in gene expression can be large, and
extreme values of individual cells can largely influence the mean value [48]. As expected,
the number of gene copies detected in single cells in this study varied considerably between
undetectable (HER2 for Pat. ID 1) and 379.0 copies/µL (NANOG for Pat. ID 4). This led to
large standard deviations.

Nonetheless, the averaged gene copy numbers in up to eight analyzed single cells was
significantly increased for most genes after irradiation in comparison to the average copy
number in cells before irradiation.

In this study, analysis of single circulating cells by qRT-PCR allowed for discerning
heterogeneities in gene activity between individual CETC of a patient, and additionally
determined changes in gene activation during therapy to provide a starting point for
in-depth research of a higher number of patients.

4.4. Quantitative Measurement of the CETC

In seven of the nine patients (77.8%) the number of CETC was higher after radiotherapy
as compared to the CETC number before start of radiotherapy. On average, a doubling of
CETC numbers was observed. One possible explanation for this observation is the release
of cells from occult residues, which subsequently enter the microenvironment and the
bloodstream [49–51]. These could represent cells that have survived radiation and may
be a sign of radioresistant cell clones already present prior to the radiotherapy series [52].
The changes in the local and systemic environment, such as inflammation induced by
radiotherapy, may stimulate the expansion of the cells that are circulating in blood [53]. It
is controversially discussed whether the cells found in blood are derived directly from the
primary tumor [54–56]. Further investigations including analysis of molecular markers of
the CETC at serial time points during treatment are necessary to clarify this question.
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4.5. Gene Expression Analysis

In patients with increased CETC numbers after radiotherapy, we also found an in-
creased expression of the majority of genes in single CETC of the respective patients.

The examined genes encode proteins involved in cell metabolism, but also in in-
flammatory and immunological processes, cell proliferation, adhesion, differentiation,
and migration as well as angiogenesis, apoptosis inhibition, and preservation of cellular
pluripotency [57–67].

It is known that irradiation causes dose-dependent effects, leading to DNA damage by
direct or indirect ionization and additionally by generating reactive oxygen species (ROS),
thereby destroying cancer cells. Ionizing irradiation can however also promote epithelial-
mesenchymal transition, angiogenesis, invasion, and finally metastasis formation [68–73].
As an example, PI3K/Akt/mTOR signaling regulates cell growth and proliferation apopto-
sis and DNA damage response but also acts as a main driver of cellular survival mecha-
nisms after irradiation. In addition, ionizing radiation increases Akt phosphorylation in
numerous tumor entities, possibly causing resistance to therapy. The gene activation after
radiotherapy observed in this trial is therefore is not surprising, however its relevance and
underlying molecular mechanisms are unclear. Despite the small patient and cell numbers
explored in this study as well as the variability of the measured values, differences between
pre-radiation and post-radiation cells were significant in 5 out of 11 genes over all patients.
It might well be that effects mediated by radiation therapy itself could be responsible for
the upregulation of gene expression.

In addition to direct impact ionization at the cellular level, immunomodulatory phe-
nomena are known which are dose-, time-, and volume-dependent and can occur both
locally and systemically [74,75]. Radiotherapy leads to cell death in some of the cells,
thereby evoking phagocytosis of these cells and again inducing an immune response. This
particularly underlines the activation of TLR4 and COX-2 observed in this study, suggest-
ing that increased cytokine and chemokine production suppresses an adaptive immune
response and promotes metastatic processes [76,77]. It is also possible that the detected
CETC are radio-resistant tumor stem cells or subclones with pronounced differentiation
potential, which can survive treatment (especially if such cells circulating with the blood
stream do not receive the total radiation dose applied locally to the breast/chest wall) and
lead to a selected subpopulation of CETC with increased malignant potential [78–88]. The
strong activation of NANOG in all patients seems to support this hypothesis [82]. With
regard to the genes described, these surviving cells would then represent a particular risk
for the development of distant metastases [89].

Based on the present pilot study, further investigations are currently being performed
on a larger number of patients and single cells in order to investigate the molecular bio-
logical and functional effects of radiotherapy on CETC in more detail. In order to identify
prognostic and predictive biomarkers, a prospective follow-up study of the group will in-
vestigate the impact of radiotherapy on CETC, its gene expression profile, and immunophe-
notype over the course of treatment including follow-up (study number NCT03935802).

4.6. Influence of Endocrine Therapy

Endocrine therapy might influence changes in the numbers of CETCs as well as gene
expression as a confounding factor [87]. This and other confounders cannot be eliminated
as patients were treated according to current guidelines. In all examined patients in this
study, endocrine therapy was started already prior to RT.

Data on the effect of endocrine treatments on CETC number are scarce. It is known
that patients whose CETC count increases after endocrine therapy are significantly more
likely to suffer a relapse [90]. However, to what extent endocrine therapy has a direct
influence on the single CETCs is not clear so far.
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4.7. Clinical Follow-Up

The only patient who suffered a local relapse within five years after RT was patient ID
5. The number of CETC was slightly decreased after RT and the gene expression increase
was only moderate. This indicates that local relapse may not necessarily be directly related
to CETC number changes and gene expression levels.

Two of the nine patients examined developed a second malignancy. This is a strikingly
high number but attributed to a random statistical effect. The patient with the highest
increase in activity of COX-2, PIK3CA, HER2, and Vimentin was diagnosed with colon
cancer 84 months after treatment of breast cancer. It is unclear to what extent the CETC
detected in the study are related to the development of colon cancer as EpCAM used in our
method is also overexpressed in colon cancer [91]. Pat. ID 6 was diagnosed with malignant
melanoma 17 month after treatment of breast cancer. This patient also showed only a
moderate increase in CETC count and gene expression.

5. Conclusions

Procedures and methods used in this study proved to be feasible. We were able to
detect changes in the CETC numbers of patients with early-stage breast cancer before
radiotherapy in comparison to the end of radiotherapy.

Gene expression analysis by qRT-PCR of single CETC showed that there was an
increase in the expression of selected genes involved in metastatic processes in the majority
of CETC analyzed under radiotherapy. Because of the heterogeneity of results in gene
expression in individual cells, further characterization of the biological and functional
effects of radiotherapy is needed. The findings of this pilot study provide an important basis
for a prospective follow-up study with larger numbers of patients and cells (NCT03935802).
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Glossary

cDNA Complementary deoxyribonucleic acid
CETC Circulating epithelial tumor cells
EpCAM Epithelial cell adhesion molecule
FITC Fluoroisothiocyanate
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
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mRNA Messenger ribonucleic acid
qRT-PCR Quantitative real-time PCR
RT Radiotherapy
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