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Spinal cord injury (SCI) is a clinical tough neurological problem without efficient cure
currently. Blood-spinal cord barrier (BSCB) interruption is not only a crucial pathological
feature for SCI process but is a possible target for future SCI treatments; however, few
treatments have been developed to intervene BSCB. In the present study, we
intravenously injected CO-releasing molecule3 (CORM-3), a classical exogenous CO
donor, to the rats experiencing SCI and assessed its protection on BSCB integrity in rats.
Our results demonstrated that the exogenous increasing of CO by CORM-3 blocked the
tight junction (TJ) protein degeneration and neutrophils infiltration, subsequently
suppressed the BSCB damage and improved the motor recovery after SCI. And we
certified that the CO-induced down-regulation of MMP-9 expression and activity in
neutrophil might be associated with the NF-kB signaling. Taken together, our study
indicates that CO-releasing molecule (CORM)-3 ameliorates BSCB after spinal cord injury.

Keywords: spinal cord injury, blood spinal cord barrier, carbon monoxide, neutrophil, CO-releasing molecule-3
INTRODUCTION

Spinal cord injury (SCI) causes longstanding physical and sensory impairment and can be fatal.
Traumatic SCI consists of two stages: (1) the primary injury refers to the immediate local
mechanical impact and (2) the inferior injury is identified as a multifaceted cascade representing
for local edema, hemorrhage, oxidative stress, inflammation, and apoptosis (Penas et al., 2010).
Alleviating and delaying the secondary injury process is identified as the potential target for SCI
treatment (Giszter, 2008). But previous studies principally focus on neuronal death and
in.org June 2020 | Volume 11 | Article 7611
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regeneration. The effect of blood spinal cord barrier (BSCB) for
this process has yet to be sufficiently investigated (Fassbender
et al., 2011; Sharma, 2011).

Under normal physiological condition, the BSCB could
prevent the entry of pathogens, blood-derived products, and
cells into the spinal cord to maintain homeostasis within the
spinal cord (Bartanusz et al., 2011; Kumar et al., 2016). The
barrier function bases on non-honeycomb shaped endothelial
cells (ECs) and their additional constituents such as pericytes
and astrocytic end feet (Palmer, 2010). ECs in the central nervous
system (CNS) characterize by plentiful cytosolic mitochondria
and the absence of cell membrane fenestrations and pinocytic
vacuoles (Bartanusz et al., 2011). Meanwhile, ECs produce tight
junction (TJ) proteins to form the complicated network, which
restricts the paracellular diffusion pathway between the ECs.
These structural features ensure the formation of stable capillary
microenvironment (Obermeier et al., 2013). Unfortunately,
primary injury causes irreversibly local BSCB disruption, which
allows the inflammatory cells (primarily neutrophils) infiltrate
and migrate into the uninjured section and subsequently
exacerbates the secondary sequential damage by secreting
neurotoxic factors such as various matrix metallopeptidases
(MMPs), reactive oxygen species (ROS), and inflammatory
cytokines (Sharma, 2011; Kumar et al., 2016). The abnormal
expression and activation of MMPs, especially MMP-9 could
promote the TJ proteins degeneration, the fundamental
molecular components of BSCB (Yu et al., 2008; Lee et al.,
2012). The genetic or pharmacological suppression of MMP
Frontiers in Pharmacology | www.frontiersin.org 2
expression and activation or direct blocking the neutrophil
infiltration have been demonstrated the protection of BSCB
following SCI (Noble et al., 2002; Wells et al., 2003; Yu et al.,
2008; Kumar et al., 2016).

Heme oxygenase (HO) catalyzes heme degradation with the
CO production, which has been proved with biological function
including anti-inflammation, anti-apoptosis, and anti-oxidative
at low dose (Kim et al., 2007; Motterlini and Otterbein, 2010;
Wang et al., 2010). In 2009, Zeynalov and Dore found CO
inhalation reduced infarct volume and attenuated brain edema
following mouse ischemic brain injury (Zeynalov and Doré,
2009). Most recently, Choi et al. reported that the CO-
releasing molecule (CORM)-3 treatment, the exogenous CO
donor, ameliorated the prognosis of traumatic brain injury
(TBI) by promoting neurogenesis through the rescuing the
crosstalk between the pericyte and neural stem cell (Choi et al.,
2016). Nevertheless, the studies about CO effect in SCI mainly
focus on the HO. Applying hemin, chemicals, and natural
products to regulate HO expression or activity subsequently
inducing the CO production, which not have enough evidence
to confirm the CO effect for BSCB (Lin et al., 2016; Lin et al.,
2017; Lu et al., 2018; Wei et al., 2018; Zheng et al., 2019).
Therefore, we performed this research to make up for
this question.

Recently, our group reported that increasing CO by CORM-3
alleviated neurological deficits and improved the functional
recovery after SCI. And we detected CO level and HO-1
expression variation within 7 days following SCI (Zheng et al.,
GRAPHICAL ABSTRACT | Carbon monoxide treatment attenuated the neutrophils infiltration and MMP-9 expression and activation, which are associated with NF-
kB pathway.
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2019). In this article, we assessed the protection of CO in BSCB
destruction. And CORM-3 treatment attenuated the neutrophils
infiltration and MMP-9 expression and activation in vivo and in
vitro. And we initially examined the potential mechanism for
CO-regulated MMP-9 production in neutrophil, which might be
associated with NF-kB pathway.
METHODOLOGY AND MATERIALS

Antibodies and Chemical Reagents
Carbon monoxide releasing molecule 3 (CORM-3) were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Antibody
against ZO-1 and Occludin were bought at Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Antibody against Ly6G,
p-p65, p65, GAPDH, MMP-2/-3/-9, and Lamin B were bought at
Abcam (Cambridge, CA, USA). TNF-a and anti-ICAM-1 were
purchased from R&D system (Minneapolis, MN, USA). Anti-
MPO was bought at Bioworld (Minneapolis, MN, USA)

The SCI and Animal Model
The Sprague–Dawley female adult rats (220–250 g, 2 months
old) were bought at the Animal Center of the Chinese Academy
of Sciences in Shanghai, China. The ethical procedures for
handling the rats referred to the guidelines and permission
from the Animal Care and Use Committee of Wenzhou
Medical University (ethic code: wydw2014-0129).

The rats were randomized into four groups and they were
given intraperitoneal sodium pentobarbital injections (65 mg/kg)
for sedation. After their skins were prepared and sterilized at the
back, skin incisions were done lengthwise on the dorsal midline
to reveal the vertebral column and they underwent surgical
removal of the lamina at the T9 level. The visible spinal cord
underwent a simulated crush injury by compressing it with a
vascular clasp (30 g force; Oscar, China) for a minute. Surgery
consisting of a laminectomy at level T9 without exposure to
spinal crush injury, was also performed in the rats of Sham
group. The post-surgical care consisted of manually emptying
the urinary bladder two times a day the normal bladder function
returned and treatments consisting of cefazolin sodium (50 mg/
kg). The rats that experienced SCI were randomized into three
groups; group treatments included CORM-3/iCORM-3/saline.
To investigate the effects of CO, preparations of inactive CORM-
3 (iCORM-3) were made by placing CORM-3 in saline (pH =
7.4) overnight at room temperature to complete the CO releasing
process (Zhang W. et al., 2017). The CORM-3 underwent
dilutions involving normal saline and completed an ultimate
CORM-3 concentration of 8 mg/ml. The CORM-3 solution was
instantly injected to the rat tail veins after surgery with a dosage
of 8 mg/kg per day until they were euthanized. Corresponding
quantities of iCORM-3 and normal saline were injected for
vehicle regulation.

Examination Using Evans Blue Dye
The BSCB permeability was detected by Evans blue dye as
previously described (Zhang D. et al., 2017). Three days after
Frontiers in Pharmacology | www.frontiersin.org 3
injury to spinal cord, the rats underwent injections of 2% Evans
blue dye (2 ml/kg) mixed in saline solution intravenously via the
veins of the tail section. After 2 h, rats were euthanized with
sodium pentobarbital (65 mg/kg, i.p.), then underwent perfusion
in 0.9% normal saline. The lesioned spinal cord EB tissues were
quantified and absorbed in N,N'-dimethylformamide (Jinsan,
Wenzhou, China) at 50°C for 72 h. The supernatant's optical
density was investigated using an enzyme-labeled meter (at an
excitation wavelength of 620 nm and an emission wavelength of
680 nm). The presence of the dye in samples indicated existence
of lg/g. After being injected with EB, the rats were subjected to
fixation via perfusion with 4% paraformaldehyde for 2 h. The
frozen section machine cut the spinal cord tissues into segments
of 10 mm thickness at 20°C, then the segments underwent
observation using a fluorescent microscope (Olympus,
Tokyo, Japan).

Gelatin Zymography
Gelatin zymography was done as mentioned earlier. The MMP-
2,9 activity in vivo at day 3 after SCI was detected by Gelatin
Zymography. The core of lesioned spinal cord (0.5 cm in length)
was standardized in a lysis buffer consisting of 50 mM Tris-HCl,
pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% deoxycholate, and 0.1%
SDS. Equal protein quantities (40 ug) were put on 10% SDS-
polyacrylamide gel electrophoresis, co-polymerized with 1 mg/
ml gelatin (Sigma-Aldrich). The gel was subjected to washing in
2.5% Triton X-100 after electrophoresis for 30 min and
underwent incubation for 24 h at 37°C in substrate buffer,
together with Tris 50 mM/l (pH 7.6), CaCl 25 mM, NaCl 0.
2mM, and 0.02% (w/v) Brij-35 (Sigma-Aldrich). Finally, the
Coomassie blue solution stained the gel for 4 h and underwent
de-staining with 10% acetic acid/40% methanol. The gels
underwent scanning for quantitative examination and the
positive band was quantified by NIH Image J software (NIH).
In vitro, MMP-9 in regulated media was investigated using
gelatin zymography as mentioned earlier.

Human Brain Microvascular Endothelial
Cells Culturing and Treatment
Human brain microvascular endothelial cells (HBMECs) and
endothelial cell medium were bought at ScienCell Research
Laboratories (ScienCell Research Laboratories, San Diego, CA,
USA). Cells were incubated in a moistened environment
consisting of 5% CO2 and 95% air at 37°C. Cells were
pretreated for 6 h with CORM-3 (100 mm).

Primary Neutrophil Culturing and
Treatment
The Percoll gradient was laminated with SD adult rat's (200–250 g)
blood in layer densities of 45, 54, and 63%. To detect the neutrophils
between the second and third layer, the blood was prepared using
gradient centrifuge (3,000 rpm for 15 min). The erythrocyte lysis
and ACK buffer purified the cells. The granulocytes underwent
washing in HBSS buffer and diluting in RPMI1640 media with 10%
(v/v) heat-inactivated FBS followed by plating the neutrophils in the
six-well dish with a density of 100,000 cells/cm2 (Pashevin et al.,
June 2020 | Volume 11 | Article 761
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2015). The TNF-a (100 ng/ml) and CORM-3 (100 mm) were used
to treat the neutrophils for 6 h.

Co-Culture of HBMECs and Neutrophils
One part of HBMECs were pretreat with CORM-3 (100 mm) for
6 h and then washed out followed by addition of neutrophils to
the HBMECs cultures at a concentration of 1 × 106 cells per ml.
In addition, one part of these neutrophils had been pretreated
with TNF-a (100 ng/ml) for 6 h. The unstimulated as well as the
activated neutrophils were harvested, washed, and then added to
the HBMECs cultures as concentrate. The HBMEC-neutrophil
co-culture were maintained at 37°C for 6 h and then neutrophils
were washed out. Finally, HBMECs were collected and processed
for western blotting analyses and immunofluorescence staining.

Western Blot Assay
RIPA lysis buffer consisting of 1 mM PMSF extracted whole
proteins then their concentrations were quantified by the
Enhanced BCA Protein Assay Kit (both from Beyotime,
Shanghai, China) via a Microplate Reader (Molecular Devices
Flexstation 3, USA). A protein tissue of 40 ng was parted by
sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS
PAGE) and transported to a polyvinylidene difluoride
membrane (Bio-Rad, California, USA). The 5% nonfat milk
was used for blocking process for 2 h, then the membranes
underwent incubation with the primary antibodies against ZO-1
(1:500), Occludin (1:500), ICAM-1 (1:1,000), MPO (1:500),
MMP-2/-3 and -9 (1:1,000 respectively), p65 (1:500), Lamin B
(1:1,000), GAPDH (1:5,000). The membranes underwent
washing with TBS thrice for 5 min, followed by treatment in
horseradish peroxidase-conjugated secondary antibodies. After
washing thrice in TBST, the visualization of the blots was done
via electrochemiluminescence plus reagent (Invitrogen,
Carlsbad, USA). In the final phase, the Image Lab 3.0 software
measured the blot intensities (Bio-Rad, California, USA).

Immunofluorescent Staining
Three days after injury to the spinal cord, the tissue samples were
collected. After harvesting, the spinal cord segments were fixed in
4% PFA, followed by washing and then embedded in paraffin.
The transverse segments of 5 mm thickness underwent cutting,
deparaffining in xylene, and rehydration in ethanol rinses. The
segments underwent incubation in 10% normal goat serum for 1
h at room temperature in PBS consisting of 0.1% Triton X-100.
This was followed by incubation using suitable primary
antibodies overnight at 4°C in a similar buffer. Based on their
varying targets, primary antibodies that were used included:
Ly6G (1:100) and MMP-9 (1:100). After incubating the
primary antibodies, segments underwent washing for 40 min,
followed by incubation with Alexa Fluor 488/594 goat anti-
rabbit/mouse secondary antibodies at room temperature for
1 h. The sections underwent rinsing thrice with PBS and
incubation with 4,6-diamidino-2-phenylindole (DAPI) for 10
min, followed by washing in PBS and a coverslip sealed them.
The fluorescent microscope (Olympus Inc., Tokyo, Japan)
Frontiers in Pharmacology | www.frontiersin.org 4
recorded the images, then three investigators quantified the
positive neurons in each segment while being blinded to the
groups under investigation. The values from the counting of 30–
40 random sections produced the calculations for the rates of
corresponding-protein positive cells per section examining five
rats each group.

Statistical Analysis
The outcomes were represented by mean ± S.D. The SPSS
statistical software program 20.0 (IBM, Armonk, NY, USA)
analyzed the data. The one-way analysis of variance (ANOVA)
and Tukey's test were used to compare the experimental groups.
The BBB scores underwent analysis using Mann–Whitney test.
Statistical values of P < 0.05 were stated as significant.
RESULTS

Carbon Monoxide Attenuates BSCB
Disruption and TJ Protein Loss Following
SCI
Recently, we have demonstrated CORM-3 treatment alleviated
neurological deficits and improved the functional recovery after
SCI via increasing the CO content in spinal cord (Zheng et al.,
2019). In this article, we mainly discussed CO protection in
BSCB function after SCI.

Evan's Blue dye to test BSCB permeability via tail vein at 3
days following SCI. By the Evan's Blue staining, less blue dye
appears around the damaged area in CORM-3 group relative to
the SCI and iCORM-3 groups as well as the quality results in
Figures 1A, B. Meanwhile, compared to the SCI and iCORM-3
groups, CORM-3 treatment weakened the red fluorescence
intensity in the transverse and longitudinal section of spinal
cord (Figures 1C, D). As the fundamental molecular structure of
BSCB, SCI reduces ZO-1, and Occludin protein expression,
whereas CORM-3 reversed this trend (Figures 1E, F).

CO Reduces the MMP-9 Production and
Blocks Neutrophil Infiltration After SCI
During the SCI, the abnormal increase of MMPs production and
activity contribute to TJ protein degradation (Lee et al., 2014;
Kumar et al., 2017; Wang et al., 2017). By western blot assay,
SCI-induced upregulation of MMP-2, -3, and -9 expression was
significantly reduced by CORM-3 treatment (Figures 2A, B).
And the gelatin zymography results revealed the CORM-3
obviously suppressed the activation of MMP-2 and -9 (Figures
2C, D).

As the primary source of MMP-9 in the early stage post-SCI,
infiltrating neutrophil was measured by western blot and
immunofluorescence (de Castro et al., 2000; Neirinckx et al.,
2014). As shown in Figures 2E, F, the expression of intercellular
adhesive molecule 1 (ICAM-1), linked to leukocyte adhesion,
and Myeloperoxidase (MPO), a peroxidase enzyme primarily
expressing in neutrophils and storing in azurophilic granules
June 2020 | Volume 11 | Article 761
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were increased after SCI, whereas CORM-3 treatment alleviated
these phenomena (Neirinckx et al., 2014; Patterson et al., 2014).
The outcomes of MPO activity assay were similar to the western
blot (Figure 2G). To determine the infiltration levels of
neutrophils following SCI, we performed a double-labeling
immunofluorescence staining with MMP-9 and Ly6G (a
neutrophil marker). As shown in Figures 2H, I, CORM-3
injection decreased the number of Ly6G-positive cells on 3
days post-SCI. Furthermore, we can obviously discovered that
Frontiers in Pharmacology | www.frontiersin.org 5
the MMP-9 and Ly6G fluorescent could basically be collocated,
which again answers the source of the MMP-9.

Regulation of MMP-9 Expression and
Activation by CO in Neutrophils Is Related
to In Vitro NF-kB Signaling Pathway
To investigate the mechanism of CORM-3-medicated MMP-9
regulation, we extracted neutrophils from blood and stimulated
with TNF-a to imitate the SCI model in vitro. The western blot,
A B

C D

E F

FIGURE 1 | Carbon monoxide inhibits BSCB interruption and declined TJ proteins at 3 days following SCI. (A) Characteristic complete spinal cords show that
Evan's Blue dye infused into spinal cord at 3 days. (B) Quantifying the Evan's Blue at 3 days (mg/g). (C, D) Characteristic fluorescent images of Evans Blue Dye
extravasation at 3 days. (bars: 1 mm). (E, F) The protein expression of ZO-1 and Occludin in spinal cord at 3 days post-SCI. All data is denoted as mean ± S.D. (n =
5). **P < 0.01.
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gelatin zymography, and MMP-9 immunostaining outcomes
illustrated that CORM-3 inhibited TNF-a-stimulated MMP-9
expression and activate neutrophils, which are consistent with
our in vivo results (Figures 3A–E).

In neutrophils, NF-kB signaling is essential in MMP-9 synthesis
and activation (Tahanian et al., 2011). TNF-a causes the p65
transfer to the nucleus and next initiate transcription and
translation of MMP-9 (Dilshara et al., 2015). We investigated the
Frontiers in Pharmacology | www.frontiersin.org 6
levels of p65 expression in the cytoplasmic and nuclear portions of
neutrophils. After TNF-a stimulation, there were elevated nuclear
p65 expressions then the cytoplasmic p65 were declined, whilst
CORM-3 treatment inhibited this response (Figures 3F, G). These
data indicated that NF-kB pathway could be considered as the
potential mechanism of CORM-3 protection. Additionally, our in
vivo experiments also showed that CORM-3 treatment inhibited
NF-kB pathway activation after SCI (Figure S1).
A B

C D

E F G

H I

FIGURE 2 | CORM-3 blocks the neutrophil infiltration and inhibits MMP-9 production and activation at 3 days after SCI. (A, B) The protein expression of ICAM-1
and MPO in spinal cord at 3 days post-SCI. (C) MPO activity in spinal cord at 3 days post-SCI. (D, E) The protein expression of MMP-2, -3, and -9 in spinal cord at
3 days post-SCI. (F, G) Dual immunofluorescence of MMP-9 and Ly6G in segments from tissues at 3 days post-SCI (bar: 50 mm). The white arrow indicates the
Ly6G/MMP-9 positive cells. (H, I) Representative zymography and measurement data of MMP-2 and -9 in spinal cord at 3 days post-SCI. All data is denoted as
mean ± S.D. (n = 5). **P < 0.01.
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CORM-3 Alleviates TJ Protein Degradation
Induced by Activated Neutrophils in
HMBECs In Vitro
To explain the CO-induced protection, we pretreated HBMECs
by CORM-3 and then co-cultured with neutrophils. In our
experimental settings (Figure 4A), we used TNF-a to induce
neutrophils activation and removed after 6 h incubation.
Neutrophils were harvested, washed, and added to HBMEC as
concentrate. Before adding neutrophils, one part of HBMECs
was pretreated with CORM-3. As shown in Figures 4B, C,
activated neutrophils caused prominent loss of ZO-1 and
Occludin in HBMECs, whereas CORM-3 pretreatment in
HBMEC reversed it. Interestingly, CORM-3 did not influence
the ZO-1 and Occludin expression in HBMEC under inactivated
Frontiers in Pharmacology | www.frontiersin.org 7
neutrophils co-culture conditions. These results are consistent
with our immunofluorescence staining (Figures 4D, E).

DISCUSSION

Although cell transplantation, drug and growth factor
applications could reduce BSCB damage, the therapeutic
efficacy also be affected as the restore of BSCB function
(Kumar et al., 2016). Compare to the above treatments, carbon
monoxide, as a gas molecule, could pass through the BSCB and
reach the spinal segments, which are far from the primary
damaged area.

As one of the degradation products of heme, CO has been
proved with biological function including anti-inflammation,
A

C

F G

D E

B

FIGURE 3 | MMP-9 regulation of CORM-3 is related to NF-kB signaling pathway in neutrophils in vitro. (A) The protein expression of MMP-9 in neurons were
treated as above. (B) The immunofluorescence of MMP-9 in the neutrophils. (bars: 300mm or 20mm). (C, D) Representative zymography and measurement data of
MMP-2 and -9 in neutrophils treated as above. (E) Quantification of the fluorescence intensity of MMP-9 in neutrophils treated as above. (F, G) The protein
expression of p65 in neutrophils treated as above. All data is denoted as mean ± S.D. (n = 5). **P < 0.01.
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anti-apoptosis, and anti-oxidative at low dose (Motterlini and
Otterbein, 2010; Choi et al., 2016). Several animal experiments
proved that providing CO through inhaling or exogenic CO
donors, the CORM-3, alleviates neural inflammation, neuron
death and promotes neurogenesis (Zeynalov and Doré, 2009;
Choi et al., 2016; Wang et al., 2018). However, to our knowledge,
the effect of CO in BSCB protection after SCI is still unknown.

Following SCI, local mechanical impact to the spinal cord
directly results in the vascular rupture and tissue destruction and
consequently enhances the heme synthesis (extracted from
hemoglobin/dying cells) (Gozzelino et al., 2010; Grochot-
Przeczek et al., 2012). Simultaneously, HO-1was raised and
activated compare to the uninjured spinal cord (Queiroga
Frontiers in Pharmacology | www.frontiersin.org 8
et al., 2015). These underlining mechanisms explains the SCI-
initiated CO content variations in the spinal cord.

Normally, the BSCB blocks the entry of toxic substances into
the spinal cord microenvironment. Succeeding acute spinal cord
trauma, the BSCB disruption is defined as the fatal event which
contributes to the secondary-injury and characterizes with the
time dependence that initiates within 5 min, peaks at 24 h, and
lasts for up to 28 days or longer and extends to the local domain
of the spinal cord (Noble and Wrathall, 1989; Runge et al., 1997).
Due to the barrier opening and chemokines secretion, the
neutrophils infiltration further exacerbates BSCB damage by
producing various matrix metallopeptidases (MMPs), especially
MMP-9. And, the overproduction of MMP-9 facilitates the
A

B C

D E

FIGURE 4 | CORM-3 alleviated TJ protein degradation induced by activated neutrophils in HMBECs, in vitro. (A) Schematic experimental settings for the neutrophils
and HBMECs co-culture. (B, C) The protein expression of ZO-1 and Occludin in HBMECs treat as above. (D, E) Representative immunofluorescence staining and
quantification data of ZO-1 in HBMEC. (bar: 20 mm). All data is denoted as mean ± S.D. (n = 5). **P < 0.01. NS, No significant.
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degeneration of TJ protein and basal lamina. In the mouse model
of ischemic stroke, the CORM-3 administration by retro-orbital
injection alleviated the BBB disruption and neurologic deficit in
rat stroke model (Wang et al., 2018). However, whether CO
protect BSCB following SCI remains to be studied. Our results
demonstrated the BSCB permeation, neutrophils infiltration, TJ
protein degeneration, and MMP-9 activity in spinal cord are
increased after injury, but CO treatment reversed these
phenomena. Previous studies reported carbon monoxide could
regulate the ICAM expression, which is an adhesion molecule that
is constitutively expressed inECs at low levels but exhibits increased
levels of expression under hypoxic conditions (Hopkins et al.,
2004). Lee et al. reported that CORM-2 attenuates ICAM-1
expression in P. aeruginosa-induced lung inflammation mice and
human pulmonary alveolar epithelial cells (Yeh et al., 2014).
Adhesion molecules generally encoded by the transcription factor
such as NF-kB. In the TNF-a and IL-1b exposed human gingival
fibroblasts, CORM-3 inhibited adhesion molecules expression by
suppressing the NF-kB pathway (Song et al., 2011). Additionally,
Cunha and his colleagues demonstrated that the CO donor,
dimanganese decacarbonyl, sustained the neutrophils adhesion
and migration and ICAM-1 expression depending on soluble
guanylate cyclase (sGC) activation (Lee et al., 2018). By the
isolating the neutrophils from the PKG-deficient mice, they
found the HO/CO/PKG pathway involves in neutrophil
migration which might be further explain by the PKG effect on
the NF-kB phosphorylation. However, Stirling et al. reported that
inhibiting neutrophils by anti-Ly6G/Gr-1 aggravated the
neurological outcome, which seems to be contrary to our results.
This discrepancy resultsmay be caused by the number of remaining
neutrophils (Stirling et al., 2009). The use of an anti-Ly6G/Gr-1
antibody could abolish subtotal systemic neutrophils whereas
CORM-3 acts by decreasing the neutrophils at the site of SCI.

Compare to wild-type mice, MMP-9 knockout mice exhibited
themore BSCB integrity, the alleviation of neuroinflammation and
significant locomotor recovery (Noble et al., 2002). Wang and his
colleagues found that the MMP-9 expression and its colocalization
level with pericytes were declined by the CORM-3 in the mouse
stroke model (Wang et al., 2018). Similarly, our western blot and
gelatin zymography results demonstrated that MMP-9 expressions
and activities decreased after CORM-3 treatment in vivo and in
vitro. Various studies investigated the NF-kB could bind to the
MMP-9 corresponding sequence and control its transcription (Mi
et al., 2018;Muscella et al., 2018). In our in vitro researches, CORM-
3 sustained TNF-a stimulated the p65 nuclear transcription in
neutrophils. But the carbon monoxide-induced the NF-kB
regulation still needs to further explore. TNF-a activates IkB
kinase (IKK) and degrades IkBa, resulting in the liberation and
translocation of p65, which then increases transcription of
downstream mediators such as MMP-9 and ICAM-1. However,
Wung and his colleagues showed that applying CO donors in ECs
blocked the TNF-a-induced p65 nuclear translocation by
intervening its glutathionylation, but not the IkBa degradation
(Yeh et al., 2014). And the CO donors-caused intracellular ROS
level slight increase and Nrf2 nuclear accumulation play the
important roles in p65 glutathionylation. In brief, the low-level
Frontiers in Pharmacology | www.frontiersin.org 9
ROS enhances the oxidation to reduction ratio of glutathione
(GSSG/GSH) and Nrf2 activation mediated the expression of g-
glutamylcysteine synthetase, which is the rate-limiting enzyme in
GSH synthesis (Yeh et al., 2014). These events medicated by CO
administration contribute to proteins glutathionylation. The
mechanism about CO-induced p65 inactivation in TNF-a
exposed neutrophil requires investigation in detail.

Due to CO could competitively bind to hemoglobin with
oxygen, it is considered as a toxic gas (Motterlini and Otterbein,
2010). Although CO has multiple biological activities at low
concentrations, its therapeutic application is hampered by the lack
of a safe and effective delivery (Queiroga et al., 2015). Continuous
CO inhalation could rapidly elevate carboxyhemoglobin (COHb) to
toxic levels (> 15%) (Otterbein et al., 2000). In our study, we did not
detect COHb level in CORM-3 treated rats, but Prabhu et al.
reported that the COHb level was stably maintained at 6% during
the 24 days medication period in the mice administrating the
CORM-3 (40 mg/kg/d) by intraperitoneal injection (Chen, 2014).
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