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Abstract

Background: Gene networks in living cells can change depending on various conditions such as caused by
different environments, tissue types, disease states, and development stages. Identifying the differential changes in
gene networks is very important to understand molecular basis of various biological process. While existing
algorithms can be used to infer two gene networks separately from gene expression data under two different
conditions, and then to identify network changes, such an approach does not exploit the similarity between two gene
networks, and it is thus suboptimal. A desirable approach would be clearly to infer two gene networks jointly, which
can yield improved estimates of network changes.

Results: In this paper, we developed a proximal gradient algorithm for differential network (ProGAdNet) inference,
that jointly infers two gene networks under different conditions and then identifies changes in the network structure.
Computer simulations demonstrated that our ProGAdNet outperformed existing algorithms in terms of inference
accuracy, and was much faster than a similar approach for joint inference of gene networks. Gene expression data of
breast tumors and normal tissues in the TCGA database were analyzed with our ProGAdNet, and revealed that 268
genes were involved in the changed network edges. Gene set enrichment analysis identified a significant number of
gene sets related to breast cancer or other types of cancer that are enriched in this set of 268 genes. Network analysis
of the kidney cancer data in the TCGA database with ProGAdNet also identified a set of genes involved in network
changes, and the majority of the top genes identified have been reported in the literature to be implicated in kidney
cancer. These results corroborated that the gene sets identified by ProGAdNet were very informative about the cancer
disease status. A software package implementing the ProGAdNet, computer simulations, and real data analysis is
available as Additional file 1.

Conclusion: With its superior performance over existing algorithms, ProGAdNet provides a valuable tool for finding
changes in gene networks, which may aid the discovery of gene-gene interactions changed under different conditions.
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Background

Genes in living cells interact and form a complex net-
work to regulate molecular functions and biological pro-
cesses. Gene networks can undergo topological changes
depending on the molecular context in which they oper-
ate [1, 2]. For example, it was observed that transcription
factors (TFs) can bind to and thus regulate different
target genes under varying environmental conditions
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[3, 4]. Changes of genetic interactions when cells are
challenged by DNA damage as observed in [5] may also
reflect the structural changes of the underlying gene net-
work. This kind of rewiring of gene networks has been
observed not only in yeast [3—6], but also in mammalian
cells [7, 8]. More generally, differential changes of gene
networks can occur depending on environment, tissue
type, disease state, development and speciation [1]. There-
fore, identification of such differential changes in gene
networks is of paramount importance when it comes to
understanding the molecular basis of various biological
processes.
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Although a number of computational methods have
been developed to infer the structure of gene regulatory
networks from gene expression and related data [9-12],
they are mainly concerned with the static structure of gene
networks under a single condition. These methods rely
on similarity measures such as the correlation or mutual
information [13, 14], Gaussian graphical models (GGMs)
[15, 16], Bayesian networks [17, 18], or linear regression
models [19-22]. Refer to [12] for description of more net-
work inference methods and their performance. Existing
methods for the analysis of differential gene interactions
under different conditions typically attempt to identify
differential co-expression of genes based on correlations
between their expression levels [23]. While it is possi-
ble to use an existing method to infer a gene network
under different conditions separately, and then compare
the inferred networks to determine their changes, such an
approach does not jointly leverage the data under different
conditions in the inference; thus, it may markedly sacrifice
the accuracy in the inference of network changes.

In this paper, we develop a very efficient proximal gradi-
ent algorithm for differential network (ProGAdNet) infer-
ence, that jointly infers gene networks under two different
conditions and then identifies changes in these two net-
works. To overcome the challenge of the small sample
size and a large number of unknowns, which is com-
mon to inference of gene networks, our method exploits
two important attributes of gene networks: i) sparsity in
the underlying connectivity, meaning that the number of
gene-gene interactions in a gene network is much smaller
than the number of all possible interactions [19, 24—26];
and, ii) similarity in the gene networks of the same organ-
ism under different conditions [4, 7], meaning that the
number of interactions changed in response to differ-
ent conditions is much smaller than the total number of
interactions present in the network. A similar network
inference setup was considered in [27] for inferring mul-
tiple gene networks, but no new algorithm was developed
there; instead [27] adopted the lqa algorithm of [28] that
was designed for generalized linear models. Our computer
simulations demonstrated superior performance of our
ProGAdNet algorithm relative to existing methods includ-
ing the lqa algorithm. Analysis of a set of RNA-Seq data
from normal tissues and breast tumors with ProGAdNet
identified genes involved in changes of the gene network.

The differential gene-gene interactions identified by our
ProGAdNet algorithm yield a list of genes that may not
be differentially expressed under two different conditions.
Comparing with the set of differentially expressed genes
under two conditions, this set of genes may provide addi-
tional insight into the molecular mechanism behind the
phenotypical difference of the tissue under different con-
ditions. Alternatively, the two gene networks inferred
by our ProGAdNet algorithm can be used for further
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differential network analysis (DiNA). DiNA has received
much attention recently; the performance of ten DiNA
algorithms was assessed in [29] using gene networks and
gene/microRNA networks. Given two networks with the
same set of nodes, a DiNA algorithm computes a score for
each node based on the difference of global and/or local
topologies of the two networks, and then ranks nodes
based on these scores. Apparently, DiNA relies on the two
networks that typically need to be constructed from cer-
tain data. Our ProGAdNet algorithm provides an efficient
and effective tool for constructing two gene networks of
the same set of genes from gene expression data under
two different conditions, which can be used by a DiNA
algorithm for further analysis.

Methods

Gene network model

Suppose that expression levels of p genes have been mea-
sured with microarray or RNA-seq, and let X; be the
expression level of the ith gene, where i = 1,...,p. To
identify the possible regulatory effect of other genes on
the ith gene, we employ the following linear regression
model as also used in [19-22]

p
Xi=pwi+ Y Xbi+E (1)
j=1j

where u; is a constant and E; is the error term, and
unknown regression coefficients (b;;)’s reflect the correla-
tion between X; and X; after adjusting the effects of other
variables, Xi’s, k ¢ {i,j}. This adjusted correlation may be
the result of possible interaction between genes i and j.
The nonzero (bj;)’s define the edges in the gene network.
Suppose that n samples of gene expression levels of the
same organism (or the same type of tissue of an organism)
under two different conditions are available, and let n x 1
vectors x; and X; contain these # samples of the ith gene
under two conditions, respectively. Define n x p matrices
X :=[x1,X2,...,%p] and X :=[X1,X2,...,Xp], p x 1 vectors
n=[ui,.. .,,up]T and &t =[ iy, ... ,/lp]T, and p x p matri-
ces B and B whose element on the ith column and the jth
row are bj; and l;ji, respectively. Letting b; = I;ﬁ = 0,
model (1) yields the following

X=1u" +XB+E o

X =1i" +XB+E,
where 1 is a vector with all elements equal to 1, and  x p
matrices E and E contain error terms. Matrices B and B
characterize the structure of the gene networks under two
conditions.

Our main goal is to identify the changes in the gene
network under two conditions, namely, those edges from
gene j to gene i such that b; — b; # 0,j # i. One
straightforward way to do this is to estimate B and B
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separately from two linear models in (2), and then find
gene pairs (i,j) for which b; — b; # 0. However, this
approach may not be optimal, since it does not exploit
the fact that the network structure does not change sig-
nificantly under two conditions, that is, most entries of
B and B are identical. A better approach is apparently to
infer gene networks under two conditions jointly, which
can exploit the similarity between two network structures
and thereby improve the inference accuracy.

If we denote the ith column of B and B as b; and l;i,
we can also write model (2) for each gene separately as
follows: x; = u;1 + Xb; + ¢; and x; = ;1 + Xb; + &,
i =1,...,p, where e; and ¢€; are the ith column of E and
E, respectively. We can estimate j; and ji; using the least
square estimation method and substitute the estimates
into the linear regression model, which is equivalent to
centering each column of X and X, i.e., subtracting the
mean of each column from each element of the column.
From now on, we will drop u; and f; from the model
and assume that columns of X and X have been cen-

tered. To remove the constraints b; = 0,i = 1,...,p,
we define matrices X_; =[X1,...,X—1,Xi415.. .5 Xp]
and X_; :=[%X1,...,%_1,%i11,...,Xp], vectors B; :=
[biir- - bi—1)ir bit1yin - - bpi)T and B;  =[b1;...,
bi-1yis b(,'H)l',...,bpi]T. The regression model for the

gene network under two conditions can be written as

xi=X_iB; +e

- _ % B oz : 3)

xi=X_B;+e,i=1,...,p
Based on (3), we will develop a proximal gradient algo-
rithm to infer B; and B, jointly, and identify changes in the
network structure.

Network inference

Optimization formulation

As argued in [19, 30, 31], gene regulatory networks or
more general biochemical networks are sparse, meaning
that a gene directly regulates or is regulated by a small
number of genes relative to the total number of genes in
the network. Taking into account sparsity, only a relatively
small number of entries of B and B, or equivalently entries
of B; and B, i = 1,...,p, are nonzero. These nonzero
entries determine the network structure and the regu-
latory effect of one gene on other genes. As mentioned
earlier, the gene network of an organism is expected to
have similar structure under two different conditions. For
example, the gene network of a tissue in a disease (such as
cancer) state may have changed, comparing to that of the
same tissue under the normal condition, but such change
in the network structure is expected to be small relative
to the overall network structure. Therefore, it is reason-
able to expect that the number of edges that change under
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two conditions is small comparing with the total number
of edges of the network.

Taking into account sparsity in B and B and also the
similarity between B and B, we formulate the following
optimization problem to jointly infer gene networks under
two conditions:

(B B:) =argming 5 {1l x; — X_if; I
+ 1 %= XiBi 11 +aa(ll B: I+ 11 Bi 1)
+ a1l B = Bi ),
(@)

where | - || stands for Euclidean norm, || - ||; stands
for /; norm, and 1; and Ay are two positive constants.
The objective function in (4) consists of the squared error
of the linear regression model (1) and two regularization
terms A1(|| B; 1 + Il B; 1) and A2 || B; — B; ll1. Note
that unlike the GGM, the regularized least squared error
approach here does not rely on the Gaussian assump-
tion. The two regularization terms induce sparsity in the
inferred networks and network changes, respectively. This
optimization problem is apparently convex, and therefore
it has a unique and globally optimal solution. Note that the
term Ay || B, — Bi l1 is reminiscent of the fused Lasso [32].
However, all regression coefficients in the fused Lasso are
essentially coupled, whereas here the term Ay || B, — B i
only couples each pair of regression coefficients, 8; and
ﬁij. As will be described next, this enables us to develop an
algorithm to solve optimization problem (4) that is differ-
ent from and more efficient than the algorithm for solving
the general fused Lasso problem. Note that an optimiza-
tion problem similar to (4) was formulated in [27] for
inferring multiple gene networks, but no new algorithm
was developed, instead the problem was solved with the
lqa algorithm [28] that was developed for general penal-
ized maximum likelihood inference of generalized linear
models including the fused Lasso. Our computer simula-
tions showed that our algorithm not only is much faster
than the lqa algorithm, but also yields much more accurate
results.

Proximal Gradient Solve;
~T
Define o; := [ﬂIT B; ] , and let us separate the objective

function in (4) into the differentiable part g; (a;) and the
non-differentiable part g»(;) given by

gile) =l xi —X_iB; I+ | X — X_iB; |I%
@) =2l B I+ 1 Bi ) +22 1 B — B llh -
)

Applying the proximal gradient method [33] to solve the
optimization problem (4), we obtain an expression for o;
in the rth step of the iterative procedure as follows:
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1
o ™ = prox, g, L — 20V (@)], (6)

where prox stands for the proximal operator defined as
prox,s(t) := arg min,f(x) + i”x — t||? for function
f(x) and a constant vector t, and Vg (a;) is the gradi-
ent of g1 (a;). Generally, the value of step size A(” can be
found using a line search step, which can be determined
from the Lipschitz constant [33]. For our problem, we
will provide a closed-form expression for A" later. Since
g1(ee;) is simply in a quadratic form, its gradient can be
- T
obtained readily as Vgi(e;) = [Vg1 BT, Vgl(ﬂi)T] )
where Vgi1(8,) = 2(XIX_i8; — X x;) and Vg1 (B,) =
2(XTX-B; - XI%,)
Upon defining t = B; — Vg (8) and t = B; —
1Vg (B,), the proximal operator in (6) can be written as

ProX; g, (6) = arg ming 5 {mn Billu+ 1By )+ 22 1 B, — Byl
Ty (1B~ + 1B~ ||2)}‘
7)

It is seen that the optimization problem in proximal
operator (7) can be decomposed into p — 1 separate
problems as follows

arg ming, 7. {xluﬂm + 1By + A28 — By

((,BL/ t])z + (,gij - i/)z)} (8)

;P_ly

2A<’)
ji=1,...

where 8; and lgij are the jth element of 8, and B, respec-
tively, and ¢ and % are the jth element of t and t, respec-
tively. The optimization problem (8) is in the form of the
fused Lasso signal approximator (FLSA) [34]. The general
FLSA problem has many variables, and numerical opti-
mization algorithms were developed to solve the FLSA
problem [34, 35]. However, our problem has only two
variables, which enables us to find the solution of (8) in
closed form. This is then used in each step of our proximal
gradient algorithm for network inference.

Let us define a soft-thresholding operator S(x,a) as
follows

x—a,ifx>a
x+aifx<—a )

0, otherwise,

S(x,a) =

where a is a positive constant. Then as shown in [34], if

the solution of (8) at A; = 0 is ﬁ 39 and ﬁ;o) , the solution
of (8) at A; > 0 is given by
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0 -
py=s(B - %)
0
By =5 (%),
where A1 = A1A"). Therefore, if we can solve the problem
(8) at A1 = 0, we can find the solution of (8) atany A; > 0

from (10). It turns out that the solution of (8) at A; = 0
can be found as

(10)

L4+E i+t . -
I, L) if I — 5| < 2%,
2 2
42(0) Z(0)
1311 ’ﬁl} - Tz by . < T
(t]' — A2, b+ A2), if L —t > 2
(t + 2, G — X2), otherwise,
(11)

where %y = AA®. Therefore, our proximal gradient
method can solve the network inference problem (6) effi-
ciently through an iterative process, where each step of
the iteration solves the optimization problem (6) in closed
form specified by (10) and (11). To obtain a complete
proximal gradient algorithm, we need to find the step size
1) as will be described next.

Stepsize

As mentioned in [33], if the step size A) €[0,1/L], where
L is the Lipschitz constant of Vgj(e;), then the proximal
gradient algorithm converges to yield the optimal solu-
tion. We next derive an expression for L. Specifically, we

need to find L such that || Vgl( (1)> Vg1 ( (2)> o< L |

(-

to

otg )) l2 for any Otg ) * ocl. ), which is equivalent

W _ @
1 1
~(1) ~(2)
B’ — B

XIx-i (8 - %)

~(2)) <L

XX, (ﬁ(l) 3 (12)

for any (ﬁ(l) ,8(1)) #* (ﬂ(z) ﬂ(Z)) Let y and y be the

maximum eigenvalues of Xzi _; and Xzi _i, respec-
tively. It is not difficult to see that (12) will be satisfied
if L = 2(y + y). Note that XZiX_i and X_,'XL have
the same set of eigenvalues. And thus, y can be found
using a numerical algorithm with a computational com-
plexity of O((min(n,p))?). After obtaining L, the step
size of our proximal gradient algorithm can be cho-
sen to be A = 1/L. Note that A’”? does not change
across iterations, and it only needs to be computed once.
Since the sum of the eigenvalues of a matrix is equal
to the trace of matrix, another possible value for L is
2 (trace (XLX_I') + trace (5(25(_1')), which can save the
cost of computing y and y. However, this value of L is
apparently greater than 2(y + y), which reduces the step

size (7, and may affect the convergence speed of the
algorithm.
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Algorithm

The proximal gradient solver of (4) for inference of differ-
ential gene networks is abbreviated as ProGAdNet, and is
summarized in the following table.

Algorithm 1 ProGAdNet algorithm for solving optimiza-
tion problem (4): proxg(X, X, A1, 12)

Input data X and X, and parameters A; and Ay
Compute the maximum eigenvalues of X_,'XL and
5(,,5(7_"1«, y and 7, respectively; set step size A0 =
/1207 + 7). ]
Set initial values of 8, and B;
repeat

Compute Vg1 (B;) =2 (XziX_iBi - Xzix,’) and

Vgl(Bi) =2 (Xzii—iﬁi - Xiiz)

Compute t = B; — AVVgi(B) and t = B, —

ADVgi(B) A
20 2000 .

Compute <,Bij ,,Bij ),] =1,...,p, from (11)
Compute 3,7- and:ﬂij,j =1,...,p, from (10)

Update B; and ﬁi: Bij = ,é,'/ and ﬁij =Bijj=1...,p
until convergence
Return B; and ;.

Maximum values of A1 and A»

The ProGAdNet solver of (4) is outlined in Algorithm 1
with a specific pair of values of A1 and X,. However, we
typically need to solve the optimization problem (4) over
a set of values of A1 and XAy, and then either use cross val-
idation to determine the optimal values of A1 and Aj, or
use the stability selection technique to determine nonzero
elements of 8, and [3 ;» as will be described later. Therefore,
we also need to know the maximum values of A1 and A,. In
the following, we will derive expressions for the maximum
values of A1 and Aj.

When we determine the maximum values of A
(denoted as A1max), A2 can be omitted in our optimiza-
tion problem, since when A1 = A1max, we have ; = 0
and ,31']' = 0, Vi and j. Thus, we can use the same method
for determining the maximum value of A in the Lasso
problem [36] to find A max, which leads to

A max = Max {max 2|ijx,-|, max 2|)~(}«T§q|} . (13)
J#i J#i

The maximum value of Ay, A2 max depends on Aj. It is
difficult to find Agmax exactly. Instead, we will find an
upper-bound for A max. Let us denote the objective func-
tion in (4) as J(B;, ﬁi), and let the jth column of X_; (X))
be z; (z;). If the optimal solution of (4) is B; = Bi = B
then the subgradient of J(8;, B;) at the optimal solution
should contain the zero vector, which yields
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2z] (x; — X_iB*) + A1syj + hasy=0, j=1,...,p— 1
277 (f(i — X_iﬁ*>+ )»151]‘ + )»2521‘:0, j=1...,p—1,

(14)
where s;; = 1if B > 0, = —1if 8 < 0, 0or € [—1,1] if
Bij = 0, and so; € [—1,1], and similarly, 51; = 1 if ﬁij > 0,
= —1if Bj < 0,0r €[—1,1]if B = 0, and 55 €[—1,1].
Therefore, we should have A, > |2ij (xi — X_iB*) +
)\.1$1j| and Ay > |2ijT (f(l — )N(_iﬂ*) + )\1§1j|; which
can be satisfied if we choose Aj
227 (x; — X_if*) |, h + 23] (ii - X,iﬂ*) I}. Therefore,
the maximum value of A can be written as

= max;max{A; +

A2 max = max max{i; + |2ij (xi — X_iB¥) |, M
J#L
5 (15)
+ %7 (% — X-iB”) ).

To find Agmax from (15), we need to know B*. This
can be done by solving the Lasso problem that minimizes
JB) =l xi =X I” + || &% = X—iB > +221 || B |h
using an efficient algorithm such as glmnet [37].

Stability selection

As mentioned earlier, parameter 11 encourages sparsity
in the inferred gene network, while 1y induces sparsity in
the changes of the network under two conditions. Gen-
erally, larger values of A; and A induce a higher level
of sparsity. Therefore, appropriate values of 11 and A;
need to be determined, which can be done with cross
validation [37]. However, the nonzero entries of matri-
ces B and B, estimated with a specific pair of values
of A; and Ay determined by cross validation, may not
be stable in the sense that small perturbation in the
data may result in considerably different B and B. We
can employ an alternative technique, named stability
selection [38], to select stable variables, as described in
the following.

We first determine the maximum value of X,
namely Ajmax, using the method described earlier, then
choose a set of ki values for Aj, denoted as S; =
{)\lmax; 0(1)»1 max,a%kl maxs - -« 0/1(1—1)\1 max}r where 0 <
a1 < 1. For each value A1 € &;, we find the
maximum value of Ay, namely Aymax(A1), and then
choose a set of ky values for Ay, denoted Sp(A1) =
{A2max(A1), @2A2 max (A1), - . . :alz(zil)LZmax()Ll)}r where 0 <
oy < 1. This gives a set of K = kiky pairs of (A1, X2).
After we create the parameter space, for each (11, Ay) pair
in the space, we randomly divide the data (X, )~() into two
subsets of equal size, and infer the network with our prox-
imal gradient algorithm using each subset of the data. We
repeat this process for N times, which yields 2N estimated

network matrices, B and B. Typically, N = 50 is chosen.
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Let m(k), ml(lk)
and bz] s, and (bij — Z)ij)’s, respectively, obtained with the
kth pair of (%1,42). Then, ry = YK (k> J(NK), 7 =

Yoy’ J(NK), and Ary = Yy Am(k) /(NK) give the
frequency of an edge from gene j to gene i detected under
two conditions, and the frequency of the changes for an
edge from gene j to gene i, respectively. A larger ry;, 7j;, or
Arjj indicates a higher likelihood that an edge from gene
j to gene i exists, or the edge from gene j to gene i has
changed. Therefore, we will use r;, 7;; and Arj to rank
the reliability of the detected edges and the changes of
edges, respectively. Alternatively, we can declare an edge
from gene j to gene i exists if r;; > c or 7; > ¢; and
similarly the edge between gene j to gene i has changed
if Arj > c, where c is constant and can be any value
n [0.6,0.9] [38].

The software package in Additional file 1 includes com-
puter programs that implement Algorithm 1, as well as
stability selection and cross validation. The default values
for parameters o1, a, k1, and ky in stability selection are
0.7, 0.8, 10, and 10, respectively. In cross validation, a set
S; of ky values of A1 and a set Sy (A1) of ky values of A, for
each A; were created similarly, and the default values of 1,
as, k1, and ky are 0.6952, 0.3728, 20, and 8, respectively.

,and Aml(«;() be the number of nonzero l;ij’s

Software glmnet and Iqa

Two software packages, glmnet and lqa, were used in com-
puter simulations. The software glmnet [37] for solving
the Lasso problem is available at https://cran.r-project.
org/web/packages/glmnet. The software lqa [28] used in
[27] for inferring multiple gene networks is available at
https://cran.r-project.org/web/packages/lqa/.

Results

Computer simulation with linear regression model

We generated data from one of p pairs of linear regres-
sion models in (3) instead of all p pairs of simultaneous
equations in (2), or equivalently (3), as follows. Without
loss of generality, let us consider the first equation in (3).
The goal was to estimate 8, and 8, and then identify pairs
(Bi1, Bil), where ;1 # ﬁil. Entries of n x (p — 1) matri-
ces X_; and X_; were generated independently from the
standardized Gaussian distribution. In the first simula-
tion setup, we chose n = 100 and p — 1 = 200. Taking
into account the sparsity in 8, we let 10% of §8,’s entries
be nonzero. Therefore, twenty randomly selected entries
of B, were generated from a random variable uniformly
distributed over the intervals [0.5,1.5] and [ —1.5, —0.5],
and remaining entries were set to zero. Similarly, twenty
entries of B; were chosen to be nonzero. Since the two
regression models are similar, meaning that most entries
of B, are identical to those of B;, ; was generated by
randomly changing 10 entries of 8, as follows: 4 randomly
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selected nonzero entries were set to zero, and 6 randomly
selected zero entries were changed to a value uniformly
distributed over the intervals [0.5,1.5] and [ —1.5, —0.5].
Of note, since the number of nonzero entries in B is
greater than the number of zero entries, the number of
entries changed from zero to nonzero (which is 6) is
greater than the number of entries changed from nonzero
to zero (which is 4). The noise vectors e; and €; were gen-
erated from a Gaussian distribution with mean zero and
variance o2 varying from 0.01 to 0.05, 0.1, and 0.5, and
then x; and X; were calculated from (3).

Simulated data x, X1, X_; and X_; were analyzed with
our ProGAdNet, Iqa [28] and glmnet [37]. Since lqa was
employed by [27], the results of lqa represent the per-
formance of the network inference approach in [27]. The
glmnet algorithm implements the Lasso approach in [39].
Both ProGAdNet and lqa estimate 8, and B, jointly by
solving the optimization problem (4), but glmnet esti-
mates B, and 8, separately, by solving the followmg two
problems separately, ﬂl = argming (I x1 — X_18; I

X 1By 12 +2a |

By l1. The lqa algorithm uses a local quadratic approxi-
mation of the nonsmooth penalty term [40] in the objec-
tive function, and therefore, it cannot shrink variables to
zero exactly. To alleviate this problem, we set ﬁil = 0if
|Bi]l < 1074, and similarly B;; = 0if [Bi1| < 1074, where
@1 and:,Bil represent the estimates of 8;; and ﬁﬂ, respec-
tively. Five fold cross validation was used to determine the
optimal values of parameters A; and X, in the optimiza-
tion problem. Specifically, for ProGAdNet and lqa, the
prediction error (PE) was estimated at each pair of values
of A1 and Ay, and the smallest PE along with the corre-
sponding values of 11 and A2, A1 min and A min, were deter-
mined. Then, the optimal values of A; and X\, were the val-
ues corresponding to the PE that was two standard error
(SE) greater than the minimum PE, and were greater than
A1 min and A min, respectively. For glmnet, the optimal val-
ues of A1 and Ay were determined separately also with the
two-SE rule.

The inference process was repeated for 50 replicates of
the data, and the detection power and the false discovery
rate (FDR) for (8, ﬁl) and A =p,— Bl calculated from
the results of the 50 replicates in the first simulation setup
are plotted in Fig. 1. It is seen that all three algorithms
offer almost identical power equal or close to 1, but exhibit
different FDRs. The FDR of lqa is the highest, whereas the
FDR of ProGAdNet is almost the same as that of glmnet
for B, and B, and the lowest for AB;.

In the second simulation setup, we let sample size n =
150, noise variance o2 = 0.1, and the number of variables
p — 1 be 500, 800, and 1000. Detection power and FDR are
depicted in Fig. 2. Again, the three algorithms have almost
identical power, and ProGAdNet offers an FDR similar to

+41 || By ll1, and ﬂl = argming || X1 —


https://cran.r-project.org/web/packages/glmnet
https://cran.r-project.org/web/packages/glmnet
https://cran.r-project.org/web/packages/lqa/
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that of glmnet, but lower than that of lqa for 8; and B,
and the lowest FDR for Af;. Simulation results in Figs. 1
and 2 demonstrate that our ProGAdNet offers the best
performance when compared with glmnet and lqa. The
CPU times of one run of ProGAdNet, lqa, and glmnet for
inferring a linear model with n = 150, p — 1 = 1,000,
and 02 = 0.1 at the optimal values of 1 and Ay were 5.82,
145.15, and 0.0037 s, respectively.

Computer Simulation with Gene Networks

The GeneNetWeaver software [41] was used to generate
gene networks whose structures are similar to those of
real gene networks. Note that GeneNetWeaver was also
employed by the DREAMS5 challenge for gene network
inference to simulate golden standard networks [12].
GeneNetWeaver outputs an adjacency matrix to charac-
terize a specific network structure. We chose the number
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of genes in the network to be p = 50, and obtained ap x p
adjacency matrix A through GeneNetWeaver. The num-
ber of nonzero entries of A, which determined the edges
of the network, was 62. Hence the network is sparse, as the
total number of possible edges is p(p — 1) = 2,450. We
randomly changed 6 entries of A to yield another matrix
A as the adjacency matrix of the gene network under
another condition. Note that the number of changed edges
is small relative to the number of existing edges.

After the two network topologies were generated, the
next step was to generate gene expression data. Letting a;;
be the entry of A on the ith row and the jth column, we
generated a p X p matrix B such that b; = 0ifa; = 0,
and b;; was randomly sampled from a uniform random
variable on the intervals [—1,0) and (0,1] if a; # 0.
Another p x p matrix B was generated such that l;ij = bj

if aj = ay, or b was randomly generated from a uni-
form random variable on the intervals [ —1,0) and (0, 1] if
aj # aj;. Note that (2) gives X = E(I — B)!and X =
E(I — B)~L. These relationships suggest generating first
entries of E and E independently from a Gaussian distri-
bution with zero mean and unit variance, and then finding
matrices X and X from these two equations, respectively.
With real data, gene expression levels X and X are mea-
sured with techniques such as microarray or RNA-seq,
and there are always measurement errors. Therefore, we
simulated measured gene expression dataasY = X +V
and Y = X + V, where V and V model measurement
errors that were independently generated from a Gaussian
distribution with zero mean and variance o2 that will be
specified later. Fifty pairs of network replicates and their
gene expression data were generated independently.
Finally, gene networks were inferred with our ProGAd-
Net algorithm by solving the optimization problem (4),
where x;, X_;, X;, and )~(_l’ were replaced with the mea-
sured gene expression data y;, Y_;, i, and Y_;. Stabil-
ity selection was employed to rank the edges that were
changed under two conditions. As comparison, we also
used Lasso to infer the network topology under each
condition by solving the following optimization problems

B =argming | Y —YB |2 441 | B |1

subjectto b; =0,i=1,...,p,
. T (16)
B =arg ming | Y —YB ||© +41 | B |1

subject to ZJ,'i =0,i=1,...,p.

Note that each optimization problem can be decomposed
into p separate problems that can be solved with Lasso.
The glmnet algorithm [37] was again used to implement
Lasso. The stability selection technique was employed
again to rank the differential edges detected by Lasso. The
lqa algorithm was not considered to infer simulated gene
networks, because it is very slow and its performance is
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worse than ProGAdNet and Lasso as shown in the pre-
vious section. We also employed the GENIE3 algorithm
in [42] to infer B and B separately, because GENIE3 gave
the best overall performance in the DREAMS5 challenge
[12]. Finally, following the performance assessment proce-
dure in [12], we used the precision-recall (PR) curve and
the area under the PR curve (AUPR) to compare the per-
formance of ProGAdNet with that of Lasso and GENIE3.
For ProGAdNet and Lasso, the estimate of AB = B — B
was obtained, and the nonzero entries of AB were ranked
based on their frequencies obtained in stability selection.
Then, the PR curve for changed edges was obtained from
the ranked entries of AB from pooled results for the 50
network replicates. Two lists of ranked network edges
were obtained from GENIE3: one for B and the other
for B. For each cutoff value of the rank, we obtain an
adjacency matrix A from B as follows: the (i, j)th entry
of A a; = 1if by is above the cutoff value, and other-
wise a;; = 0. Similarly, another adjacency matrix A was

obtained from B. Then, the PR curve for changed edges
detected by GENIE3 was obtained from A — A, again from
pooled results for the 50 network replicates.

Figures 3 and 4 depict the PR curves of ProGAdNet,
Lasso, and GENIES3 for measurement noise variance o2 =
0.05 and 0.5, respectively. The number of samples varies
from 50, 100, 200 to 300. It is seen from Fig. 3 that our
ProGAdNet offers much better performance than Lasso
and GENIE3. When the noise variance increases from 0.05
to 0.5, the performance of all three algorithms degrades,
but our ProGAdNet still outperforms Lasso and GENIE3
considerably, as shown in Fig. 4. Table 1 lists AUPRs of
ProGAdNet, Lasso and GENIE3, which again shows that
our ProGAdNet outperforms Lasso and GENIE3 consis-
tently at all sample sizes.

Analysis of breast cancer data

We next use the ProGAdNeT algorithm to analyze RNA-
seq data of breast tumors and normal tissues. In The
Cancer Genome Atlas (TCGA) database, there are RNA-
seq data for 1098 breast invasive carcinoma (BRCA) sam-
ples and 113 normal tissues. The RNA-seq level 3 data
for 113 normal tissues and their matched BRCA tumors
were downloaded. The TCGA IDs of these 226 sam-
ples are given in Additional file 2. The scaled estimates
of gene expression levels in the dataset were extracted,
and they were multiplied by 10°, which yielded tran-
scripts per million value of each gene. The batch effect
was corrected with the removeBatchEffect function in the
Limma package [43] based on the batch information in
the TCGA barcode of each sample (the “plate” field in
the barcode). The RNA-seq data include expression levels
of 20,531 genes. Two filters were used to obtain infor-
mative genes for further network analysis. First, genes
with their expression levels in the lower 30 percentile
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were removed. Second, the coefficient of variation (CoV)
was calculated for each of the remaining genes, and then
genes with their CoVs in the lower 70 percentile were dis-
carded. This resulted in 4310 genes, and their expression
levels in 113 normal tissues and 113 matched tumor tis-
sues were used by the ProGAdNet algorithm to jointly

infer the gene networks in normal tissues and tumors,
and then to identify the difference in the two gene net-
works. The list of the 4310 genes is in Additional file 3,
and their expression levels in tumors and normal tis-
sues are in two data files in the software package in
Additional file 1.
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Table 1 AUPRs of ProGAdNet, Lasso, and GENIE3 for detecting the changed edges of simulated gene networks

o2 =005 02 =05
# samples ProGAdNet Lasso GENIE3 ProGAdNet Lasso GENIE3
50 0.206 0.023 0.018 0.106 0.018 0.014
100 0.288 0.025 0.028 0.202 0.021 0.022
200 0.356 0.030 0.039 0.280 0.024 0.031
300 0.380 0.031 0.044 0.289 0.026 0.038

Since small changes in bj; in the network model (1) may
not have much biological effect, we regarded the regu-
latory effect from gene j to gene i to be changed using
the following two criteria rather than the simple criterion
bj; # bj;. The first criterion is |bj; — bj;| > min{|bj;|, |bji|},
which ensures that there is at least one-fold change rel-
ative to min{|1~7ji|, |bji|}. However, when one of l;ji and bj;
is zero or near zero, this criterion does not filter out very
small |bj; — bj;|. To avoid this problem, we further consid-

ered the second criterion. Specifically, nonzero Eﬁ and bj;
for all j and i were obtained, and the 20 percentile value
of all Il;ji| and |bj;| , T, was found. Then, the second crite-
rion is max{|1~9ji|, |bj;]} > T. As in computer simulations,
the stability selection was employed to identify network
changes reliably. As the number of genes, 4310, is quite
big, it is time consuming to repeat 100 runs per A; and Ay
pair. To reduce the computational burden, we used five-
fold cross validation to choose the optimal values of 11 and
A based on the two-SE rule used in computer simulation,
and then performed stability selection with 100 runs for
the pair of optimal values. Note that stability selection at
an appropriate point of hyperparameters is equally valid
compared with that done along a path of hyperparame-
ters [38]. The threshold for Ar;; for determining network
changes as described in the Method section was chosen to
be c =0.9.

Our network analysis with ProGAdNeT identified 268
genes that are involved in at least one changed edge.
Names of these genes are listed in Additional file 4. We
named the set of these 268 genes as the dNet set. We
also extracted the raw read count of each gene from the
RNA-seq dataset and employed DESeq2 [44] to detect
the differentially expressed genes. The list of 4921 dif-
ferentially expressed genes detected at FDR < 0.001 and
fold change > 1 is also in Additional file 4. Among 268
dNet genes, 196 genes are differentially expressed, and
the remaining 72 genes are not differentially expressed, as
shown in Additional file 4.

To assess whether the dNet genes relate to the dis-
ease status, we performed gene set enrichment analysis
(GSEA) with the C2 gene sets in the molecular signa-
tures database (MSigDB) [45, 46]. C2 gene sets consist
of 3777 human gene sets that include pathways in major
pathway dabases such as KEGG [47], REACTOME [48],

and BIOCARTA [49]. After excluding gene sets with more
than 268 genes or less than 15 genes, 2844 gene sets
remained. Of note, the default value for the minimum
gene set size at the GSEA website is 15. Here we also
excluded the gene sets whose size is greater than 268 (the
size of the dNet set), because large gene sets may tend to
be enriched in a small gene set by chance. Searching over
the names of these 2844 gene sets with key words “breast
cancer’, “breast tumor’, “breast carcinoma” and “BRCA”
through the “Search Gene Sets” tool at the GSEA website
identified 258 gene sets that are related to breast cancer.
Using Fisher’s exact test, we found that 121 of 2844 C2
gene sets were enriched in the dNet gene set at a FDR of
<1073, The list of the 121 gene sets is in Additional file 5.
Of these 121 gene sets, 31 are among the 258 breast can-
cer gene sets, which is highly significant (Fisher’s exact test
p-value 2 x 1077). The top 20 enriched gene sets are listed
in Table 2. As seen from names of these gene sets, 11 of
the 20 gene sets are breast cancer gene sets, and 7 sets
are related to other types of cancer. These GSEA results
clearly show that the dNet gene set that our ProGAdNet
algorithm identified is very relevant to the breast cancer.

Analysis of kidney cancer data

We also analyzed another dataset in the TCGA database,
the kidney renal clear cell carcinoma (KIRC) dataset,
which contains the RNA-seq data of 463 tumors and
72 normal tissues. The RNA-seq level 3 data for the 72
normal tissues and their matched tumors were down-
loaded. The TCGA IDs of these 144 samples are given in
Additional file 6. We processed the KIRC data in the same
way as in processing the BRCA data. After the two filter-
ing steps, we again got expression levels of 4310 genes.
The list of the 4310 genes is in Additional file 7, and their
expression levels in 72 tumors and 72 normal tissues are
in two data files in Additional file 1.

Analysis of the KIRC data with ProGAdNet identified
1091 genes that are involved in at least one changed edge.
We chose the top 460 genes that are involved in at least
3 changed edge to do further GSEA. Names of these 460
genes are listed in Additional file 8. We named the set of
these 460 genes as the dNetK set. We also extracted the
raw read count of each gene from the RNA-seq dataset
and employed DESeq2 [44] to detect the differentially



Wang et al. BVIC Bioinformatics (2019) 20:224

Page 11 of 15

Table 2 Top 20 MSigDB C2 gene sets that are enriched in the dNet gene set identified from the BRCA data

Gene sets g-value
SMID BREAST CANCER LUMINAL A UP 1.55E-27
NAKAYAMA SOFT TISSUE TUMORS PCA2 DN 1.73E-20
TURASHVILI BREAST DUCTAL CARCINOMA VS DUCTAL NORMAL DN 1.40E-16
SMID BREAST CANCER RELAPSE IN LUNG DN 1.40E-16
POOLA INVASIVE BREAST CANCER UP 1.25E-12
SMID BREAST CANCER RELAPSE IN BONE UP 2.35E-12
TURASHVILI BREAST DUCTAL CARCINOMA VS LOBULAR NORMAL DN 2.72E-12
VECCHI GASTRIC CANCER ADVANCED VS EARLY UP 3.04E-12
MCLACHLAN DENTAL CARIES UP 3.04E-12
POOLA INVASIVE BREAST CANCER DN 3.04E-12
TURASHVILI BREAST LOBULAR CARCINOMA VS DUCTAL NORMAL DN 9.32E-12
CROMER TUMORIGENESIS UP 1.26E-11
TURASHVILI BREAST LOBULAR CARCINOMA VS LOBULAR NORMAL UP | 1.52E-11
DOANE BREAST CANCER ESR1 UP 1.52E-11
LIEN BREAST CARCINOMA METAPLASTIC VS DUCTAL DN 2.28E-11
SABATES COLORECTAL ADENOMA DN 3.70E-09
JAEGER METASTASIS DN 4.31E-09
WALLACE PROSTATE CANCER RACE UP 4.46E-09
ANASTASSIOU MULTICANCER INVASIVENESS SIGNATURE 4.68E-09
KORKOLA TERATOMA 7.24E-09

Eleven gene sets related to BRCA are highlighted

expressed genes. The list of 5432 differentially expressed
genes detected at FDR <0.001 and fold change > 1 is also
in Additional file 8. Among 460 dNetK genes, 395 genes
are differentially expressed, and the remaining 65 genes
are not differentially expressed, as shown in Additional
file 8.

After excluding genes sets with more than 460 genes
or less than 15 genes from the 3777 human C2 gene sets
in MSigDB, we obtained 3019 gene sets for GSEA. Using
Fisher’s exact test, we found 251 of the 3019 C2 gene sets
were enriched in the dNetK set of 460 genes at a FDR
of < 1073, The list of the 251 gene sets is in Additional
file 9. The top 20 enriched gene sets are listed in Table 3.
Among the top 20 gene sets, 2 gene sets are related to
kidney diseases, 8 gene sets are related to several differ-
ent types of cancer, and 5 gene sets are related to the
immune system. The 460 genes were ranked according to
the number of changed edges that these genes are involved
in, and the top 10 genes are NADH Dehydrogenase
(Ubiquinone) 1 Alpha Subcomplex 4-Like 2 (NDUFA4L2),
Uromodulin (UMOD), Angiopoietin-Like 4 (ANGPTL4),
Nicotinamide N-methyltransferase (NNMT), Carbonic

anhydrase 9 (CA9), Insulin-like growth factor binding
protein 3 (IGFBP3), Apolipoprotein E/C1 (APOE/C1),
complement component 3 (C3), vimentin (VIM), and
complement C4A. Eight of the top 10 genes except C3
and C4A have been reported to be implicated in renal cell
carcinoma (RCC), as discussed in the next section.

Discussion

Computer simulations demonstrated that our ProGAd-
Net significantly outperformed three other algorithms,
glmnet, GENIE3, and lqa, in detecting network changes.
The performance gain of ProGAdNet over glmnet and
GENIE3 is expected, because glmnet and GENIE3 infer
two gene networks separately, while ProGAdNet infers
two networks jointly and takes into account the similar-
ity between two networks. Although ProGAdNet and lqa
solve the same optimization problem, ProGAdNet sig-
nificantly outperforms lqa. The performance gap is due
to the fact that the lqa algorithm uses an approximation
of the objective function, whereas our algorithm solves
optimization problem (4) exactly. In other words, our Pro-
GAdNet algorithm can always find the optimal solution
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Table 3 Top 20 MSigDB C2 gene sets that are enriched in the dNetK gene set identified from the KIRC data
Gene sets g-value
WALLACE PROSTATE CANCER RACE UP 4.46E-36
POOLA INVASIVE BREAST CANCER UP 3.80E-34
FLECHNER BIOPSY KIDNEY TRANSPLANT REJECTED VS OK UP | 8.50E-31
SCHUETZ BREAST CANCER DUCTAL INVASIVE UP 7.59E-30
MCLACHLAN DENTAL CARIES UP 7.59E-30
NAKAYAMA SOFT TISSUE TUMORS PCA1 UP 1.43E-26
JAATINEN HEMATOPOIETIC STEM CELL DN 4 27E-24
WIELAND UP BY HBV INFECTION 1.22E-20
PICCALUGA ANGIOIMMUNOBLASTIC LYMPHOMA UP 1.89E-19
RUTELLA RESPONSE TO HGF VS CSF2RB AND IL4 UP 5.83E-18
HSIAO LIVER SPECIFIC GENES 6.39E-17
LINDGREN BLADDER CANCER CLUSTER 2B 1.56E-16
DELYS THYROID CANCER UP 8.42E-16
TAKEDA TARGETS OF NUP98 HOXA9 FUSION 10D DN 1.18E-14
WINTER HYPOXIA METAGENE 1.19E-14
LEE DIFFERENTIATING T LYMPHOCYTE 7.91E-14
HINATA NFKB TARGETS KERATINOCYTE UP 1.34E-13
HOSHIDA LIVER CANCER SUBCLASS S3 2.48E-13
RODWELL AGING KIDNEY NO BLOOD UP 2.78E-13
TAKEDA TARGETS OF NUP98 HOXA9 FUSION 8D DN 1.13E-11

Eight gene sets related to cancer are highlighted

to the optimization problem, since the objective func-
tion is convex, but the Iqa algorithm generally cannot find
the optimal solution. Moreover, our computer simulations
show that our ProGAdNet algorithm is much faster than
the lqa algorithm.

As mentioned earlier, eight of the top 10 genes in the
differential gene network of KIRC except C3 and C4A
have been reported to be implicated in renal cell carci-
noma (RCC). Specifically, NDUFA4L2 is overexpressed
in clear cell RCC (ccRCC); its mRNA level is correlated
with tumor stage and overall survival time [50, 51]; and
the association of NDUFA4L2 with ccRCC is regulated by
ELK1 [52]. UMOD expression is downregulated in RCC
[53, 54], and the homozygous genotype of UMOD is asso-
ciated with more aggressive RCC [55]. ANGPTL4 plays
an important role in several cancers [56—60]. It has been

showed that the serum ANGPTL4 level in RCC patients
were higher than the level in patients with other types of
solid tumor, such as bladder cancer, breast cancer, gas-
trointestinal cancer and lung adenocarcinoma, suggesting
that the serum ANGPTL4 may be a diagnostic and prog-
nostic biomarker for RCC [61]. NNMT is over-expressed
in RCC; its high expression level is significantly associ-
ated with unfavorable prognosis of RCC [62]; and it can
potentially serve as a biomarker for early detection of
RCC [63]. CA9 is a transmembrane member of the car-
bonic anhydrase family. It is not expressed in healthy
renal tissue, but is overexpressed in most ccRCC; it is
a promising molecular marker for diagnosis, prognosis
and therapy of CCRCC [64, 65]. IGFBP3 shows overex-
pression in association with markers of poor prognosis
in many tumour types [66], including RCC [67]. Single
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nucleotide polymorphisms (SNPs) at the APOE/C1 locus
are found to be associated with RCC risk [68]. The expres-
sion of vimentin was upregulated significantly in RCC
[69, 70], and the expression level of vimetin was posi-
tively correlated with the pathological grade and clinical
stage of RCC [70]. These results show that the dNetK
gene set that our ProGAdNet algorithm identified from
the KIRC dataset is informative about the cancer disease
status.

Conclusion

In this paper, we developed a very efficient algorithm,
named ProGAdNet, for inference of two gene networks
based on gene expression data under two different con-
ditions, which were further used to identify differential
changes in the network. Computer simulations showed
that our ProGAdNet offered much better inference accu-
racy than existing algorithms. Analysis of a set of RNA-seq
data of breast tumors and normal tissues with ProGAdNet
identified a set of genes involved in differential changes
of the gene network. A number of gene sets of breast
cancer or other types of cancer are significantly enriched
in the identified gene set. Network analysis of a kid-
ney cancer dataset also identified a set of genes involved
in network changes, and the majority of the top genes
identified have been reported to be implicated in kidney
cancer. These results show that the identified gene sets
are very informative about the disease status of the tis-
sues. As gene network rewiring occurs frequently under
different molecular context, our ProGAdNet algorithm
provides a valuable tool for identifying changed gene-gene
interactions.
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