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Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is commonly initiated by

ectopic beats originating from a small myocardial sleeve extending over the pulmonary

veins. Pulmonary vein isolation therapy attempts to isolate the pulmonary veins from

the left atrium by ablating tissue, commonly by using radiofrequency ablation. During

this procedure, the cardiologist records electrical activity using a lasso catheter, and the

activation pattern recorded is used as a guide toward which regions to ablate. However,

poor contact between electrode and tissue can lead to important regions of electrical

activity not being recorded in clinic. We reproduce these signals through the use of

a phenomenological model of the cardiac action potential on a cylinder, which we fit

to post-AF atrial cells, and model the bipolar electrodes of the lasso catheter by an

approximation of the surface potential. The resulting activation pattern is validated by

direct comparison with those of clinical recordings. A potential application of the model

is to reconstruct the missing electrical activity, minimizing the impact of the information

loss on the clinical procedure, and we present results to demonstrate this.

Keywords: atrial fibrillation, radiofrequency ablation, pulmonary vein isolation, mathematical model, pulmonary

vein recording, signal reconstruction, minimal cardiac models, cardiology

INTRODUCTION

Cardiac disease is themost common cause of death among the adult population worldwide (Murray
and Lopez, 1997). Of the main contributors to cardiac disease, atrial fibrillation (AF) is the most
common arrhythmia (Kannel et al., 1998), with a lifetime incidence of one in four at age 40 (Lloyd-
Jones et al., 2004) and prevalence aged 80+ of approximately 9%. AF is associated with a near
doubling of mortality (Benjamin et al., 1998) due primarily to a three-fold increase in the likelihood
of congestive heart failure and a five-fold increase in the likelihood of stroke (Camm et al., 2012).
Consequently, AF is a significant burden on public health. For example, in the UK the cost of
treating cases of AF and complications thereof are estimated at £2 billion annually (The Office
of Health Economics, 2009), whilst in the USA AF is predicted to double in prevalence from 2010
to 2030 (Colilla et al., 2013). AF is characterized by a rapid, irregular, atrial rate due to spiralling
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wavefronts (Jalife, 2003; Nattel et al., 2008; Calvo et al., 2014),
and is most commonly initiated from a small section of the left
atrial myocardium that extends over the base of the pulmonary
veins [responsible for an estimated 88% (Chen et al., 1999) to 94%
(Haissaguerre et al., 1998) of cases].

Herein we focus on Circumferential Pulmonary Vein Isolation
(CPVI), a minimally invasive surgical technique for treatment
of AF, in which a circular lesion is formed surrounding the
pulmonary vein via the application of radiofrequency energy,
electrically isolating the left atrium from the pulmonary vein and
so preventing the propagation of an action potential (AP) in or
out of the myocardial sleeve. Whilst the initial success rate of
pulmonary vein isolation is approximately 85% (Bänsch et al.,
2013), recurrence rates 5 months after ablation therapy can be
as high as 30% in paroxysmal AF patients or 78% in permanent
AF patients (Oral et al., 2002). It is desirable to ensure that
the ablation process is completed as quickly as possible, as the
duration of the procedure is known to strongly correlate with the
rate of recurrence (Shim et al., 2013). Additionally, ablation of
the pulmonary veins carries a risk of pulmonary vein stenosis
(Robbins et al., 1998) and if complete electrical isolation is not
achieved, the lesions can become pro-arrhythmic through the
creation of conduction obstacles that facilitate the initiation of
re-entrant waves.

It is common for the initial circular lesion made during CPVI
to be incomplete and small conduction gaps remain. These are
most commonly due to poor depth penetration of the lesion
and the ablation catheter not maintaining a continuous contact
with the heart tissue. To provide a guide to the surgeon as
to the location of the conduction gaps, bipolar recordings of
electrical activity around the pulmonary vein are taken using
a lasso catheter typically consisting of 10 or 20 electrodes (see
Figure 1 for an exemplar time-trace). The conduction gap is
assumed to correspond to the location of the electrode(s) where
the first spikes are observed and these sites are targeted for further
ablation (Haissaguerre et al., 1998; Haïssaguerre et al., 2000).

FIGURE 1 | Clinical pulmonary vein recording. The pulmonary vein recording

of a patient with atrial fibrillation during pulmonary vein isolation therapy.

Spiking indicates electrical activity as the action potential propagates through

the recording catheter. Since the pulmonary vein is not a perfect cylinder, not

all electrodes make a good contact. For example, Channels 3-4, 17-18, and

19-20 show no spiking activity for this reason. These are referred to as missing

channels throughout the paper.

However, as the pulmonary vein is not a perfect cylinder it is
common for some electrodes to make poor contact with the
tissue. Figure 1 is an example of this happening in clinic, and in
this case it is difficult to infer the activation pattern across PV 17-
18 and 19-20. If these missing channels correspond to the region
of first activation, this information loss could potentially lead to
ablating the wrong region, or concluding the process has been
successful.

In this paper, we focus on developing a mathematical
representation of the phenomenology of the electrical signal
recorded from the lasso catheter and to use this to reconstruct
missing electrical signals. This is in contrast to typical approaches
to modeling the cardiac AP or the body surface ECG where
physiological detailed models are typically used (see, for example,
Clayton et al., 2011; Noble et al., 2012 for comprehensive
reviews). Developed appropriately, phenomenological models
can be used to produce patient-specific simulations of the
electrophysiology during treatment and could therefore form
a part of a therapeutic decision support system to minimize
the impact of information loss in clinic. This approach is
motivated by our experience in neurology, where mathematical
models of the phenomenology of electrical recordings from
scalp electroencephalography have demonstrable potential in
providing decision support for the diagnosis of epilepsy, without
recourse to detailed models of the underlying neurophysiology
(Schmidt et al., 2016).

The use of physiologically detailed mathematical models has
enabled personalized 3D modeling of the atria, largely involving
detailed biophysical models to investigate mechanisms behind
the sustenance of AF (McDowell et al., 2013; Zahid et al., 2016).
Additionally, fibrosis patterns have attracted significant recent
attention (McDowell et al., 2012), and results obtained from the
detailed models have elucidated the role of so called “islands of
fibrosis” in the atria (Chrispin et al., 2016). Further, techniques
are in place for the simulation of “virtual ablation” and bipolar
electrograms (Dang et al., 2005; Reumann et al., 2008; Tobon
et al., 2010; Yun et al., 2014). In a 2014 study (Hwang et al., 2014)
a variety of ablation strategies were simulated and compared in
a computational study, finding that CPVI with two additional
linear lesions (along the roof and posterior wall) showed the
highest AF termination rate.

However, such studies typically make the following
assumptions:

1. the data collected and used to constrain the model is the
‘ground truth’;

2. ablated lesions made by the cardiologist are continuous.

Both assumptions are likely to be invalidated in the clinical
setting, where significant information loss due to poorly
connected electrodes is commonplace and conduction gaps
create discontinuous lesions. These were highlighted in 2011
by Miyamoto et al. (2011) who proposed a method to
infer a pulmonary vein activation map via gentle movement
of the catheter. In conclusion they raised concerns that
signals were unreliable due to some electrodes touching
the endocardium whilst others did not. A further issue is
that bipolar electrodes located symmetrically to a conduction
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gap will record a zero signal despite a wavefront passing
through.

To address these challenges, we introduce a phenomenological
reaction-diffusion model of the cardiac AP [the so-called Bueno-
Orovio, Cherry and Fenton (BOCF) model Bueno-Orovio et al.,
2008] on a cylinder with regions of zero conduction representing
ablated tissue to build simulated representations of the bipolar
signals recorded by the lasso catheter. Our focus on a simplified
model of the phenomenology of the electrical signal, rather
than a detailed model of the underlying electrophysiology,
is two-fold. First, a cardiologist uses information from the
macroscopic electrical recordings to identify appropriate site(s)
to ablate, without recourse to any detailed understanding of the
underlying electrophysiology. Second, the time available for the
surgical procedure is of the order 1 h meaning that the model
must efficiently reproduce a signal to be of use as a decision
support tool during the procedure. The BOCF model provides
a pragmatic balance between the quality of the simulated signal
and the computational time required to produce the output.
For example, many detailed biophysical cardiac models, such as
Courtemanche et al. (1998); Nygren et al. (1998); Priebe and
Beuckelmann (1998); Iyer et al. (2004); ten Tusscher (2004)
require significant time (of order hours) to compute appropriate
APs, rendering them inappropriate in the clinical setting. In
contrast, the BOCF model can be run multiple times for
parameter estimation and sensitivity analysis over much shorter
timescales (of order seconds to minutes). There exist models,
verified either with data or by their to the output of detailed
biophysical models that satisfy these conditions (Mitchell and
Schaeffer, 2003; Bueno-Orovio et al., 2008; Fenton and Cherry,
2008).

We demonstrate that this simple model can reproduce
the activation pattern across electrodes recorded in clinic.
Furthermore, we test the potential of the model to reconstruct
recordings that have been lost to poor contact. We verify the
accuracy of the simulated recording using clinical data and
minimizing the root mean squared error between the activation
patterns in the model and those in the data. To test the
accuracy of the reconstruction, we use recordings for which all
channels are spiking cleanly, and remove a subset, so that the
original signal can be used for error calculation. Further, we
present results showing cases in which the reconstruction of
signals via the model would lead to reducing the number of RF
pulses. Reducing the number of RF pulses would both minimize
unnecessary damage to the heart and shorten the duration of
the procedure. This is significant due to the correlation between
the duration of the procedure and the rate of recurrence (Shim
et al., 2013). Finally, as we are motivated by the ultimate potential
for clinical applicability, we also demonstrate a small trial which
shows (a) that the loss of information affects the decision of
the cardiologist, and (b) that the magnitude of this effect is
reduced when the reconstructed signals are provided to the
cardiologist.

METHODS

In this section we introduce the mathematical model used
to generate the underlying AP which is in turn used to

generate a traveling wave of intracellular potential within
the pulmonary vein. We describe the methods used to
simulate the models and how their parameters may be
calibrated (either from synthetic data or clinical recordings).
We further describe how the model can be used to reconstruct
missing channels from data collected clinically from a lasso
catheter. A schematic of how the overall process might be
used to provide clinical decision support is illustrated in
Figure 2.

Mathematical Model of the Underlying AP
In the current paper we model the pulmonary vein AP
using an extension of the 1998 Fenton-Karma model
(Fenton and Cherry, 2008): the four variable Bueno-Orovio
Cherry Fenton (BOCF) model. This is a monodomain

FIGURE 2 | Schematic and application of model. Figure showing the intended

application of the model. (A) A cardiologist records Pulmonary Vein

Recordings using a lasso catheter. (B) An example of a pulmonary vein

recording with some channels not correctly spiking (missing channels). (C) A

model simulation demonstrating the propagation through a conduction gap,

showing high intracellular potential in red and low in blue. White stars are

plotted on the electrode locations. (D) The result of applying the model to the

signal in B to recover the lost channels.
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phenomenological model of the human ventricular AP first
introduced in Bueno-Orovio et al. (2008):

u̇ = ∇ · (DBOCF∇u)− (Jfi + Jso + Jsi)

v̇ = [1−H(u− θv)](v∞ − v)/τ−v −H(u− θv)v/τv

ẇ = [1−H(u− θw)](w∞ − w)/τ−w −H(u− θw)w/τw

ṡ = ((1+ tanh[ks(u− us)])/2− s)/τs.

(1)

Here u represents the transmembrane voltage, Jfi, Jso and Jsi are
phenomenological summations of the fast inward, slow outward,
and slow inward currents respectively. Jfi is effectively gated by
the gating variable v, Jso is voltage gated, and Jsi is effectively gated
by the product of the gating variables w and s. DBOCF is either a
spatially dependant diffusion constant (under the assumption of
isotropic diffusion), or a diffusion tensor (under the assumption
of anisotropic diffusion). We always take initial conditions at the
resting state, where [u(0), v(0),w(0), s(0)] = [0, 1, 1, 0]. A full
description of this model can be found in Bueno-Orovio et al.
(2008).

Calibrating BOCF Model Parameters
Given that the shape of the emergent electrical activity recorded
on the lasso catheter may be constrained by the underlying
structure and function of the AP, a propagating AP was simulated
using the detailed biophysical Courtemanche model for the
human atrium (Courtemanche et al., 1998; Imaniastuti et al.,
2014; Labarthe et al., 2014) as a proxy for clinical AP data.
A generic AP from the Courtemanche model was modified
to account for the electrical remodeling associated with AF
(Courtemanche et al., 1999) and used as the initial stimulus
for the BOCF model with parameters as defined in the sample
fitting code in the appendix of Bueno-Orovio et al. (2008). These
parameter choices were then evolved using the Nelder-Mead
Simplex Algorithm (Nelder and Mead, 1965) (implemented by
MATLAB’s FMINSEARCH), by minimizing the root mean squared
error between subsequent APs (see Figure 3). With a spatial
resolution 1x = 0.2 mm, a diffusion constant of DCourt =

2.615 was necessary for the simulated wavefront to match the
conduction velocity of 48 cm/s observed clinically (Labarthe,
2013). To eliminate any effects from boundary conditions or
transients from the stimulus, the fit was performed at the point
x = 10 mm on a tissue cable 20 mm long. A cycle length of 600
ms was used to match the clinical data. This process resulted in
the parameter choices defined in Table 1.

Figure 3 shows the shape of the propagating APs under the
above conditions using the BOCF model with parameters as in
Table 1, alongside the Courtemanche AF model as described in
Courtemanche et al. (1999). The important qualities reproduced
were conduction velocity (indicated by the simultaneous spike),
upstroke velocity, and AP duration.

For the case of anisotropic diffusion an asymmetric finite
difference method was used to simulate the BOCF model (see
van Es et al., 2014 for full details). Since in general the degree
of anisotropy for an individual patient is unknown, we included
the principal axes and eigenvalues of the diffusion tensor as
additional parameters to be optimized by our fitting algorithm.

FIGURE 3 | Propagating action potentials. Plots of Courtemanche

(Courtemanche et al., 1998) (blue), and BOCF (Bueno-Orovio et al., 2008) (red)

models using the parameters in Table 1, of an AP at a point 10 mm from the

stimulus with a spatial resolution of 0.2mm and a time step of 0.01ms. Model

calibrated by minimizing the root mean squared error using the Nelder-Mead

method. The Courtemanche model is solved using the parameters in

Courtemanche et al. (1999).

TABLE 1 | Parameter values of Bueno-Orovio Cherry Fenton model.

Parameter BOCF BOCF-AF Parameter BOCF BOCF-AF

τ+v 1.6650 1.6234 τso2 1.0261 0.9862

τ−
w1 82.6769 69.1816 kso 2.0487 2.3769

τ−
w2 9.0959 14.1985 uso 0.5149 0.9220

k−w 63.8099 65.4466 τs1 2.5879 2.5603

u−w 0.0331 0.0316 τs2 18.5596 12.5106

τ+w 213.1962 140.2385 ks 2.0468 1.5749

τfi 0.1256 0.0990 us 0.7033 1.1640

τo1 431.0734 452.4879 τsi 2.1260 2.1756

τo2 6.5724 5.5292 τw∞ 0.0637 0.0601

τso1 33.2039 25.6007 w⋆
∞ 0.6520 0.9408

DBOCF N/A 0.8314

The original parameters of the Bueno-Orovio Cherry Fenton model (Bueno-Orovio et al.,

2008) alongside the parameters obtained from our fitting algorithm. Diffusion coefficient

DBOCF was not given in the original model.

Physiological studies place the anisotropy ratio between 2 and 10,
(Koura et al., 2002; Xie and Zemlin, 2016), which were used as
bounds in our algorithms. The initial principal axes were placed
at 45 degrees to the x and y axes, maximizing the effect on the
propagation pattern.

Simulating Pulmonary Vein Recordings
2D simulations of the pulmonary vein were performed by
numerical integration of Equation (1) by a finite difference
method over a discretized cylindrical domain to represent the
excitable myocardial sleeve extending over the base of the
pulmonary vein. Dimensions vary from vein to vein, with the
right inferior typically the largest and the left inferior the smallest
(Stojanovska and Cronin, 2008). We assume dimensions within
the range of observed measurements: a length of 15 mm (Cronin
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et al., 2007) and a diameter of 12.5 mm (Cabrera et al., 2002;
Kim et al., 2005). A spatial resolution of 1x = 0.2 mm was
used to discretize this cylinder into a rectangular domain of
200 × 75 grid points. Periodic boundary conditions were used
along the lines x = 1 and x = 200, whilst Neumann boundary
conditions were used along the lines y = 1 and y = 75 (where
x and y represent nodes on the grid). We set the conductivity
to 0 to model the effect of lesions due to ablated tissue at
the relevant points, following the approach introduced in Dang
et al. (2005); Reumann et al. (2008); Tobon et al. (2010). As
we are only concerned with the effect on the AP propagation
from the ablation process, we do not require a model of the
thermodynamic processes of the catheter itself (Berjano, 2006;
Suárez et al., 2010).

A visual representation of this structure is shown in Figure 2,
which shows the propagating intracellular potential with the lines
y = 1, y = ha, and y = hr annotated (Figure 2C). An ectopic
is initiated from a stimulus along the line y = 1; the edge of
the myocardial sleeve furthest from the atrial junction. Virtual
ablation is performed by introducing a line of lesions on the circle
y = ha such thatD(x, ha) = 0. Conduction gaps aremodeled such
that D(x, ha) = DBOCF (for conductive tissue on small segments
of the circle y = ha). Consequently, semi-circular wavefront(s)
will form on the other side of the lesions. Although loosely
based on the underlying mechanisms, the values of the obtained
parameters are phenomenological, and fit to the available data to
ensure an accurate simulation on the lasso catheter electrodes,
not to provide an estimation of the real location of the conduction
gap.

We simulate pulmonary vein recordings from the lasso
catheter across n electrodes (where n is typically 10 or 20), on
y = hr, where hr > ha. The electrodes are assumed to be equally
spaced d = 200/n apart, such that for an n electrode catheter
c = (a, hr) where a = {d, 2d, ..., nd}). At each point c = (x′, y′),
an approximation for the surface potential8 described originally
in Gima and Rudy (2002) is given by:

8(x′, y′) = aD(x′, y′)

∫ ∫

(−∇u) ·

[

∇
1

r

]

dxdy, (2)

where

r =

√

(x′ − x)2 + (y′ − y)2. (3)

Bipolar recordings between electrodes i and j (denoted PV i-j
clinically) are simulated by:

PV i− j = 8(ai, hr)− 8(aj, hr). (4)

Throughout this paper, we divide the pulmonary vein into three
equal sections, with the ablation line positioned at ha = 25 and
the recording catheter positioned at hr = 50. This is a practical
consideration, as quantifying these measurements during the
procedure would be difficult given information collected as
standard in clinical practice.

Relative Activation Time Curves
The important characteristics of both the simulated and recorded
data are the activation times (from maximal absolute value of

dV/dt) of each signal compared to the others, as this gives
a representation of the wavefront shape termed the relative
activation time curve. It is necessary to use the absolute value
as the recordings are bipolar. The relative activation time curve
can be visualized by plotting the catheter along the x axis and its
activation time on the y axis, giving a curve of the activation times
of each signal relative to the others.

To understand the relationship between the relative activation
time curve and parameters of the overall pulmonary vein model,
the quantity, size and locations of conduction gaps are used
as input parameters, since these have the most profound effect
on the emerging wavefront shape. The root mean squared
error between relative activation times obtained from simulated
and clinical recordings are minimized, again using the Nelder-
Mead Simplex Search method (implemented by MATLAB’s
FMINSEARCH) to establish the location of conduction gaps which
result in the most accurate activation time curve. Here it is
important to note we do not claim to have found the location
of the conduction gap(s) via this fit, only that we have calibrated
model parameters that most closely recreate the phenomenology
of the waveforms from the recording catheter.

Reconstruction of Missing Electrodes
In the cases for which there is poor contact between recording
catheter and tissue, the signal is typically flat or white noise.
This is evident, for example, in channels PV 3-4 17-18, and 19-
20 in Figure 1. To reconstruct missing electrode recordings, a
partial relative activation time curve was obtained from the active
channels. Model parameters of the overall pulmonary vein model
were calibrated from the active channels, using the Nelder-Mead
Simplex Search (implemented by MATLAB’s FMINSEARCH).

Clinical Data
Pulmonary vein recordings used in this paper were obtained
from adult male and female subjects undergoing pulmonary vein
isolation therapy at Bristol Heart Institute. Bipolar recordings
were obtained from a deflectable, circular, 20-pole Lasso catheter
(Biosense Webster Ltd). Patients with both paroxysmal and
persistent AF were included but all cases were paced into normal
sinus rhythm by pacing at 600 ms intervals, as per standard
clinical practice. All data were appropriately anonymized prior
to their use in this study. Under United Kingdom law, patient
data collected during normal clinical routine and anonymized
before research use may be used for research without additional
consent.

RESULTS

Simulated Pulmonary Vein Recordings
First we consider how well the model can reproduce the
phenomenology of the pulmonary vein recordings when all
10 channels are active. To consider this, we use an exemplar
set of clinical pulmonary vein recordings collected during
pulmonary vein isolation therapy (as described in the methods).
The goodness of fit between clinical recordings and model
simulations is determined by minimizing the root mean squared
error between the relative activation times of the model and the
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FIGURE 4 | Parameter fitting and comparison with clinical recordings. (A) Presenting the relative activation time curves for the clinical data (presented in full in B)

(black), the model assuming isotropic diffusion (blue) and the model assuming anisotropic diffusion (red). Parameters of the model were calibrated by minimizing the

root mean squared error between clinical recording and the model using the Nelder-Mead method. (B) Presenting an exemplar of clinical pulmonary vein recordings

collected during pulmonary vein isolation therapy at the Bristol Heart Institute (black). Overlaid are the model simulations, with parameters calibrated as described in

(A), under the assumption of isotropic diffusion (blue) and isotropic diffusion (red) respectively.

data. This is achieved by varying the positions of conduction gaps
in the model. The average of ten recorded events in the data
is used to form the target relative activation time curve. This
ensures some robustness to variation in the data and enables us
to estimate the conduction gap location and width as parameters,
which should be constant until ablated.

For the chosen clinical data, and for parameter choices of
the underlying BOCF model as in Table 1, we find that the root
mean squared error between the relative activation time curve
of the clinical data and that of the model (assuming isotropic
diffusion) is minimized by placing conduction gaps centered on
points x = 65.5 and x = 167, with widths 11 and 6 respectively.
Both the number of minima and their locations are used to
optimize position and width of the conduction gaps. This is
important since both the number of minima and their locations
within the relative activation time curve emerge as a result of
the conduction gaps generating the signal. In current clinical
practice, the earliest activation time(s) (e.g., the minima of the
relative activation curve), are the most important, as these are
assumed to be closest to the conduction gap and therefore the
optimal ablation site. This is illustrated in Figure 4A, where we
also present a model fit under the assumption of anisotropic
diffusion. In this case the conduction gaps are centered on
points x = 59.5 and x = 164.5, with width 11 and 13
respectively.

In Figure 4B, we present a comparison between the original
choice of clinical pulmonary vein recordings and simulations
for the two classes of model. Time units of the model are
rescaled such that the relative activation time-scale of the model
is equivalent to that of the clinical recordings, which permits
a clearer visual comparison. Note that both classes of model
result in visually similar simulated pulmonary vein recordings.
We perform a more rigorous analysis of differences between
anisotropic and isotropic diffusion later, when considering the
ability of themodel to reconstruct missing channels in the clinical
data.

FIGURE 5 | Increase of error with prediction horizon. Illustrating how the root

mean squared error in the activation time curve scales as the number of the

ectopic event N increases away from the initial ten ectopic events used to

calibrate model parameters. The line of best fit is displayed in blue. The

periodicity in the error is likely due to rhythmic movements of the patient, such

as breathing.

Next, we tested the capacity of the model to predict future
ectopic events, given an average over an initial ten events.
For the identified choice of model parameters from the initial
ten events, we simulated a series of additional ectopic events
and for each event we calculated the root mean squared error
between relative activation time curves obtained from either
simulated or clinical ectopic events. We define t0 as the time
of the last event in the training set, and tN as the time of the
Nth subsequent ectopic event. Figure 5 shows how this error
scales as the number N of the ectopic event moves further away
from the training set. The apparent periodicity in the error is
most likely due to rhythmic movements of the patient, such as
breathing.
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FIGURE 6 | Error vs. number of reconstructed channels. Box plot illustrating how increasing the number of missing channels influences the minimized root mean

squared error between the relative activation time curves obtained from the model (assuming both anisotropic diffusion (red) and isotropic diffusion (blue)) and the

original clinical recording. For each case 20 simulations for up to 20 random choices of channels to be reconstructed were performed. (+) symbols denote outliers in

the 1% tail of the error distributions. The case of 0 reconstructed channels enables a comparison of the limit of goodness of fit between models and the clinical data.

We see that for 3 or fewer channels being reconstructed, uncertainty is predominantly due to model choice rather than the number of reconstructed channels, as we

see no significant change in the mean error between model and clinical data. We use an unequal variances t-test to determine whether the errors came from a

distribution with equal mean and find that with the exception of 3 channels reconstructed there is no significant difference in the errors between models.

Reconstructing Missing Channels
Wenow focus on the capacity of themodel to reconstructmissing
channels, exemplars of which were shown in Figure 1. This is a
key result of this paper, and the one with most relevance to a
potential clinical decision support system. To test the accuracy
of the model, we start with a clinical recording for which all
channels are active. We then eliminated a subset n (n = 0 to 5) of
the channels replacing them with a 0 time trace. Five was chosen
as the upper limit, since clinically a recording with less than
half the channels active would not be relied on for determining
the site of ablation. We then estimated model parameters using
the same approach as in the previous section, but only data
from those channels that were active. Using these parameters we
then contrasted the error between the relative activation time
curves obtained from the simulated next ectopic event and the
subsequent ectopic event from the original clinical recording
(including all channels). This enables us to assess how well the
model can reproduce clinically relevant information (since the
relative activation time curve is used for determining the site of
ablation).

Figure 6 shows a box plot for each value of n. Each box in
the box plot represents the root mean squared error between the
relative activation time curves obtained from the average across
20 model simulations (with anisotropic diffusion and without)
and that obtained from a clinically recorded ectopic event. The
case n = 0 enables us to consider the limit of the goodness of
fit between the model and the clinical data. This is effectively the
intrinsic error attributable to the choice of model. For subsequent
plots, n random channels were removed from the training set
(simulating the effect of lost information due to poor contact).
Different time intervals and different signals were used for each
calculation so that the error distribution presented is as close as

possible to the errors that we might expect to observe in clinic.
This is important as it minimizes the likelihood of observations
simply being due to an artifact of the ectopic event chosen for the
fit.

For up to 3 channels reconstructed, the median andmaximum
errors do not significantly increase over that of the control
whether or not anisotropy is considered. This is an important
result as it demonstrates reconstructing up to three missing
channels is not a significant source of additional error and
therefore the model as presented may ultimately have clinical
use under these conditions. Removing more than 3 channels
leads to information loss resulting in outliers with statistically
significant errors (see the cases for 4 and 5 channels removed).
This demonstrates the limit of the number of missing channels
that the considered models can reliably reconstruct.

To consider the whether the assumption of anisotropic
diffusion is significant, we performed an unequal variances t-test
(so-called Welch’s t-test) to test whether the errors from each
model could have come from a distribution with the same mean.
This test consistently showed no significant difference (p > 0.05),
except for the case of 3 signals reconstructed (p = 0.0414). This
suggests that whilst anisotropy is clearly important in terms of the
underlying physiology, it does not significantly affect the quality
of model fit to the phenomenology of the recorded signals. This
is an important consideration as calibration of model parameters
is more efficient under the assumption of isotropic diffusion.

Potential Clinical Application
To test the potential of this technique to aid the clinical
procedure, we presented a cardiologist specializing in pulmonary
vein isolation therapy, with three variations of clinical recordings
collected from three patients:
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FIGURE 7 | Illustrating the model reconstruction of pulmonary vein recordings.

In (A) we present the original recording with three removed channels. In (B) the

original recordings, and in (C) the original recordings combined with the

reconstructed channels using the mathematical model. We presented these

data to the cardiologist who made a decision about the tissue underlying the

channels they would ablate in each case. This process was repeated for

patients 2 and 3. In all three cases reconstruction of the missing signals

resulted in an improved clinical decision in contrast to only using the

recordings with missing signals.

1. the original clinical recordings with all channels active;
2. the original clinical recordings with key channels identifying

the earliest activation hidden;
3. a hybrid whereby we reconstruct channels (removed in

scenario 2) using the mathematical model and present these
alongside the remaining active channels.

These scenarios are illustrated in Figure 7. The cardiologist was
unaware of the origin of each recording, and to avoid bias,
the recordings were supplied in a random order. The following

TABLE 2 | Effect of signal reconstruction on clinical decision.

Patient Missing Reconstructed Original

1 PV 5-6 PV 5-6 / 17-18 PV 5-6 / 15-16

2 PV 9-10 PV 5-6 PV 5-6

3 PV 3-4 PV 9-10 PV 7-8

The channel corresponding to the area the cardiologist would ablate given the recording

with channels missing, the original data, and the data with the missing channels

reconstructed via the model. The decision made with the reconstructed signals is closer

to the original than the decision made using the missing recordings, demonstrating that

the model reconstruction has minimized the impact of the information loss on the clinical

outcome. Recordings from Patient 1 are given in Figure 7.

results were obtained (summarized in Table 2 for convenience).
For patient 1, given the original data, the first point of ablation
would have been around PV 5-6, with PV 15-16 noted as a second
choice. With channels 15-16, 17-18, and 19-20 removed, only PV
5-6 was identified as the only appropriate ablation zone. When
these channels were reconstructed by the model, PV 17-18 was
identified as the second choice of ablation target. For this patient,
the model has helped to identify a second relevant ablation target
that was not identified when channels were missing. If initial
ablation is not successful, the cardiologist will ablate in the area
surrounding the target area, hence an initial estimate closer to
the optimal location will result in successful isolation using fewer
radiofrequency pulses. This will result in a smaller region of tissue
being ablated and a shorter procedure.

In the second patient presented, a clear earliest spike time was
present on PV 5-6. The removal of PV 5-6 and its neighbors led
to PV 9-10 being identified as an ablation target. In this case, the
reconstruction led to the same zone being targeted as the original
signal, while the estimation with the recordings missing was two
channels away. For this patient, reconstruction of the missing
recordings led the cardiologist directly to the optimal decision.

In the final patient, the earliest spike, on PV 7-8, was removed,
along with PV 5-6 and 9-10. As previously, these missing
channels shifted the chosen ablation target by 2 channels. The
reconstructed signal led to a target selected which was closer to
the target chosen with all information present. As with patient 1,
we infer this result as satisfactory, as starting closer to the optimal
target will lead to quicker isolation of the pulmonary vein.

In all three cases, the missing channels influenced the decision
made by the cardiologist, demonstrating the potential impact
of information loss in clinic. However, when the cardiologist
used the recordings combined with the signals reconstructed
by the mathematical model to make a decision, the decision
made was closer to the decision that would have been made had
all information been present. Whilst these results provide only
limited proof of concept at this stage, assuming the original data
and clinical decision to represent the “ground truth,” then we
believe there is significant potential for our approach tominimize
the effect of this lost information.

DISCUSSION

In this study we have demonstrated that key features
of pulmonary vein recordings can be generated by a
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phenomenological model, in this case the BOCF model.
Calibrating parameters of the BOCF model using the post-
fibrillation AP of atrial myocytes, simulated using the biophysical
Courtemanche model, provides a method for rapid simulation of
atrial cells afflicted by AF-induced electrical remodeling. This is
in contrast to more detailed biophysical models (Courtemanche
et al., 1998; Nygren et al., 1998; Priebe and Beuckelmann, 1998;
Iyer et al., 2004; ten Tusscher, 2004) which may take several
hours to produce an output. Given that pulmonary vein isolation
therapy typically lasts at most 2 h, having a mathematical model
that can run in close to real time, is a critical advantage when
assessing suitability as a potential clinical decision support
system.

Toward this aim, a primary result of this study was to model
the phenomenology of recordings from the lasso catheter used
during the pulmonary vein isolation therapy of AF. We found
that the resulting model simulations accurately reproduce the
relative activation time curve seen in recordings from patients
undergoing this procedure. The pulmonary vein recordingsmade
in this process are not always complete; there is often the
complete loss of some of the recording channels. This is most
commonly due to poor contact made between electrodes on the
catheter and the pulmonary vein itself. This loss of information
can result in non-optimal clinical decision making during the
isolation therapy procedure. To address this issue we have
demonstrated that a mathematical model fitted to the available
channels of the data can be used to reconstruct those missing
channels and we presented evidence in support of the accuracy
of these reconstructions through comparison to clinical data. Of
note, we find that up to three channels can be reconstructed
without significantly increases the inherent error due to the use
of a model. The results show that, in principle, these ideas could
be adapted as part of a clinical decision support system, which
could be run in the operating theater and provide information to
the cardiologist during the procedure.

A potential limitation of this study is the loss of biological
detail arising from our use of a phenomenological model over
a biophysical one. However, it is important to note that the
appropriateness of any mathematical model is dependent on
the challenge it is designed to address. Here, we focus on the
case of pulmonary vein isolation therapy, where a cardiologist
is using recordings of the emergent electrical signal from the
heart to make rapid decisions about regions of the heart to ablate.
Consequently a model that can capture the phenomenology of
these recordings (which ultimately are what the cardiologist
is using to guide their decision making) is a valid approach
and does not require a detailed analysis of the contribution
of ionic channels and other physical quantities involved in AP
propagation.

In our current model a number of assumptions have been
made, most importantly regarding the conductance and the
geometry. Whilst we account for anisotropic diffusion by
considering additional parameters, the diffusion tensor used
is still homogeneous across conductive tissue, and the wave
approaching the conduction gap is planar. This is primarily since
detailed fiber direction information would not be accessible to

the cardiologist during the clinical procedure. A further key
assumption is the approximation of the pulmonary vein sleeve
as a cylinder. In the clinical procedure, the relevant region
of cardiac tissue is not only the pulmonary vein sleeve, but
also the atrial tissue surrounding the ostium. However, while
tissue expansion and asymmetry of an anatomically accurate
domain may affect the results for a given set of parameters, the
signal reconstruction technique incorporates the fitting of the
parameters to the available signals, which will account for the
impact of these assumptions. Further geometrical assumptions,
such as the angles between the incoming wave, the ablation line
and the recording catheter, can not be quantified using standard
clinical equipment and so we do not consider them in the current
study. We also assume that all cells are free atrial wall myocytes,
rather than pulmonary vein myocytes which have a shorter AP
duration and amplitude in addition to a lower upstroke velocity
in comparison to the left atrium (Mahida et al., 2015). However,
under current clinical practice, it is not possible to identify which
areas of the pulmonary vein ostium is populated by pulmonary
vein myocytes as opposed to those of the atrial wall.

While the model developed in this paper has been developed
with clinical applicability in mind, future work will be necessary
to establish the ultimate validity of and optimize this approach
in a clinical context. In particular it is important to establish
the optimal level of detail of model required to reconstruct
missing signals, and whether additional detail can improve the
accuracy of the methods, given the constraints of time and
recording protocols in standard clinical practice. Further, clinical
metadata regarding the locations and times at which ablation
was performed on the patient is typically not collected during
the ablation procedure, so it is difficult to infer the optimal
ablation zone from patient data. The availability of such data
would open up many new lines of research, including the use
of either phenomenological or biophysically detailed patient-
specific models to estimate the optimal ablation site directly.
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