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Does evolution proceed in small steps or large leaps? How repeatable is
evolution? How constrained is the evolutionary process? Answering these
long-standing questions in evolutionary biology is indispensable for both
understanding how extant biodiversity has evolved and predicting how
organisms and ecosystems will respond to changing environments in the
future. Understanding the genetic basis of phenotypic diversification and
speciation in natural populations is key to properly answering these ques-
tions. The leap forward in genome sequencing technologies has made it
increasingly easier to not only investigate the genetic architecture but also
identify the variant sites underlying adaptation and speciation in natural
populations. Furthermore, recent advances in genome editing technologies
are making it possible to investigate the functions of each candidate gene
in organisms from natural populations. In this article, we discuss how
these recent technological advances enable the analysis of causative genes
and mutations and how such analysis can help answer long-standing
evolutionary biology questions.

This article is part of the theme issue ‘Genetic basis of adaptation and
speciation: from loci to causative mutations’.
1. Introduction
One of the fundamental goals of evolutionary biology is to understand how
organisms and ecosystems have evolved in the past and will respond to
changing environments in the future. To this end, we need to knowwhether evol-
ution proceeds in small steps [1,2] or large leaps [3,4], how repeatable evolution is
[5–7], and how constrained the evolutionary process is [8,9]. Understanding the
genetic basis of phenotypic diversification and speciation in natural populations
is key to properly answering these questions (e.g. [7,10]). Although most biol-
ogists would agree with the importance of genetic studies to decipher the
evolution of living beings, their opinions sometimes differ regarding the
amount of effort that should be dedicated to search for these genetic loci [11,12].

Genetic basis can be investigated at several different levels (table 1). First,
using quantitative genetics approaches, we can investigate heritabilities, reaction
norms (i.e. the range of phenotypes produced by a genotype, depending on the
environment) and genetic correlations between phenotypic traits [13,14]. These
quantitative genetics parameters help to predict how rapidly phenotypic traits
would respond to selection and how evolutionary trajectories can potentially
be biased by selection on other genetically correlated traits [13,15,16].
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Table 1. Genetic basis for phenotypic variation in natural populations.

type of information examples of data examples of methods used

quantitative genetics

parameters

heritability, gene × environment interaction (e.g. reaction

norms), genetic correlations (e.g. G-matrix)

common garden experiment, parent–offspring regression,

analysis of covariance between relatives

genetic architecture location, linkage, number and effects of causative loci quantitative trait loci (QTL) mapping, genome-wide

association study (GWAS)

molecular mechanisms types of causative genes, types and effects of causative

mutations

genetic manipulations (e.g. transgenics and genome

editing)
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Second, the genetic architecture, such as the numbers, effect
sizes, pleiotropy, genomic locations, epistasis and linkage of
responsible loci for phenotypic variation, can be investigated
using quantitative trait loci (QTL) mapping and genome-
wide association studies (GWAS) [17–19]. In QTL mapping,
crosses are performed between individuals varying for the
trait of interest, and in the progeny population loci associated
with phenotypic variation are identified. In GWAS, a natural
population with genetic and phenotypic variation is used for
identifying genetic loci associated with phenotypic variation
within that population. Theoretical studies have demonstrated
that information on the underlying genetic architecture can
increase the predictability of the speed and reversibility of
phenotypic evolution [17].

Finally, when responsible loci have large phenotypic
effects, it is sometimes possible to identify the exact genes
and mutations causing phenotypic variation and to investi-
gate their functions at the molecular level [20–22]. Here, we
first discuss how the investigation of causative genes and
mutations at molecular levels will help answer long-standing
questions in evolutionary biology. We note discussion of
this topic has been controversial over the past two decades
[23–26]. However, here we review new technological
advances that increase the feasibility of identifying causative
genes and mutations for adaptation and speciation.
2. What questions can be answered by
identifying causative genes and mutations?

(a) Does evolution proceed in small steps or large
leaps?

Information about causative mutations can help to answer
whether evolution proceeds in small steps [2,27] or large
leaps [3,4], one of the long-standing questions in evolutionary
biology [28,29]. QTL analyses have revealed the distributions
of effect sizes of causative loci for many traits, and the distri-
butions often follow the pattern of a small number of large-
effect loci and a large number of small-effect loci [19,30–33].
Importantly, however, a single causative locus is not equal
to a single causative mutation. There are many cases where
a single causative locus is a composite of many linked
mutations, and each mutation explains only a small fraction
of the phenotypic variance [17,20,24,34]. For example,
whereas the bab locus explains over 60% of the phenotypic
variance of pigmentation between Drosophila melanogaster
strains, each single nucleotide polymorphism (SNP) explains
only a tiny fraction of the variance [35], suggesting that
multiple mutations underlie this locus. This example clearly
demonstrates that the effect sizes of QTL do not necessarily
reflect the effect sizes of causative mutations. Furthermore,
because QTL mapping can detect only large-effect loci, ident-
ified QTLs are typically biased toward large-effect loci
[11,18,36]. Thus, in most cases QTL analyses or GWAS are
not sufficient to understand the exact distribution of effect
sizes of causative mutations.

For predicting very short-termevolution, it is often assumed
that evolution proceeds via only pre-existing alleles without
any new mutations. By an allele, we mean a linked genomic
region that can contain multiple mutations. However, even
for predicting short-term evolution, information on causative
mutations and the distributions of their effect sizes is essential.
For example, a large population is expected to have substantial
input of mutations every generation because the number of
mutations per generation in a diploid population with the
population size of N would be theoretically 2Nμ, where μ is
the mutation rate per generation [37]. Particularly in the case
that mutations occur at mutational hotspots (see below),
where mutation rates are higher than the genomic background
by several orders of magnitude, new mutations cannot be
ignored even for predicting short-term evolution [20,38–41].
Without a clear understanding of the identity of causative
mutations and their effect size distribution, predictions of
how evolution will proceed become inaccurate regardless
of the timescale of evolution (i.e. short- versus long-term).

(b) Is evolution repeatable?
Identification of causative mutations also contributes to a
better understanding of the repeatability of evolution [7,42].
Genetic studies of convergent evolution have revealed hot-
spot genes that are repeatedly used for getting the same
phenotypes [20,43–45]. In several cases, the same mutation
repeatedly occurs at the same site in independent lineages
[20,46,47]. For example, genomic analysis of microbes in
experimental evolution has revealed the repeatability of
mutations for adapting to the same environments [48,49]. In
other cases, mutations occur at different sites in the same
gene. For example, mutations at different amino acid sites
in the Mc1r gene repeatedly caused adaptive pigmentation
changes across a diverse array of animals [50].

There are several explanations for the presence of such hot-
spot genes. First, the number of available genes and mutations
for achieving the same phenotype may be limited [47,51,52].
Second, mutations at hotspot genes may have optimal pleio-
tropy, with few detrimental effects associated with the
diverse phenotypic traits affected by the mutation [43,53–55].
Pleiotropy can both facilitate and constrain adaptive evolution
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[2,28,54]. If a mutation changes a suite of multiple phenotypic
traits in favourable directions, such a mutation with optimal
pleiotropy is likely to be repeatedly used for adaptation to simi-
lar environments. Conversely, if a mutation changes only a
certain phenotypic trait in a favourable direction but other
traits in detrimental directions, such a mutation would be
less likely to be frequently selected. By identifying the causative
mutations and investigating their functional effects, it becomes
possible to know whether the pleiotropic effect is due to the
linkage of multiple mutations or multiple functions exhibited
by a single mutation.

Third, hotspot genes may be located at genomic regions
with high mutation rates [41,56–58]. Identification of causative
mutations can also tell us whether convergent evolution is
caused by mutations at mutational hotspots [38,39]. One of
the examples showing the role ofmutational bias in convergent
evolution is the Pitx1 gene, which underlies pelvic reduction of
freshwater threespine stickleback populations [41]. A regulat-
ory region of the Pitx1 gene has a TG-nucleotide repeat with
a fragile non-B DNA structure, and the repeated deletion of
this regulatory region has been observed inmultiple freshwater
populations [41]. This example demonstrates that identifying
causative mutations helps to understand whether mutational
bias influences convergent evolution.

(c) How constrained is the evolutionary process?
Identification of causative mutations can also deepen our
understanding of the role of constraints in evolution. As
described above, pleiotropy is one of the major constraints of
adaptive evolution [2,16,59,60]. It is hypothesized that different
types of mutations have different levels of pleiotropy [61]. Cis-
regulatory mutations at enhancer regions enable tissue- or
ontogenetic stage-specific modifications of gene expression
and thus may have relatively low pleiotropic effects [43,62].
By contrast, amino acid changes and copy number variations
can have larger pleiotropic effects because these changes can
affect gene functions in multiple tissues throughout different
ontogenetic stages. Importantly, these three types of mutations
can occur together: there are many examples of duplicated
genes diverging in both functional amino acid sequences and
expression patterns [63,64]. We can directly test the difference
in pleiotropic effects between different types of mutations by
functional analysis of each type of mutation.

Epistasis, an interaction between a mutation at one geno-
mic site and a mutation at another site, can make particular
combinations of mutations more favourable than others, thus
constraining the evolutionary trajectories [65–67]. Except for
several cases of experimental evolution in vitro [68], epistatic
effects have been generally investigated between loci but not
between mutations. Using large-scale GWAS, it would be
possible to investigate epistasis between mutations for fitness
(Villoutreix et al. [69] in this issue). Alternatively, epistasis
among mutations can be investigated using in vivo genetic
engineering, as nicely demonstrated in the example of the
shavenbaby locus contributing to variations in larval cuticular
patterns between Drosophila species [70].

(d) Other benefits of identifying causative genes
and mutations

Once we identify causative genes and mutations, we can try to
infer when the adaptive mutations arise, how they spread in a
population, and what their fitness effects are. For example,
genomic sequence data can help to infer the age of an adaptive
mutation, selection regimes and the past allele frequency trajec-
tories [71–73]. This approach will tell us whether a particular
mutation occurred before or after environmental changes or
the completion of speciation [74]. Furthermore, using semi-
natural field experiments, we can investigate the fitness effects
of particular alleles and mutations [75].

It is also important to identify the exact mutations not
only for basic science but also for various applications [76].
To raise a few examples, we can transfer pathogen-resistance
genes to tomatoes for agriculture [77]. By looking for specific
mutations in aquatic organisms, we can test for the previous
presence of a pollutant in their habitats [78]. By counting
the copy number of key adaptive genes for freshwater survi-
val, we may be able to predict which fishes are amenable
to freshwater aquaculture ([79] and Ishikawa et al. [80] in
this issue).

Identification of causative genes and mutations would also
help to understand the link between organismic evolution and
ecological processes. Organismic evolution can influence not
only the population dynamics but also the community struc-
tures [81]. As reviewed by Yamamichi [82] in this issue, the
genetic architecture underlying an adaptive trait in an organ-
ism can influence several ecological processes. However, little
is known about howmuch a singlemutation or allele can influ-
ence the ecological community in nature and how prevalent
genes with disproportionately large effects on the ecological
processes, called keystone genes, are [83,84].
3. How to go beyond candidate loci to identify
causative genes and mutations in natural
populations

Recent advances in genome sequencing technologies have
made it increasingly easier to identify candidate loci associ-
ated with adaptation and speciation. For example, QTL
mapping and GWAS have identified many candidate loci
associated with phenotypic variation and reproductive
isolation in natural populations (e.g. Brien et al. [85], Gloss
et al. [86] and Peter et al. [87] in this issue). Although
large-scale GWAS enables the investigation of the genetic
architecture at a far higher resolution than quantitative trait
loci (QTL) mapping [69,86,87], linkage disequilibrium
within a causative locus often precludes us from pinpoint-
ing causative genes and mutations solely by GWAS. For
example, chromosomal inversions can capture adaptive
linked mutations (e.g. Maney & Küpper [88] and Villoutreix
et al. [69] in this issue). So how can we go beyond simply
identifying causative loci and move toward investigating
causative genes and mutations?

Detailed in vivo functional analysis of each mutation is a
powerful way to investigate the effect of each mutation, as
demonstrated by several excellent studies. For example, poly-
morphism at the adh gene is responsible for a 2.5–3- fold
difference in the enzymatic activity of alcohol dehydrogenase
between Drosophila melanogaster strains. However, this major
locus contains multiple mutations at the intron, protein-
coding region and 30-untranslated region of the adh gene [89].
In vivo genetic engineering showed that different sites have
different effects on enzymatic activity and also show epistatic
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interactions [89]. Using systematic synthetic biologyapproaches
(e.g. Crocker et al. [90] in this issue), it is now possible to artifi-
cially generate multiple genotypes that do not exist in natural
populations and to investigate the evolvability and constraint
of evolution.

Until recently, genetic manipulation has largely been lim-
ited to laboratory model organisms. Functional validation of
candidate mutations was conducted mainly using laboratory
model organisms, such as Saccharomyces cerevisiae, Arabidopsis
thaliana and Drosophila melanogaster ([91–93] and Tsuchimatsu
& Fujii [94] in this issue). Even when genetic changes are
identified in non-laboratory models, such as deer mice,
voles and cichlid fishes, the mutational effects have been
examined in laboratory model organisms, such as the
mouse and the zebrafish [95–97].

Technological advances in genome editing using CRISPR/
Cas systems and site-specific recombinases are now making it
possible to conduct functional assays of candidate genes
directly in so-called non-model organisms [98–101]. CRISPR/
Cas systems have been recently applied to functional analysis
of genes underlying naturally occurring phenotypic variation
in natural populations, such as Sulawesian medaka fishes
[102] and Heliconius butterflies [103]. CRISPR/Cas systems
have beenmost frequently used for gene knockout, i.e. the gen-
eration of loss-of-function mutations, which enables us to
investigate the function of candidate genes. Recent technologi-
cal advances in CRISPR/Cas systems are making it possible to
induce nucleotide substitutions of interest in a target gene (a
technique named ‘allele replacement’) and chromosomal
rearrangements [104,105], as reviewed by Ansai and Kitano
[104] in this issue. Although these genome editing technologies
often have off-target effects [106], we should eventually be able
to remove such undesirable mutations by backcrossing or
future technological advances.
4. Conclusion
Although hundreds of genes important for development and
physiology have been identified in laboratory model organisms
during the last 50 years, we still do not know much about the
molecular changes and causative mutations underlying natu-
rally occurring phenotypic variation that is important for
adaptation and speciation in natural populations. With the
advance of genome sequencing and genome editing technol-
ogies, we are now in a position to identify many causative
genes and mutations in natural populations of model and non-
model species alike and to begin to tackle several long-standing
evolutionary questions. We hope that the collection of papers in
this theme issue will encourage research in that direction.
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