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Abstract

Background: There is growing evidence indicating that the microbial communities that dwell on the human
ocular surface are crucially important for ocular surface health and disease. Little is known about interspecies
interactions, functional profiles, and strain heterogeneity across individuals in healthy ocular surface microbiomes.

Methods: To comprehensively characterize the strain heterogeneity, cooccurrence network, taxonomic composition
and functional profile of the healthy ocular surface microbiome, we performed shotgun metagenomics sequencing
on ocular surface mucosal membrane swabs of 17 healthy volunteers.

Results: The healthy ocular surface microbiome was classified into 12 phyla, 70 genera, and 140 species. The
number of species in each healthy ocular surface microbiome ranged from 6 to 47, indicating differences in
microbial diversity among individuals. The species with high relative abundances and high positivity rates were
Streptococcus pyogenes, Staphylococcus epidermidis, Propionibacterium acnes, Corynebacterium accolens, and
Enhydrobacter aerosaccus. A correlation network analysis revealed a competitive interaction of Staphylococcus
epidermidis with Streptococcus pyogenes in ocular surface microbial ecosystems. Staphylococcus epidermidis and
Streptococcus pyogenes revealed phylogenetic diversity among different individuals. At the functional level, the
pathways related to transcription were the most abundant. We also found that there were abundant lipid and
amino acid metabolism pathways in the healthy ocular surface microbiome.

Conclusion: This study explored the strain heterogeneity, cooccurrence network, taxonomic composition, and
functional profile of the healthy ocular surface microbiome. These findings have important significance for the
future development of probiotic-based eye therapeutic drugs.
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Background

Human mucosal surfaces are normally colonized by di-
verse microbial flora [1]. As the most exposed mucosal
tissue of the human body, the ocular surface is suscep-
tible to insult by environmental factors, such as microor-
ganisms [2]. Although a healthy ocular surface can live
in harmony with symbiotic microorganisms, microbial
community imbalance or transient flora increases on the
ocular surface may lead to diseases [3]. Bacteria are con-
sidered major contributors to ocular infections world-
wide. Ocular infections, if not promptly treated, can
cause vision impairment and blindness [4]. In the Hu-
man Microbiome Project, much effort has been applied
to characterize the human mucosal microbiome, span-
ning the gut, mouth, respiratory tract, skin, and urogeni-
tal tract [5]. However, in the field of visual research, this
aspect is still in its infancy.

Previous culture-based surveys indicated that the mi-
crobial flora colonizing the ocular surface is dominated
by gram-positive Firmicutes [6]. Whereas conventional
methods have difficulty detecting microorganisms that
are rarely encountered, grow slowly, and cannot be cul-
tured, next-generation sequencing (NGS) technologies
have provided a much more detailed picture of the
healthy ocular surface microbiome [7-11]. Although the
precise distribution of each phylum is different between
individuals, the most consistent contributors on the ocu-
lar surface are Proteobacteria, Firmicutes, and Actinobac-
teria [3, 7, 10, 12, 13].

A number of studies in the intestine and other micro-
biome sites have shown that cohabiting microorganisms
within a microbiome maintain a stable state of competi-
tion and cooperation, such as competing with one an-
other for or mutually utilizing resources, nutrition, and
space [14, 15]. The abundance of each member of the
microbiome is constrained by the optimal ratio to main-
tain homeostasis [14]. Interactions among microbial spe-
cies are crucial for the sustainability of various
ecosystems [16]. However, our current understanding of
many interaction relationships among the components
of the ocular surface microecosystem is still very limited.

The microbial communities that dwell on the human
ocular surface are important for ocular surface health
and disease [17-22]. The microbial flora populating the
human ocular surface has been characterized with NGS,
but few studies have focused on strain-level resolution.
Although high-quality studies have been conducted on
the genetic variation and population structure of
humans and how population heritability is shaped, the
variation and structure of bacterial cells residing in the
human body are relatively unknown [23-25]. Strain-
level analysis of the gut microbiome has shown that in
common species, different strains of species are associ-
ated with different individuals [26].
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Most previous studies used mainly 16S rRNA gene se-
quencing, which did not allow for confident classifica-
tion of the microbiota to the level of (sub)species [27],
and 16S rRNA gene sequencing cannot provide data re-
garding functional genes and can indicate only the po-
tential functionality of microbial communities. Our
metagenome sequencing data provide more direct func-
tional information and higher taxonomic resolution for a
comprehensive understanding of the taxonomic and
functional compilations of the healthy ocular surface
microbiome. Species interactions and strain heterogen-
eity among individuals have received little attention in
past studies based on shotgun metagenomics sequencing
for the characterization of normal ocular surface microe-
cology [28, 29]. Here, we demonstrate the individual dif-
ferences in Staphylococcus epidermidis and Streptococcus
pyogenes at the strain level. We also found the existence
of a competing relationship between Staphylococcus epi-
dermidis and Streptococcus pyogenes in the cooccurrence
network.

Methods

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the
Eye Hospital of Wenzhou Medical University (number:
KYK [2017] 23) and adhered to the tenets of the Declar-
ation of Helsinki. All subjects provided written informed
consent at the time of sample collection.

Sample collection and processing

A total of 8 male subjects (age 41.6 + 13.7 years) and 9
female subjects (age 43 + 13.3 years) with healthy ocular
surfaces were recruited from communities across Zhe-
jiang, China. All subjects received systematic eye exami-
nations by the same ophthalmologist before sample
collection. In addition, all subjects were requested to fill
in an ocular surface disease index (OSDI) screening
questionnaire to evaluate ocular discomfort. The overall
OSDI screening questionnaire scores defined the ocular
surface as normal (0-12 points) [30]. The overall OSDI
screening questionnaire scores of all subjects in this
study were 5 or less. The exclusion criteria of the study
were as follows: (i) history of systemic or (ii) ocular dis-
eases or (iii) contact lens wearing and (iv) topical or sys-
temic antibiotics, steroid, any eye drop (prescribed or
over the counter) or probiotic treatment within 6
months. The subject’s eye was administered sterile top-
ical proparacaine. After topical anesthesia for 1 to 3 min,
the subject looked upward for sample collection. Sam-
ples were taken from the ocular surface mucosal tissues
(upper and lower palpebral, caruncle, and conjunctival
fornix) using flocked swabs and stored in a Copan
ESwab transport system (Copan Diagnostics Inc., Murri-
eta, CA) on ice blocks. Upon return to the laboratory,
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the swabs were frozen at — 80 °C until further processing.
Genomic DNA was extracted from the swabs using
pathogen lysis tubes L (QIAGEN, Hilden, Germany) and
a QIAamp UCP Pathogen Mini Kit (QIAGEN, Hilden,
Germany) according to the manufacturer’s instructions.
The DNA concentration was measured using a Qubit®
2.0 Fluorometer.

Prevention of contamination and negative controls

To avoid contamination during sample collection, sam-
ple collections were carried out in an ophthalmic treat-
ment room sterilized by ultraviolet light. Unused clean
swabs were exposed to the sampling environment and
waved in air for 10s to collect field controls. Extraction
controls were generated during DNA extraction to
monitor for reagent contamination. Unused sterile
flocked swabs moistened with sterile topical propara-
caine were processed as anesthetic controls for DNA ex-
traction. No DNA was detected in the field controls,
extraction controls, or anesthetic controls using a Qubit®
dsDNA Assay Kit and a Qubit® 2.0 Fluorometer.

We amplified the variable 4 (V4) region of the 16S
ribosomal RNA gene extracted from the field controls,
extraction controls, anesthetic controls, and actual sam-
ples using the universal primers 515F and 806R. PCR re-
agents without template DNA were used for PCR
amplification as a negative control. The amplification
system was 20 ul, consisting of 4 pl 5*FastPfu buffer, 2 ul
25mM dNTPs, 0.8 ul primers (5uM), 0.4 ul FastPfu
polymerase, and 10 ng DNA template. Reaction mixtures
were incubated for predenaturation at 95°C for 3 min,
27 thermal cycles (denaturation at 95 °C for 30 s, anneal-
ing at 55 °C for 30, and extension at 72 °C for 30s), and
extension at 72°C for 10 min (PCR instrument: ABI
GeneAmp® 9700). Amplification products of the 16S
rRNA gene V4 DNA region were visualized by agarose
gel electrophoresis. Bright bands were observed at ~290
bp in actual samples; no band was found in field con-
trols, extraction controls, anesthetic controls, or PCR
negative controls. Sequencing was performed on field
controls, extraction controls, anesthetic controls, and
PCR negative controls and did not yield any reads.

Shotgun metagenomics sequencing

The above samples were used for shotgun metagenomics
sequencing. Paired-end sequencing (150 bp x 2) was per-
formed on the HiSeq X10 platform (Novogene Co., Ltd.,
Beijing, China). The quality of raw reads was assessed
using FastQC software according to a previously de-
scribed in-house bioinformatics pipeline [31]. After the
adapter sequences were trimmed by the Cutadapt tool
(http://code.google.com/p/cutadapt/), low-quality reads
were removed using Trim Galore [32], and the
remaining high-quality reads were visualized using
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SplicingViewer [33]. Bowtie2 was used to map trimmed
reads to the human reference genome (hgl9) to generate
BAM files [34]. Aligned reads were removed using SAM-
tools to obtain clean nonhuman sequences [35].
MetaPhlAn2 was executed to generate taxonomic pro-
files, with default parameters [36]. Strain-level profiling
was performed with StrainPhlAn [37]. The remaining
metagenomic sequences for each sample were assembled
with Megahit [38]. The contigs were submitted to
Prokka for gene prediction [39]. Quantification of pre-
dicted genes was performed with Salmon [40]. Subse-
quently, redundant amino acid sequences were removed
by using CD-HIT with a sequence identity threshold of
90% [41]. Functional annotations and transcription fac-
tor prediction were implemented using eggNOG-
mapper [42], CollecTF [43], and ArchaeaTF [44]. Figures
were visualized with R (version 3.6.2). The R vegan pack-
age was used to calculate the Shannon diversity index,
inverse Simpson index, Bray-Curtis dissimilarity, and
Jaccard index at the species level. Pairwise comparisons
of alpha diversity indices were performed using the Wil-
coxon rank-sum test. Permutational multivariate analysis
of variance (PERMANOVA) of Bray-Curtis distances
and Jaccard distances were performed for statistical ana-
lysis of beta diversity. Principal coordinate analysis
(PCoA) was used to visualize the resulting distance
matrix.

Results

Taxonomic composition

Ilumina sequencing of all samples produced 1.35 billion
reads. After filtering out reads matching the human gen-
ome sequence, an average of approximately 2.18 million
microbial reads from each sample were obtained for fur-
ther analysis. The healthy ocular surface microbiome
was classified into 12 phyla, 20 classes, 29 orders, 50
families, 70 genera, and 140 species among all subjects
(see Supplemental Figure 1). At the phylum level, 7
phyla had an average relative abundance > 1%, namely,
Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Fir-
micutes, Proteobacteria, Eukaryota-noname, and Viruses-
noname (see Supplemental Figure 2a). The top three
phyla (Firmicutes (average: 45.02%), Actinobacteria
(28.45%), and Proteobacteria (16.17%) accounted for the
majority. Interestingly, the healthy ocular surface micro-
biome in some samples was dominated by a single
phylum. For instance, in the ocular microbiota of CON3
and CONI10, Firmicutes accounted for 80.76 and 83.89%,
respectively.

At the genus level, the 15 genera with more than 1%
average relative abundance were Streptococcus, Coryne-
bacterium, Propionibacterium, Staphylococcus, Neisseria,
Morganella, Escherichia, Shigella, Siphoviridae, Acineto-
bacter, Finegoldia, Anelloviridae, Alphatorquevirus,
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Brevundimonas, and Enhydrobacter (see Supplemental
Figure 2b). Streptococcus (average: 24.62%), Staphylococ-
cus (14.15%), Propionibacterium (12.93%), and Coryne-
bacterium (9.05%) were the top four genera. Similarly,
the subjects CON10 and CON3 showed extreme domin-
ance by Streptococcus, accounting for 83.89 and 79.49%,
respectively.

At the species level, 19.59 + 11.34 (range, 6—47) species
were detected in the healthy ocular surface microbiome
samples from each subject. No species was detected sim-
ultaneously in any subject (see Supplemental Figure 3).
The taxonomic composition was unique to each sample.
Among all species, Propionibacterium acnes, Staphylo-
coccus epidermidis, Enhydrobacter aerosaccus, Coryne-
bacterium accolens, Corynebacterium pseudogenitalium,
Corynebacterium  tuberculostearicum,  Streptococcus
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pyogenes, Anaerococcus prevotii, and Finegoldia magna
were detected in >50% of healthy volunteers (Fig. 1a).
Figure 1b shows the distribution and relative abundance
of the top 25 species. The five most abundant species
were Streptococcus pyogenes, Staphylococcus epidermidis,
Propionibacterium acnes, Corynebacterium accolens, and
Enhydrobacter aerosaccus.

Bacteria were shared by all subjects, yet fungi and vi-
ruses were not found in all healthy ocular surface micro-
biomes. The positive rate for fungi was 35%, and that for
viruses was 41%. The average relative abundances of bac-
teria, fungi and viruses were 93, 2, and 5%, respectively.
The fungal microbiome was classified into 2 phyla (Asco-
mycota and Basidiomycota) and 4 genera (Yarrowia,
Chaetomiaceae, Fusarium, and Malassezia) (Fig. 2a).
Seven viruses, namely, Propionibacterium phage PAD20,
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Fig. 1 The positive rate and relative abundance of microbial species in the healthy ocular surface. a Species with a positive rate greater than 10%
are shown. b The heat map shows the relative abundance of the top 25 species in each sample
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Fig. 2 Chord diagram showing the distribution and relative abundance of (a) fungi and (b) viruses in the subjects
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Torque teno virus 1, Torque teno virus 10, Torque teno
virus 12, Torque teno virus 3, Torque teno virus, and Por-
cine type C oncovirus, were detected (Fig. 2b).

Strain heterogeneity

StrainPhlAn allowed us to study the strain-level features
of the healthy ocular surface microbiome, which targets
single-nucleotide polymorphisms (SNPs) within clade-
specific markers of strains in metagenomes. Among all
species, Streptococcus pyogenes and Staphylococcus epider-
midis with sufficient coverage were profiled by using the
StrainPhlAn method. We constructed a phylogenetic tree
of Streptococcus pyogenes (Fig. 3a) covering eight individ-
uals and Staphylococcus epidermidis (Fig. 3b) covering 10
individuals from the metagenomic sequence data. Using
SNP-based analysis, considerable strain-level
heterogeneity was observed with respect to reference ge-
nomes (Streptococcus pyogenes M1 GAS and Staphylococ-
cus epidermidis ATCC 12228). The common species from
different individuals formed almost distinct branches,
which could indicate the presence of different strains.

For Streptococcus pyogenes and Staphylococcus epider-
midis, the strains were separated into two clusters, but
neither of the clusters was age- or sex-specific. Staphylo-
coccus epidermidis residing within subject CON7 was
closely related to Staphylococcus epidermidis ATCC
12228. Staphylococcus epidermidis strains residing
within CON21 and CON22 formed a monophyletic
clade. Streptococcus pyogenes M1 GAS clustered together
with  Streptococcus pyogenes strains residing within
CON3 and CON10, which indicated an intimate intra-
species relationship among them. In addition, Streptococ-
cus pyogenes residing within CON3 (Streptococcus
pyogenes CON3) branched near the base of Streptococcus
pyogenes M1 GAS and Streptococcus pyogenes residing
within CON10 (Streptococcus pyogenes CON10). We in-
ferred that Streptococcus pyogenes CON3 likely arose be-
fore Streptococcus pyogenes M1 GAS and Streptococcus
pyogenes CONI0.
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Interaction network

An interaction network was constructed for species with
a mean relative abundance greater than 0.1% that ap-
peared in more than two subjects (Fig. 4a). Streptococ-
cus_mitis_oralis_pneumoniae had the most interactions,
suggesting key roles in the network. Streptococcus_mitis_
oralis_pneumoniae exhibited only positive interactions
with 7 species, Staphylococcus_caprae_capitis, Rothia
mucilaginosa, Haemophilus parainfluenzae, Neisseria
meningitidis, Veillonella parvula, Streptococcus vestibu-
laris, and Streptococcus tigurinus. Interestingly, only
Staphylococcus epidermidis was negatively related to
Streptococcus pyogenes, implying that there may be com-
petitive inhibition between them. Based on this result,
subjects were clustered by the k-means algorithm with
k =2, using the relative abundance of Streptococcus pyo-
genes and Staphylococcus epidermidis. Unsupervised
clustering generated two distinct clusters: cluster 1 and
cluster 2 (Fig. 4b). In cluster 1, the relative abundance of
Streptococcus pyogenes in each sample was > 30%.

The effects of age and sex on the composition of healthy
ocular surface microbiomes

The subjects were grouped by sex (female versus male)
and age (<40 versus > 40 years old) to investigate the in-
fluence of age and sex on the normal ocular surface
microbiome. Alpha diversity analysis based on the
Shannon and inverse Simpson diversity indices re-
vealed that there was no significant variation between
sexes (see Supplemental Figure 4a, b) and ages (see
Supplemental Figure 5a, b). PCoA based on the Bray-
Curtis dissimilarity Jaccard index showed no effect on
bacterial community structure for sex (see Supple-
mental Figure 4c, d) or age (see Supplemental Fig-
ure 5¢, d).

Functional pathways

At present, the functional compositions of the healthy
ocular surface microbiome are still poorly understood.
Clusters of Orthologous Groups (COG) analysis revealed
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lipid transport and metabolism, and inorganic ion trans-
port and metabolism. Transcription was the most abun-
dant COG annotation, followed by lipid transport and
metabolism, signal transduction mechanisms, cell cycle
control, cell division, chromosome partitioning and

a total of 22 categories (Fig. 5a). Among these, 6 COG
functional features were associated with metabolism,
namely, amino acid transport and metabolism, nucleo-
tide transport and metabolism, carbohydrate transport
and metabolism, coenzyme transport and metabolism,
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Fig. 5 COG clusters (a) and KEGG (b) pathway heatmap
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amino acid transport and metabolism. Figure 5b shows
the microbial Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways with a mean relative abun-
dance greater than 0.1%. Similar to the COG annotation
results, fatty acid biosynthesis accounted for the largest
proportion, followed by basal transcription factors, folate
biosynthesis, tyrosine metabolism, and isoquinoline al-
kaloid biosynthesis. Of note, Escherichia coli biofilm

formation and viral carcinogenesis might be potential
pathogenic pathways.

Discussion

The microbial community populated on the human ocu-
lar surface may play an important role in both innate
and adaptive immune responses. Although these normal
commensal florae can colonize the healthy ocular
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surface without causing disease, several studies have re-
vealed that alterations in the healthy ocular surface
microbiome are associated with some ocular surface dis-
eases, such as trachoma [12], keratitis [13, 45, 46], con-
junctivitis [47], dry eye [48], mesangial gland
dysfunction [49, 50], chronic Stevens-Johnson syndrome
[51], and blepharitis [52]. Hence, a comprehensive un-
derstanding of the composition of the ocular surface
microbiome is crucial for the future development of
probiotic-based eye treatment drugs. Whereas existing
research on the healthy ocular surface microbiome has
used mainly 16S rRNA gene sequencing, in this study,
we performed shotgun metagenomics sequencing on the
ocular surface mucosal membrane swabs of 17 healthy
volunteers and clearly described the taxonomic compos-
ition, the interspecies interactions, strain-level hetero-
geneity among different individuals, and functional
profiles of the healthy ocular surface microbiome.

At the phylum level, the ocular surface microbial com-
munity was dominated by Proteobacteria, Firmicutes and
Actinomycetes, which is consistent with previous studies
[3, 7, 10, 12, 13]. Only two fungal phyla were found,
namely, Ascomycota and Basidiomycota. Compared with
a study based on internal transcribed spacer (ITS) se-
quencing to characterize the ocular surface fungal
microbiome [45, 53, 54], we found fewer fungal species;
this difference may be due to different sequencing
methods. In shotgun metagenomics sequencing, the ge-
nomes of eukaryotes are usually very long and composed
of many noncoding regions, which leads to poor read
utilization [55-57]. For viruses, 5 different strains of
Torque teno virus were found on the ocular surface of 5
subjects. Torque teno virus has been identified in
culture-negative endophthalmitis [58], but the mechan-
ism of how it causes endophthalmitis remains unclear.

Our results show that age and sex have no effect on
the composition of the healthy ocular surface micro-
biome. There is still controversy about whether sex af-
fects the composition of the ocular surface microbial
community, and previous studies have shown mixed re-
sults [7, 12, 29, 59]. Future studies should expand the
age and sex coverage of subjects and measure their sex
hormones, such as estrogen, progesterone, androgens,
prolactin, follicle-stimulating hormone, luteinizing hor-
mone, testosterone, progesterone, and estradiol. Explor-
ing the relationship between the level of sex hormones
in the body and the diversity of the ocular surface mi-
crobial community will better reveal the influence of dif-
ferent sexes on the ocular surface microbiome.

Staphylococcus epidermidis is representative of the
normal ocular surface flora and is the species most often
isolated from the human eye surface. A previous study
on the healthy ocular surface using shotgun metage-
nomics sequencing reported a high positivity rate for
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Staphylococcus epidermidis (73%) in surveyed subjects
[29]. Our data showed a Staphylococcus epidermidis
positive rate of 88%. Among these, 10 samples contained
enough Staphylococcus epidermidis reads for strain as-
signment. Phylogenetic tree analysis showed that vari-
ation was observed across clades and individual
genomes. Earlier studies based on pulsed-field gel elec-
trophoresis also found polyclonality of Staphylococcus
epidermidis on the healthy ocular surface [60]. There-
fore, it is necessary to perform pangenome sequencing
on Staphylococcus epidermidis strains isolated from the
healthy ocular surface in the future to evaluate the dif-
ference in the function and virulence of different strains.

Interestingly, the healthy ocular surface microbiome of
some subjects was dominated by Streptococcus pyogenes,
which is a common bacterium isolated from infected
eyes. Thus, the healthy ocular surface can achieve
homeostasis with causative pathogens. Pathogens that
cause eye infections may be introduced from the exter-
nal environment, and when homeostasis of the eye is
disrupted, commensal potential pathogens escape con-
trol and become pathogenic [61, 62]. Whether individ-
uals carrying a high proportion of potential pathogens
on the ocular surface are more likely to develop infec-
tions requires further research. Phylogenetic analysis
showed that there were also individual differences
among Streptococcus pyogenes at the strain level, which
might be due to host age, living environment, and previ-
ous drug use.

A previous study investigated the stability of the com-
position of the ocular surface microbial community over
time [7]. Some genera were present in subjects at all time
points (baseline, 1 month, 3 months), which indicated that
some taxa have longitudinal stability at the individual
level. There is a necessity and is of much interest to study
the degree of variability of the strain genomes within an
individual over time. Future research should sample the
same subject several times in a shorter or longer time
interval to reveal the variability degree of the same-strain
within-subject changes over time.

Another noteworthy finding is the functional compo-
nents of the healthy ocular surface microbiome. Both
COG and KEGG pathway analyses revealed high abun-
dance of lipid metabolism (biosynthesis, degradation,
and transport) pathways. This result may suggest that
the healthy ocular surface microbiome plays an import-
ant role in lipid metabolism in the eye. The lipid layer
can enhance tear distribution, maintain tear stability and
prevent evaporation [63]. Recently, lipid formulations
have been promoted to regulate dry eye and have
achieved good results [64, 65]. Commercially available
lipid formulations, including emulsions and liposomes,
take the form of eye drops or sprays [66]. Our research
provides important ideas for the future development of
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probiotic-based dry eye treatment. In future research, we
will perform metagenomic sequencing on the healthy
ocular surface microbiome of patients with dry eye to in-
vestigate whether the microbial lipid metabolism is
reduced.

In addition to lipids, COG annotation results showed
that there are also abundant amino acid metabolic path-
ways on the ocular surface. It has been reported that
amino acids could be abundantly produced by Coryne-
bacterium spp. [67]. In our analysis, several Corynebac-
terium spp. were detected in more than 50% of the
healthy volunteers (Fig. la), indicating that Corynebac-
terium may play a potential role in these amino acid
metabolic pathways. The amino acid metabolism path-
way in the KEGG annotation results that had the highest
proportion was tyrosine metabolism. Amino acids natur-
ally exist in human tears and play a positive role in
maintaining ocular surface homeostasis. A series of pub-
lished clinical data indicate that the use of topical eye
drops with amino acids supplemented can be beneficial
to the healing of ocular surface diseases [68]. Whether
the healthy ocular surface microbiome is involved in the
occurrence and role of amino acids in tears is still un-
known; a direction worth exploring in future studies.

We also found elevated frequencies of COG annota-
tions related to inorganic ion transport and metabolism.
Sphingomyelin are one of the major classes of anionic
lipids in human tears [69]. Divalent cations may interact
with the phosphate head groups of these phospholipids
to help stabilize the lipids in tears [70]. The increase in
divalent cations in tear fluid may change the folding of
proteins [71, 72] and the interaction between proteins,
which in turn affect the stability and surface tension of
the tear film [73]. Exploring whether the ocular surface
microbiome affects the stability of the tear film through
the transport and metabolism of inorganic ions has im-
portant guiding value for the future development of
novel methods that can increase tear film stability and
eye comfort.

Probiotics are defined by the World Health
Organization (WHO) as “live microorganisms that confer
demonstrated health benefits for the host when ingested
or topically applied”. Some research has been devoted to
utilizing probiotics as topical ocular products [74, 75]. The
ocular surface is a wide mucosal surface exposed to the
external environment, which contributes largely to the
type and number of microorganisms colonizing its surface.
As the environment changes, the colonizing organisms
may change accordingly. One possibility is that the ocular
microbiome is formed by two populations: one stable,
tightly embedded population in the ocular surface that is
less susceptible to changes and a variable, more superficial
population that is sensitive to recent environmental
changes, which could be washed away by an ocular rinse.
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It is necessary to study whether after a thorough ocular
rinse, a more stable microbiome is found in consecutive
analyses, which could be relevant for ocular health. Fur-
thermore, this information could suggest what the ‘good’
microorganisms are to be used in a topical probiotic
formulation.

The limitations of this study are as follows. First, the
sample size and geographical representation are limited,
and thus limits the generalizability of our results to the
entire population. Second, the use of anesthetic eye
drops before sampling could lead to reduced diversity of
ocular surface microbial communities.

Conclusions
In summary, the healthy ocular surface microbiome was
clearly demonstrated by the shotgun metagenomics sur-
vey in this study. The present study provides new direc-
tions for further studies on the healthy ocular surface
microbiome.
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