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Background and objectives: The study of brain functional connectivity

alterations in children with Attention-Deficit/Hyperactivity Disorder (ADHD)

has been the subject of considerable investigation, but the biological

mechanisms underlying these changes remain poorly understood. Here, we

aim to investigate the brain alterations in patients with ADHD and Typical

Development (TD) children and accurately classify ADHD children from TD

controls using the graph-theoretical measures obtained from resting-state

fMRI (rs-fMRI).

Materials and methods: We investigated the performances of rs-fMRI data

for classifying drug-naive children with ADHD from TD controls. Fifty six

drug-naive ADHD children (average age 11.86 ± 2.21 years; 49 male) and

56 age matched TD controls (average age 11.51 ± 1.77 years, 44 male) were

included in this study. The graph measures extracted from rs-fMRI functional

connectivity were used as features. Extracted network-based features were

fed to the RFE feature selection algorithm to select the most discriminating

subset of features. We trained and tested Support Vector Machine (SVM),

Random Forest (RF), and Gradient Boosting (GB) using Peking center data from

ADHD-200 database to classify ADHD and TD children using discriminative

features. In addition to the machine learning approach, the statistical analysis

was conducted on graph measures to discover the differences in the brain

network of patients with ADHD.
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Results: An accuracy of 78.2% was achieved for classifying drug-naive

children with ADHD from TD controls employing the optimal features and

the GB classifier. We also performed a hub node analysis and found that

the number of hubs in TD controls and ADHD children were 8 and 5,

respectively, indicating that children with ADHD have disturbance of critical

communication regions in their brain network. The findings of this study

provide insight into the neurophysiological mechanisms underlying ADHD.

Conclusion: Pattern recognition and graph measures of the brain networks,

based on the rs-fMRI data, can efficiently assist in the classification of ADHD

children from TD controls.

KEYWORDS

attention-deficit/hyperactivity disorder (ADHD), resting-state fMRI, machine learning
approach, functional MRI, graph theory

Introduction

Attention-Deficit / Hyperactivity Disorder (ADHD)
is one of the most common childhood psychiatric
disorders. According to the fifth edition of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5)
diagnostic criteria, ADHD is defined as inattention and/or
hyperactivity/impulsivity. Children with ADHD may have
problems concentrating on a specific task or sitting quietly
without fidgeting for long periods. The most prominent
ADHD phenotypes are ones with predominantly inattentive
presentation (ADHD-I) and those that combine inattention
and hyperactivity/impulsivity symptoms (ADHD-C) (Epstein
and Loren, 2013). ADHD typically begins in childhood and
continues into adolescence and adulthood, affecting 3–5% of
school-age children. Children with ADHD show behavioral
problems and lack of concentration, which make them
highly vulnerable to poor academic and social performance
(Leitner, 2014).

Today, the combination of modern network science and
neuroimaging techniques has made it possible to study the
functional network of the human brain (Hakimdavoodi and
Amirmazlaghani, 2020). The resting-state fMRI (rs-fMRI),
a non-invasive and sensitive method to detect changes
in functional brain networks, has attracted considerable
attention in the study of brain networks. Since cognitive
and behavioral processes depend on large-scale network
communications, resting-state functional connectivity analysis
may elucidate fundamental aspects of ADHD pathophysiology
(Sanchez-Alonso et al., 2021).

In recent years, graph approaches have also gained much
popularity in studying the structural and functional connectivity
of the brain at various scales for mapping human brain
networks. Graph theoretical approaches provide a mathematical
framework in which graphs comprise a set of nodes and edges.

In the brain, nodes may correspond to predefined brain regions,
whereas edges represent functional pairwise correlations among
those nodes. While previous studies demonstrated the ability
of rs-fMRI in identifying patients with ADHD from healthy
controls, the utility of graph measures obtained from rs-fMRI
data in the classification of ADHD from TD controls, has not
been completely explored (dos Santos Siqueira et al., 2014; Miao
et al., 2019; Shao et al., 2020).

Despite the remarkable success of machine learning
approaches in rs-fMRI for disease diagnosis, automatic
classification of patients with ADHD from typical development
subjects using graph measures obtained from rs-fMRI data
as interpretable biomarkers has received little attention
in ADHD neuroimaging studies (Dai et al., 2012; Miao
and Zhang, 2017). Furthermore, these studies have used
a limited number of discriminative features such as
correlation coefficients among particular brain regions,
the amplitude of low-frequency fluctuations (ALFF), and
regional homogeneity (ReHo) (Colby et al., 2012; An
et al., 2013; Miao et al., 2019) and have not obtained a
good accuracy since the employed features only consider
specific local characteristics and neglect the dynamics
aspects of the whole brain. The primary contribution of
the present study is to propose an automatic and precise
approach for the classification of patients with ADHD from
typical development controls. We conducted a functional
connectivity analysis and subsequently obtained the graph
measures for children in both healthy and ADHD groups.
Then we statistically compared these measures to detect
functional aberrations of brain regions during ADHD.
The classification method used in this study consisted
of four steps of preprocessing, feature extraction, feature
selection, and classification. The extracted features are a
different set of integration, segregation, and local brain
network measures.
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Since neuroimaging evidence suggests that the
characteristics of the small-world network are affected by
neurodevelopment disorders, the optimal balance between
global integration and local segregation may be disturbed
during ADHD (Wang et al., 2009; Xia et al., 2014). Thus, we
added small-world network parameters (i.e., characteristic
path length) to our extracted brain network measures. We
have used three different machine learning algorithms to
evaluate which classifier had the highest performance. ADHD
medications such as methylphenidate and amphetamines,
which are first-line medical treatments for ADHD, may affect
the brain functional connections of children (Pereira-Sanchez
et al., 2021). Therefore, we studied drug-naive children in
present study. We hypothesized that the proposed approach
in the current study could accurately classify children with
ADHD from TD controls. In addition, the graph-dependent
features selected in the feature selection step not only be
used in the machine learning approach but also appear as
biomarkers in statistical analysis to provide information
about ADHD-induced functional networks. Considering the
importance of reproducibility in the results of neuroimaging
studies using MRI, we organized the current research according
to the Organization for Human Brain Mapping (OHBM)
recommendations (Nichols et al., 2017).

Materials and methods

Participants

The present study used resting-state fMRI data obtained
from the publicly available ADHD-200 Consortium.1 The
ADHD database consists of eight different centers, making the
data diverse and complex. Peking University was selected for
this study because of the large sample size. It includes 143
TD subjects and 102 children with ADHD. A total of 112
right-handed subjects between the ages of 8 to 17, including
56 patients with ADHD, were selected from the Peking center
according to the DSMIV-TR criteria and 56 typical development
(TD) controls after applying the inclusion criteria.

Psychiatric diagnoses were verified at Peking University
through psychiatric interviews with experienced child
psychiatrists using the Schedule of Affective Disorders and
Schizophrenia for Children–Present and Lifetime Version
(K-SADS-PL) administered to parents and children, and the
ADHD Rating Scale-IV. Intelligence was evaluated with the
Wechsler Intelligence Scale for Chinese Children-Revised
(WISCC-R). The following exclusion criteria were applied to
all participants: (1) a history of conduct disorder, oppositional
defiant disorder, Tourette’s disorder, and any neurologic

1 http://fcon_1000.projects.nitrc.org/indi/adhd200/

TABLE 1 Demographic and clinical characteristics of ADHD and
TD control groups.

Clinical
phenotype

TD (n = 56) ADHD (n = 56) ADHD
vs. TD

Mean SD Mean SD T-values

Age (years) 11.51 1.77 11.86 2.21 0.920

Full IQ 118.2 13.46 103.55 12.63 −5.941***

Performance
IQ

110.93 15.03 98.43 11.86 −4.885***

Verbal IQ 120.9 13.26 107.48 15.25 −4.991***

FD 0.1434 0.058 0.152 0.046 0.853

Gender
(Male/Female)

44/12 49/7 χ2 1.585

***p < 0.001.
TD, typical development controls; ADHD, attention-deficit/hyperactivity disorder; FD,
frame-wise displacement; IQ, intelligence quotient.

disorder that could impact the functional connectivity patterns
of the brain; (2) a score of less than 80 for the full-scale
WISCC-R; (3) a mean frame-wise displacement (FD) more than
0.3 mm; and (4) missing even one of the clinical phenotype
listed in Table 1. All research protocols from institutes
contributing to the ADHD-200 Consortium received local
approval from their respective IRB. All the data distributed via
the International Neuroimaging Data-sharing Initiative (INDI)
are fully anonymized by HIPAA Privacy Rules.

Image acquisition

High-resolution whole-brain T1-weighted 3D
MPRAGE data were acquired for each participant
on a SIEMENS TRIO 3-Tesla MRI scanner with
the following imaging parameters: repetition time
(TR) = 1700 ms, echo time (TE) = 3.92 ms, field of view
(FOV) = 256 mm × 256 mm, 176 slices, thickness/gap = 1.0,
and voxel resolution = 1.0 mm × 1.0 mm × 1.0 mm; flip
angle = 12◦. The rs-fMR imaging was obtained axially using a
blood oxygenation level-dependent contrast sensitive gradient
echo-planar imaging (TR = 2,000 ms, TE = 30 ms, flip
angle = 90◦, FOV = 220 mm × 220 mm, 236 total time points
(about 8 min), 220 mm× 220 mm (FOV), 64× 64 (resolution),
30 slices, 4.5/0 mm thickness/gap. During the acquisition of
functional data, participants were asked to relax with their eyes
close and not to concentrate on anything in particular.

Data pre-processing

Resting-state fMRI data preprocessing was carried out
using the GRETNA toolbox and SPM12 (Wang et al., 2015).
The first 10 functional volumes were removed to allow T1
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equilibration effects. The remaining volumes were corrected
for within-volume timing acquisition differences among slices
(Sinc interpolation) and inter-volume head-motion effects.
Functional MRI volumes (time-series) realigned using a six-
parameter rigid-body spatial transformation to compensate for
head-motion effects. Following the head-motion correction, the
individual T1-weighted MPRAGE images were co-registered to
the mean functional image employing a linear transformation.
The transformed structural images were then segmented into
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) using a unified segmentation algorithm. The head-
motion corrected images were then spatially normalized into
standard Montreal Neurological Institute (MNI) space through
segmentation and resampled to 3-mm isotropic voxels. The
normalized images were subsequently subjected to removal
of linear trends and temporal band-pass filtering (0.01–
0.1 Hz), which were employed to decrease the effects of low-
frequency fluctuation and high-frequency physiological noises,
respectively. To further reduce the head-motion effects, a
scrubbing method was conducted on each subject’s fMRI time
series to discover the mean frame-wise displacement that was
higher than 0.5 mm (Power et al., 2012). In this method, one
volume before and two volumes after the ineligible volume were
linearly interpolated. Finally, some nuisance signals, including
the WM signal, CSF signal, global signal, and 24 head-motion
parameters were extracted and regressed out from each voxel’s
time series, and then the data was smoothed using a 2∗(voxel-
size) mm full width half maximum (FWHM) Gaussian filter
(Kelly et al., 2008).

Network construction

The overall procedure of the current study can be seen
in Figure 1. Following the preprocessing of rs-fMRI data, the
Automated Anatomical Labeling (AAL) atlas was used to parcel
each participant’s brain into 116 anatomical regions of interest
(ROIs). Each region’s average time series was then calculated by
averaging the time series of all voxels within the ROIs.

To create a 116× 116 symmetric correlation matrix for each
subject, Pearson correlation was calculated between each pair of
regional time series. Finally, to explore the properties of brain
functional connectivity (functional networks), all the correlation
matrices were thresholded into a binary graph with a fixed
density level for further graph theory-based analyses, where
nodes stand for brain regions and edges represent undirected
connections between nodes. Fixed network density is the ratio
of the actual number of edges divided by the maximum feasible
number of network edges. Thus, this thresholding approach
makes it possible to investigate the relative network organization
by imposing on each network the same number of edges or
wiring costs for compensatory compatibility. Since there is no

specific method for selecting a unique threshold, we utilized a
wide range of cost values (i.e., 10–50%) in steps of 1%.

Graph measures and network analysis

The whole-brain functional network (functional
connectivity) analysis was conducted using the GRETNA
toolbox (Wang et al., 2015). Graph theory was used to
calculate the global and local graph measures to classify
healthy individuals from ADHD patients. The local graph
measures used in this study included betweenness centrality,
clustering coefficient, (shortest) path length, local efficiency,
and degree centrality. Global graph measures were assortativity,
global efficiency, small-world, synchronization, and hierarchy.
Furthermore, the small-world parameters such as the clustering
coefficient (Cp) and path length (Lp), were calculated in
terms of Watts and Strogatz (1998). Briefly, the characteristic
path length of a network is defined as the average number
of edges in the shortest paths connecting any two nodes in
the network. The path length is employed to calculate how
well a network is connected, and a low value represents an
average short distance between any two nodes. The clustering
coefficient is defined as the number of actual edges linking
the neighbors of a node divided by the maximum number
of edges possible between neighboring nodes. The clustering
coefficient is used to calculate the number of local clusters in
the network. To discover the characteristics of the small-world,
the Cp and Lp values of the functional brain network must
be compared with those values of random networks [C (rand)
and L (rand) respectively]. Therefore, One hundred random
networks that maintain an equal number of nodes, edges, and
degree distributions were generated as real networks using the
Markov-chain algorithm (Maslov and Sneppen, 2002; Milo
et al., 2002).

To further explain the characteristics of the small-world
network, some parameters such as gamma and sigma were
defined. Networks with small-world properties have a relatively
high gamma, which is defined as follows:

γ =
Cp

C(rand)
> 1 (1)

Also, these networks have almost the same Lp compared to
random networks. Therefore, the sigma in the networks with
small-world properties becomes more than one.

λ =
Lp

L (rand)
≈ 1 (2)

δ =
γ

λ
> 1 (3)

Graph theoretical approaches can provide valuable insights
into network efficiency in terms of how information is
transferred across a network. Local efficiency indicates the
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FIGURE 1

The overall procedure of this study.

information flow transmission in a network at the local level. It
provides insight into the segregated ability of the brain network
(Rubinov and Sporns, 2010). Consequently, global efficiency
measures the capability of the brain network to globally parallel
information transmission. High local and global efficiencies
represent more efficient information propagation across a local
and global network, respectively (Ma et al., 2018). In a network,
nodes that maintain a different set of inter-modular connections
and facilitate integration between modules are known as hubs.
In the current study, the hub nodes were calculated for both
ADHD and TD children based on degree and betweenness
centrality. In two groups, the degree and betweenness centrality
for each node were calculated, and then nodes that were
larger than average by more than two standard deviations were
determined as hubs (Rubinov and Sporns, 2010).

Feature selection and classification

Using a feature selection algorithm is the necessary
part of a machine learning technique, which promotes data
interpretation, and subsequently improves the performance of
a classification system. Recursive Feature Elimination (RFE) is
a robust algorithm for feature selection presenting a precise
way to determine the meaningful features before using them
as input for a machine learning algorithm. RFE uses all
features to construct a classification model. Then, it ranks the
cooperation features in the classification model into a ranked
feature list. Finally, RFE eliminates the irrelevant features that

have a senseless collaboration with the classification model
(Bahl et al., 2019).

The classification of ADHD children from TD controls was
conducted using three different classifiers, including support
vector machine (SVM), gradient boosting (GB), and random
forest (RF). Then, these supervised machine learning algorithms
were trained using a set of input data to yield the desired
output. Since the obtained classification accuracy by SVM with
linear kernels was similar to that of non-linear kernels and
considering that solving the optimization problem for SVM
with the linear kernel is much faster than the non-linear
kernel, in this study SVM with a linear kernel was used. The
number of available data in imaging research is usually low
due to the high cost of data acquisition. Therefore, different
cross-validation methods have been proposed to overcome
the loss of generalization resulting from the small training
and testing sample size. Since age, sex, race, handedness, and
imaging parameters can be potential confounding variables
in examining subjects’ brain network topology, we selected
training and testing data only from the Peking center to not
only classify drug-naïve ADHD children from TD controls but
also more accurately investigate the functional brain changes
in ADHD children.

The k-fold cross-validation strategy presents a trade-off
between bias and error variance. Therefore, selecting optimal
values for “k” ensures that the selected method provides a
suitable estimate of the model performance. If the value of
k is small, cross-validation can lead to a lot of bias for
error. The k-fold cross-validation with a high value of k
can lead to a lot of error variance and is computationally
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FIGURE 2

Schematic representation of K-fold cross-validation method. Data colored as yellow are the training folds, and the green fold is the one that
leaved out for the validation.

intensive. In machine learning scenarios, the value of k is
usually used between 5 and 10. In the present study, the
best accuracy was achieved using k-fold cross-validation of
9. The procedure is iterated until all subjects are considered
once as the test sample. Eventually, the results of all
repetitions are averaged to provide the ultimate classification
accuracy (Figure 2).

Circular analysis

Using the data of one center as training and test data may
reduce the generalizability of a classification model and cause
inflation of accuracy in the test data due to an error of including
all data when selecting features for the classification model. For
the classifier to be insured free of circular analysis, we used an
iterative cross-validation procedure where the feature selection
(RFE) step was performed using the GF model only on the
training set of every iteration.

Statistical analysis

Statistical analyses were performed in SPSS 16.0. For each
continuous variable, normal distribution was assessed by the
Shapiro-Wilk test. Statistical group differences between the
ADHD children and typical development children in age, sex,
and all type of IQs were determined using t-tests. Group
differences in small-world properties were assessed applying
ANCOVA, with age, sex, FD, and IQs as covariates. Throughout,

multiple comparisons were controlled using the false discovery
rate (p < 0.05).

Results

Demographic and clinical
characteristics

As mentioned above, Table 1 summarizes the characteristics
of ADHD and TD children. Compared with the control group,
the ADHD children showed a higher mean age (ADHD:
mean = 11.86; TD: mean = 11.51, T = 0.920, p > 0.05), a lower
mean IQ (ADHD: mean = 103.21; TD: mean = 116.95,T = –6.35,
p < 0.001), more males (χ2 = 1.585, p > 0.05) and more head-
motion (ADHD: mean = 0.152; TD: mean = 0.1434, T = 0.853,
p > 0.05). There were no significant differences in age and FD
between the two groups, as detailed in Table 1. In the subsequent
analysis, age, gender, FD, verbal, performance, and full-scale IQs
were used as covariates.

Small-world topology of brain
functional networks

Over the entire range of sparsity values, the normalized path
length was approximately 1 [equation (2) and (Figure 3A)],
and the normalized clustering coefficient was greater than 1
[equation (1) and (Figure 3B)]. These findings demonstrated

Frontiers in Human Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.948706
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-948706 August 12, 2022 Time: 18:0 # 7

Rezaei et al. 10.3389/fnhum.2022.948706

FIGURE 3

Small-world properties of the functional whole-brain networks of drug-naive ADHD children and typical development (TD) controls over the
different sparsity range. Normalized shortest path length (A) and normalized clustering coefficient (B) of ADHD (red dashed line) and TD (black
line) groups.
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the economic small-world topology of the brain functional
network in both groups [equation (3)]. After controlling for
age, gender, FD, and all types of IQs using ANCOVA, compared
with the TD group, the ADHD children exhibited an increase
in the characteristic path length (9.8 × 10−3, FDR corrected)
(Figure 4). However, there were no significant differences in the
clustering coefficient (Cp), the normalized clustering coefficient
(γ), normalized path length (λ), or the small-world (σ).

Discrimination of attention-deficit/
hyperactivity disorder children and
typical development controls

Different classifiers, such as RF, SVM, and GB have
been used in many machine learning based neuroimaging
studies. We investigated the performance of these classifiers for
discrimination of ADHD children from TD controls. The best
performance was achieved using the gradient boosting classifier.
The performance of the classifiers was compared by employing
a nine-fold cross-validation strategy in Table 2. The gradient
boosting classifier outperformed the SVM and RF classifiers in
all the performance metrics and achieved a high accuracy of
78.2%. Table 3 represents the performance of the classifiers after
assessing the contribution of circular analysis in our data.

The top twelve features corresponding to the best classifier
(GB classifier), are listed in Table 4. Of those features, two global,
and three nodal graph measures were statistically different in
the two groups. Three nodal rs-fMRI right graph measures, i.e.,
betweenness centrality in the middle frontal gyrus (orbital part),
cerebellum, and nodal efficiency in the left rolandic operculum
of ADHD children were significantly higher than that of TD
controls (p < 0.032). The global efficiency (a global graph
measure) of the ADHD group was significantly lower, whereas
local efficiency was significantly higher than that of TD controls
(p < 5.7× 10−5). Locations of the AAL brain regions that show
highest discrimination ability corresponding to the optimal
subset of graph measures are shown in Figure 5.

Identifying hub nodes

The hub nodes were determined in two groups of children,
i.e., ADHD, and TD. Nodes with a betweenness centrality of two
standard deviations higher than the average of the betweenness
centrality of all nodes were identified as hub regions. As listed
in Table 5, some hub nodes are identical between two groups,
namely ROIs 85, 90, 97, 99, and 100, which correspond to
the left middle temporal gyrus, right Inferior temporal gyrus,
left cerebellum 4–5, left cerebellum 6, and right cerebellum
6, respectively. In addition, the corresponding AAL area and
resting-state network of each hub region are given in the table.
More notably, several hub nodes are present only in the TD

FIGURE 4

Comparisons of drug-naive ADHD children and TD controls in
terms of characteristic path length (Lp). The characteristic path
length in ADHD group was statistically longer than in the TD
group.

group, missing in the ADHD group. These hub nodes are within
the left median cingulate and paracingulate gyri, left cerebellum
crust 1, and right middle temporal gyrus. It is noteworthy that
all hub nodes in the ADHD group were also observed in the TD
group (Figure 6).

Discussion

The small-world characteristics of functional networks
of the human brain have been confirmed by different
imaging modalities such as EEG, MEG, and fMRI (Bullmore
and Sporns, 2012; Stam, 2014). The current study used
binary graphs to investigate resting-state functional MRI
data and exhibited large-scale functional alterations in
the organization of drug-naive ADHD children’s brain
networks. Consistent with findings from previous studies
on functional brain connectivity in children with ADHD,
we found an economic small-world organization across a
range of sparsity in both the ADHD and TD children groups,
which proposes that small-world brain networks are resistant
to developmental disorder (Figure 3; Cocchi et al., 2012;
Chen et al., 2019). According to previous studies, although
the brain functional networks of children in both study
groups have the economic small-world characteristics, the
reports about the topological alterations in the small-world
properties are not consistent (Wang et al., 2009; Xia et al., 2014;
Tao et al., 2017).

We found that the characteristic path length in ADHD
group was longer than in the TD group (Figure 4), which is
in line with Chen et al. study, while Cocchi et al. reported that
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TABLE 2 Classification performance of three different classifiers using a subset of optimal features, extracted from rs-fMRI using AAL atlas.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

GB 78.2 75 80 66.6 85.7

RF 69.5 87.5 60 46.6 90

SVM 56.5 75 46.6 42.8 77.7

PPV, positive predictive value; NPV, negative predictive value; GB, gradient boosting; RF, random forest; SVM, support vector machine.

TABLE 3 Classification performance of three different classifiers using a subset of optimal features, extracted from rs-fMRI using AAL atlas after
assessing the contribution of circular analysis.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

GB 74.2 69.8 78.6 79.1 71.7

RF 69.2 68 70.4 72.9 68

SVM 51.8 62.4 41.3 50.5 57.3

TABLE 4 Mean, standard deviation, and statistical comparison of top 12 graph features selected by RFE in children with ADHD and TD groups.

Graph
features

Type of
graph
features

Brain regions MNI coordinates Resting-state
network

ADHD TD p-value

X Y Z

Betweenness
centrality

Nodal Frontal Mid Orb L −31 50 −10 FPN 16.41± 11.53 9.04± 4.2 2.79× 10−3

Nodal Cerebellum_10 L −22 −34 −42 Cerebellum 11.65± 9.08 5.74± 2.07 1.82× 10−2

Global efficiency Global – – – – – 0.246± 0.011 0.259± 0.011 1.89× 10−8

Local efficiency Global – – – – – 0.350± 0.009 0.342± 0.010 5.66× 10−5

Nodal efficiency Nodal Rolandic Oper R 53 −6 15 Auditory/
cingulo-opercular

0.255± 0.023 0.244± 0.027 3.17× 10−2

Nodal Supp motor area R 9 0 62 Ventral attention 0.273± 0.033 0.266± 0.035 2.5× 10−1

Nodal local
efficiency

Nodal Frontal Sup Orb L −17 47 −13 FPN 0.339± 0.029 0.349± 0.030 1.14× 10−1

Nodal Frontal Sup Orb R 18 48 −14 FPN 0.336± 0.042 0.347± 0.043 1.82× 10−1

Nodal Calcarine L −7 −79 6 Visual 0.374± 0.027 0.368± 0.025 2.64× 10−1

Nodal Temporal Pole
Mid L

−36 15 −34 DMN 0.359± 0.053 0.369± 0.036 2.41× 10−1

Nodal path
length

Nodal Frontal Sup R 22 31 44 FPN 0.741± 0.073 0.789± 0.272 1.97× 10−1

Nodal Caudate R 15 12 9 subcortical 7.89± 4.8 7.64± 5.13 8.67× 10−1

MNI, Montreal neurological institute.
Frontal Mid Orb: Orbital part of middle frontal gyrus; Rolandic Oper: Rolandic operculum; Supp Motor Area: Supplementary motor area; Frontal Sup Orb: Orbital part of superior frontal
gyrus; Temporal Pole Mid: Temporal pole middle temporal gyrus; Frontal Sup: dorsolateral superior frontal gyrus; Caudate: Caudate nucleus; R: Right hemisphere; L: Left hemisphere.
The bold values indicate a statistically significant difference with a p-value < 0.05.

there was no significant difference in path length in ADHD
children compared to healthy individuals (Cocchi et al., 2012;
Chen et al., 2019). It is noteworthy that due to the heterogeneity
in participant characteristics, experimental methods, analytical
flexibility, and also the complex pathophysiology of ADHD,
the results of the ADHD studies do not have significant
spatial convergence (Cortese et al., 2021). Global efficiency and
characteristic path length are mainly affected by shorter and
longer paths, respectively. Recent studies suggest that reduced
functional connectivity in children with ADHD is primarily

due to reduced long-range connections of the brain (Tao et al.,
2017). Therefore, our findings of reduced global efficiency
and increased characteristic path length in drug-naive ADHD
children may indicate an increase in long-range connections,
reflecting the brain’s compensatory adaptations response to
ADHD pathophysiology problems.

Also, we used resting-state fMRI and combined the graph-
theoretical approach with the machine learning methods to
classify drug-naive ADHD children from typical development
(TD) controls. We used three different classifiers (SVM, GB,
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FIGURE 5

Locations of the brain regions in the AAL atlas (listed in Table 4) that present highest discrimination ability between TD and ADHD groups in
different planes. Axial (A), Coronal (B), and Sagittal (C).

TABLE 5 The brain regions and resting-state networks related to hub
nodes calculated based on Betweenness centrality in
ADHD and TD groups.

ROI
no

Corresponding brain
region in AAL atlas

Resting-state
network

Common hubs
in TD and
ADHD

85 Left middle temporal gyrus DMN

90 Right Inferior temporal gyrus FPN

97 Left cerebellum 4_5 Cerebellum

99 Left cerebellum 6 Cerebellum

100 Right cerebellum 6 Cerebellum

Hubs only in TD 33 Left median cingulate and
paracingulate gyri

Salience/
cingulo-opercular

86 Right middle temporal gyrus DMN

91 Superior lobe of left cerebellum Cerebellum

and RF) with a small number of graph measures selected by
a recursive feature elimination algorithm and achieved high
accuracy in classifying ADHD children from TD controls.
Our results revealed that the gradient boosting classifier
outperformed the two other classifiers in terms of accuracy,
sensitivity, and positive predictive value (Table 2). The high

accuracy values in neuroimaging classification studies in ADHD
have raised concerns about the methodological robustness.
Recent report by Pulini et al. (2019) indicate using all subjects’
data rather than the training subset only in the feature
selection step may cause a circularity error which can inflate
the accuracy of the test data. Therefore, we assessed the
contribution of circular analysis to classification accuracy to
investigate how much the obtained accuracy was affected by
methodological factors in our study. The results presented in
Table 3 confirm the robustness of our methodology because
after addressing the circularity error, the accuracy of GB and
SVM classifiers decreased by only about 4%. It is noteworthy
that the accuracy of the RF classifier almost did not change after
the circular analysis.

The GB is an ensemble of the decision tree model. First,
a simple model is created on the data then the model error is
evaluated. If the error was not reduced enough, another model
is added to the old model to decrease the error. This operation
continues until the desired error is obtained. Therefore, the
gradient boosting algorithm can learn complex patterns (Hastie
et al., 2009). In RF classifier, the data (features) are modeled
using a set of trees. Each tree is unrelated to the errors of other
trees and models only its training data (Hastie et al., 2009).
Therefore, RF may not be able to perform better than the GB
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FIGURE 6

Locations of the hub regions of two groups in the AAL atlas (listed in Table 5). Hub regions of ADHD children (A) and TD group (B).

classifier. Regarding the weakness of SVM results compared to
the other two models, it can be said that the feature space may be
divided into hyper-rectangles between two classes. Tree-based
classifiers such as RF and GB model the feature space using
thresholding on individual features, while the SVM works based
on linear and non-linear functions on a feature set.

Table 2 shows that the GB classifier provided a superior
accuracy compared to previous studies in ADHD classification,
indicating that graph measures derived from rs-fMRI could be as
promising biomarkers in the diagnosis of children with ADHD
(Colby et al., 2012; Shao et al., 2020). Dos Santos Siqueira et al.
used graph theory and rs-fMRI data to classify ADHD from
TD controls. In their study, only graph centrality features were
used as input to SVM, and the maximum classification score

was 55% for the center of Peking University (PU), which was
slightly lower than the accuracy obtained by SVM in our study
(56.5%). Higher accuracy in the present study can be related
to the number of graph measures examined and applying the
feature selection algorithm, which was not used in the study of
dos Santos Siqueira et al. (2014). In another study Shao et al.
used functional connectivity measures to classify ADHD from
TD controls using RF classifier. The accuracy of RF classifier
for PU center was obtained about 67.2%, which was lower than
the accuracy obtained by RF classifier in our study (69.5%)
(Shao et al., 2020).

The top 12 graph features with the most discrimination
capability in Table 4 are primarily associated with areas in the
frontoparietal network (FPN). FPN is one of the main brain
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resting-state networks involved in ADHD pathophysiology and
has a prominent role in the flexible utilization of cognitive
control and considerable top-down cognitive processes. The
frontoparietal network is repeated four times in Table 4,
corresponding to three graph measures, i.e., betweenness
centrality, nodal local efficiency, and nodal path length. This
result is consistent with several studies that have reported
abnormal functional connectivity within and between FPN,

default mode network (DMN), and attention networks
(dorsal, ventral, salience) in ADHD (Castellanos and Aoki,
2016; Gao et al., 2019; Wang et al., 2019; Cortese et al.,
2021). Also, as it can be seen, features associated with
the left cerebellum (which contributes to motor function
and cognitive processing), right rolandic operculum (which
involves the language processing system, motor, sensory, and
cognitive processing), right supplementary motor area (which
involves in executive functions), calcarine fissure, left middle
temporal gyrus of the temporal pole, and right caudate nucleus
(which involve in planning the movement execution, learning,
memory, reward, motivation, and emotion) are among the
top discriminative features. Consistent with our findings, brain
functional alterations in these regions particularly in the middle
temporal gyrus in patients with ADHD have been reported in
previous rs-fMRI studies (Wang et al., 2009; dos Santos Siqueira
et al., 2014; Lui et al., 2016; Ardila et al., 2018; Marcos-Vidal
et al., 2018; Cortese et al., 2021).

Studies on various brain disorders have revealed that brain
lesions are mostly located in the hub areas, hence investigating
the hub areas may be a suitable approach for understanding
brain disorders (Menon, 2013; Crossley et al., 2014).

As listed in Table 5, three hub regions, namely left
median cingulate, paracingulate gyri (frontal lobe), right middle
temporal gyrus (temporal lobe), and the superior lobe of the
left cerebellum (cerebellum), were not present in drug-naive
ADHD children, whereas TD controls had these hubs. The
importance of the role of the cingulate cortex has been shown
in the executive function. Executive functions are a collection of
cognitive processes that comprise primary cognitive processes
such as working memory, attentional control, cognitive
flexibility, inhibitory control, and cognitive inhibition. It has
been shown that cognitive control is impaired in attention deficit
hyperactivity disorder (Friedman and Robbins, 2022). Thus,
lack of hub node in left median cingulate, and paracingulate gyri
may relate to impairment of executive functions. The lack of a
hub node in the right middle temporal gyrus in patients with
ADHD may relate to the impairment of guiding the attention
control and action in these patients (Shaw et al., 2007). The
lack of a hub node in the superior lobe of the left cerebellum
in ADHD children may be associated with the key role of the
cerebellum in various functions. Since the cerebellum involves
in many functions such as motor control, learning, attention
shifting, visual-spatial processing, and working memory, it
could have a crucial role in the deficient attentional and

cognitive control mechanisms underlying ADHD (Brissenden
et al., 2018; Schmahmann, 2019; Clark et al., 2021).

Study limitations and conclusion

Despite all the strengths of this work, there are several
limitations to this study should be further addressed. First,
we used the structural atlas AAL 116, which is common in
functional studies. Since there is no one-to-one correspondence
in the definition of functional and structural brain areas, using a
functional atlas such as Power 264 atlas can be a more suitable
option. Second, we used the binary graph for brain network
construction. However, the use of the weighted graph and
its unique features may be effective in distinguishing between
ADHD and TD controls, as well as providing information on
the physiological mechanism of ADHD. Third, we only used
the rs-fMRI data in our study. Using multi-modal imaging
(MRI, fMRI, and DWI) and non-imaging (e.g., IQ, ADHD
severity) data may provide additional information that can
better characterize the discrepancies between ADHD children
and TD controls. Fourth, since graph theory measures hold
potential of clinical significance, they deserve further study in
neuroimaging research in the areas of diagnosis, prognosis, and
psychopharmacology and therapeutics of ADHD.

We combined the binary graph features obtained from
rs-fMRI data with machine learning methods to classify
drug-naïve ADHD children from the typical development
(TD) controls. Our results showed that in ADHD children,
regions located in the frontal lobe (frontoparietal network)
undergo changes more than other brain regions. We determined
optimal graph features with high discrimination ability using
a recursive feature elimination algorithm to provide insights
into ADHD pathophysiology. The classifiers were trained and
cross-validated, then their performances were evaluated. We
found that the best classifier for classifying ADHD children
from TD controls obtained an accuracy of 78.2%. We also
performed a hub node analysis and found that the number
of hubs in TD controls and ADHD children were 8 and
5, respectively, indicating that children with ADHD have
the disturbance of critical communication regions in their
brain network. These graph features facilitated machine
learning algorithms to accurately classify ADHD from TD
controls, indicating that graph features should be given
more attention as potential biomarkers in neuroscience
studies. This study brings an original methodological
approach to advance the search for reliable and accurate
biomarkers for the diagnosis of ADHD. However, the
findings are still far from providing clinical advantages,
and there is still uncertainty about the reliability of potential
neuroimaging biomarkers for ADHD diagnosis. Therefore,
further methodological, neuroscience and translational clinical
neuroscience research is needed.
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