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ABSTRACT

The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel produc-
tion from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and
product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and
divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to
study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found
in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular
responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread
antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental
for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding
of plant-based hydrolysates and provides a useful resource to identify engineering targets.
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Abbreviations
S. cerevisiae : Saccharomyces cerevisiae
ERMES : endoplasmic reticulum-mitochondria encounter

structure complex
GET : Golgi to ER Traffic complex; guided entry of tail-

anchored proteins (GET) insertase complex.
DMSO : Dimethyl sulfoxide
MMS : Methylmethane sulphonate
BMIM-Cl : 1-butyl-3-methylimidazolium chloride
EMIM-Cl : 1-ethyl-3-methylimidazolium chloride
CV : Crystal violet
NAO : Nonyl-acridine orange
IBA : Isobutanol
MBO : 2-Methyl-3-butyn-2-ol
GVL : Gamma valerolactone
5-HMF/HMF : 5-OH-Methylfurfural
IIL : Imidazolium Ionic Liquid

Introduction
A major goal for sustainable bioenergy is to use non-edible plant
biomass to produce renewable energy fuels and other chemi-
cal products by microbial factories. The budding yeast Saccha-
romyces cerevisiae has been used extensively in fermentative in-
dustrial processes, including biofuel production from sustain-
able plant-based hydrolysates (Ekas et al. 2019, Nielsen 2019). Al-
though a promising alternative to fossil fuels, there is still the
need to decrease costs through improved efficiency of biomass
conversion to useful products (Kumar and Kumar 2017, Ekas
et al. 2019). Two main bottlenecks challenge this improvement.
First, Saccharomyces cerevisiae cannot natively ferment pentoses
and oligosaccharides released from deconstructed plant biomass,
thereby underutilizing a significant carbon fraction (Kricka et al.
2015, Zhao et al. 2020). Second, toxins found in processed plant
biomass are stressful to biofuel microbes, and stress responses
mounted by cells redirect resources away from bioproduct forma-
tion (Palmqvist and Hahn-Hägerdal 2000, Almeida et al. 2007, Liu
2011, Piotrowski et al. 2014, Cunha et al. 2019, Fletcher and Baetz
2020). Thus, a major goal in sustainable biofuel research is to
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engineer pentose-consuming microbes that are resilient to toxins
derived from lignocellulose and pretreatment processes.

Microbial inhibitors found in plant-based hydrolysates are de-
rived from a number of different sources. One source of in-
hibitors is the biomass pre-treatment method, which can em-
ploy chemically-transformative conditions using acid, heat, am-
monia, or solvents (Lau et al. 2009, Singh et al. 2015, Baruah et
al. 2018). Emerging technologies include solvents that produce
purified sugar streams, including gamma-valerolactone (GVL)
(Alonso et al. 2013a, Luterbacher et al. 2014) and imidazolium
ionic liquids (IIL) such as [C2C1im]Cl (also known as 1-ethyl-3-
methylimidazolium chloride or EMIM-Cl) (Swatloski et al. 2002,
Socha et al. 2014, Hou et al. 2017). Despite solvent recovery meth-
ods, residual concentrations of these solvents remain in purified
carbohydrate streams at levels that significantly inhibit microbial
growth and metabolism (Ouellet et al. 2011). A second class of in-
hibitors is produced via chemical reactions with the plant biomass
(Palmqvist and Hahn-Hägerdal 2000, Klinke et al. 2004, Almeida
et al. 2007, Jönsson et al. 2013). The largest set includes phenolic
compounds that are released during the breakdown of hemicellu-
lose and lignin and comprise a diverse group of molecules includ-
ing acids, aldehydes, and ketones (Palmqvist and Hahn-Hägerdal
2000, Klinke et al. 2004, Almeida et al. 2007). In contrast, the furans
furfural and 5-hydroxymethylfurfural (5-HMF) are generated dur-
ing acid pretreatment from the dehydration of pentoses and hex-
oses, respectively (Palmqvist and Hahn-Hägerdal 2000, Almeida et
al. 2007). Furans are found in hydrolysates to varying levels, with
high concentrations found in GVL-based hydrolysates (Alonso et
al. 2013b, Alonso et al. 2013a). A final class of microbial inhibitors
is the metabolic end products themselves, such as ethanol (EtOH),
isobutanol (IBA) and other commodity chemicals and biofuels
that are toxic at high concentrations (Carmona-Gutierrez et al.
2012, Zhang et al. 2015, Kuroda et al. 2019, Mota et al. 2021). Engi-
neering efforts to increase production therefore require concomi-
tant strategies that increase cellular tolerance to those products.

An added challenge to rational engineering of microbes is
that hydrolysate composition can vary substantially from batch
to batch, because the suite and concentrations of toxins can
be impacted by the pretreatment method but also feedstock
growth conditions, seasonal effects, and harvesting characteris-
tics (Klinke et al. 2004, Lau et al. 2009, Chundawat et al. 2010,
Bunnell et al. 2013, Jönsson and Martín 2016, Ong et al. 2016,
Wehrs et al. 2020). Hydrolysate toxins can also exert combina-
torial effects due to interactions among inhibitors. All these fea-
tures complicate engineering efforts to produce microbial facto-
ries customized for specific hydrolysates. A deeper understand-
ing of resistance mechanisms to hydrolysate toxins individually
and in combination will be critical to producing flexible sets of
strains appropriate for handling a variety of complex hydrolysate
stresses.

Several studies have investigated the response to particular
hydrolysate toxins, including phenolic compounds (Fletcher and
Baetz 2020), ionic liquids (Kumari et al. 2020), or various other
classes of compounds (Jönsson and Martín 2016, Kim 2018, Li
et al. 2022). Yet much remains unknown about mechanisms
of toxicity and how to overcome them, especially for sets of
toxins variably found together and under anaerobic conditions,
which is preferred for the industrial production of fermenta-
tive biofuels. One approach successfully applied to understand-
ing mechanisms of pharmaceutical and other drugs is chemical
genomics, in which genes and pathways required to survive spe-
cific chemicals are identified via high-throughput interrogation of
gene-deletion libraries (Winzeler et al. 1999, Giaever et al. 2002,

Hillenmeyer et al. 2008, Enserink 2012, Roemer et al. 2012, Giaever
and Nislow 2014). Past chemical genomic screens revealed mech-
anisms of action from many compounds, implicating molecules
as potential therapeutic drugs (Delneri 2010, Ho et al. 2011, Lee
et al. 2014, Silberberg et al. 2016) and contributing to our under-
standing of chemical compounds that impact lignocellulosic bio-
fuel production and other industrial processes (Skerker et al. 2013,
Pereira et al. 2014, Dickinson et al. 2016, Bottoms et al. 2018, Xue
et al. 2018, Fletcher et al. 2019, Kuroda et al. 2019).

Here, we used chemical genomics in S. cerevisiae to under-
stand genes and processes required to survive anaerobic treat-
ment with each of 34 inhibitory chemicals, including solvents
used in pre-treatment, toxins generated during hydrolysis of plant
material, and biofuel products that stress cells at high levels. The
results identified classes of toxins based on chemical genomic
profiles, suggested mechanisms of cellular defense, and revealed
widespread antagonistic gene-deletion effects. Our results raise
important considerations for strain engineering to mitigate vari-
able inhibitor concentrations in different types of hydrolysates.

Methods
Strains and growth conditions
Saccharomyces cerevisiae strains used in the chemical genomics
study belong to the ‘3DeltaAlpha’ drug-sensitive yeast deletion
collection of 4309 mutants (MATα pdr1�::natMX; pdr3�::KI.URA3;
snq2�::KI.LEU2) described in (Andrusiak 2012, Piotrowski et al.
2017). The rationale for using this strain is that it will more
sensitively capture compound-specific mechanisms rather than
generic effects of multidrug components, mainly non-specific ex-
porters. For chemical genomic analysis, yeast strains were grown
in a modified version of synthetic SynH3− medium (‘SynBase’
medium) described in (Zhang et al. 2019). SynBase medium used
in this study was prepared identically as SynH3− except for the
following changes: acetamide, sodium acetate, and cellobiose
were not included, and ammonium sulfate was replaced with
1 g/L monosodium glutamate (MSG, Fisher Scientific) and ad-
justed to pH 5.0 with HCl. Acetamide was removed because it
is only present in AFEX-pretreated biomass hydrolysates. Ammo-
nium sulfate was replaced by MSG to allow for antibiotic selection
(ammonium sulfate prevents antibiotic selection in yeast (Cheng
et al. 2000)).

YPD medium was prepared as previous described (Sherman
2002). Briefly, liquid and plate-based medium contained 10 g/L
yeast extract, 20 g/L peptone (YP) and 20 g/L dextrose (D). In vali-
dation experiments, strain BY4741 (MATa his3�1 leu2�0 met15�0
ura3�0) was used as the wild-type parent. Deletion mutations
were performed by integration of polymerase chain reaction (PCR)
products generated from loxP-kanMX-loxP (pUG6) plasmid tem-
plate (Güldener et al. 1996) and primers containing 50 bp of ho-
mology flanking the targeted gene. PCR products were purified
and transformed (Gietz and Schiestl 2007) into the BY4741 parent
strain. Targeted gene deletions were confirmed by PCR and Sanger
sequencing. For engineering gene deletions with the kanMX selec-
tion marker, 200 μg/mL Geneticin (US Biological, Swampscott, MA)
was added to YPD. For validation of IIL-sensitive strains, SynBase
medium with 25 mM EMIM-Cl or 250 mM LiCl were added.

Chemical genomic experiment
Concentrations for each inhibitor used for the chemical genomics
experiment with the yeast deletion library were determined based
on estimated inhibition of ∼30% of growth (IC30) in SynBase
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medium with the inhibitor relative to growth in SynBase medium
lacking the inhibitor (Table S1, Supporting Information). Chem-
ical compounds insoluble in water were dissolved in DMSO at
100X concentration so that the final concentration of DMSO in
SynBase medium was 1% (v/v). For these IC30 experiments, area
under the curve (AUC) from OD600 measurements recorded ev-
ery 15 min for 24 h in 96-well plates were used as a measure of
growth, with the AUC growth for the wild-type strain ‘3DeltaAl-
pha’ (MATα pdr1�::natMX; pdr3�::KI.URA3; snq2�::KI.LEU2) in Syn-
Base or SynBase + 1% DMSO defined as 100% growth. QUADRIS is
a suspension and was highly insoluble in SynBase, making OD600

reads inaccurate; thus, two concentrations were arbitrarily se-
lected. Benomyl and MMS concentrations were used as previously
published (Piotrowski et al. 2017), 10 ug/mL and 0.01%, respec-
tively.

Chemical genomic experiments were performed as previously
described (Piotrowski et al. 2015) with modifications. Briefly, the
pooled yeast gene-knockout library was inoculated into 1.5 mL of
SynBase or SynBase + 1% DMSO containing individual inhibitors
at their defined IC30 concentration in 24-well plates (Falcon) at
an OD600 = 0.1. All 24-well plates contained control samples with
SynBase or SynBase + 1% DMSO lacking any inhibitor for paired
analysis (see below). Inoculated plates were grown in an anaer-
obic chamber (Coy Laboratory Products, Inc.), containing 1%–2%
H2, 4%–5% CO2, and 90%–95% N2 at 30 ◦C for 24 h, and then trans-
ferred into the identical fresh medium at OD600 = 0.1 for another
24 h without shaking. OD600 measurements were made at the end
of each 24 h period by manually resuspending the cell cultures
using a pipettor and measuring with a Spark plate reader (Tecan)
in the anaerobic chamber. All cell cultures reached between 6.5
to 10 total cell doublings within the two 24 h growth periods.
Cells were then harvested and genomic DNA was extracted (Mas-
terPure Yeast DNA Extraction Kit, Lucigen). Growth of the yeast
deletion library in all inhibitory and control conditions were per-
formed in independent biological triplicate. DNA barcodes were
amplified using specific index and U2 primers (Sigma-Aldrich) and
high-fidelity DNA polymerase (Phusion, Thermo Fisher) as previ-
ously described (Piotrowski et al. 2015). Barcodes were sequenced
using an Illumina HiSeq Rapid Run platform. Sequencing data
are available in the NIH GEO database under accession number
GSE186866.

Chemical genomic data processing and
functional analysis
Barcode read counts were calculated from up-tag reads using cus-
tom python scripts. Gene deletions with specific fitness contribu-
tions were identified using linear models in edgeR version 3.26.8
(Robinson et al. 2010), using TMM normalization and glmQLFit
comparing paired treatment to control samples, except with MMS
and QUADRIS compounds, which were unpaired. Benjamini and
Hochberg correction (Benjamini and Hochberg 1995) was used to
calculate the false discovery rate (FDR), taking FDR < 0.05 as sig-
nificant. Results were presented in heat map figures as the log2

of the normalized read counts for inhibitor/control ratio. 3233
genes, which were significant for at least 1 of the 34 inhibitors
(FDR < 0.05) were selected for clustering and downstream analysis
and are presented in Dataset2_mclust_cdt (Supporting Informa-
tion). Genes clusters in Fig. 5A were defined using mclust package
version 5.4.5 (Scrucca et al. 2016) with k = 50 and model EII. Genes
were organized within each mclust cluster by hierarchical clus-
tering (Eisen et al. 1998) and data were visualized with Java Tre-
view (Saldanha 2004). Enriched GO categories for each compound

were obtained using hypergeometric tests, taking p-value ≤ 10−4

as significant (we focused on this stringent p-value cutoff because
functional categories are highly overlapping and thus cause over-
correction by FDR methods).

Classifying inhibitors based on global fitness
profiles
Pairwise Pearson correlations between compounds were calcu-
lated based on the log2 values comparing each inhibitor versus
control, over the 3233 significant genes described above, and re-
sults were hierarchically clustered and visualized with corrplot

package in R (Wei and Simko 2021). Inhibitors were manually par-
titioned into compounds categories in Fig. 3 based on off-diagonal
similarities.

Visualizing genetic basis of pairwise inhibitor
antagonism
The antagonistic proportion of the union of significant deletions
for each pairwise inhibitor comparison was visualized using the
R package pheatmap (Kolde 2018). The shared and unique genetic
bases of antagonism with EMIM-Cl and ethanol were visualized
using the R package UpSetR (Conway et al. 2017).

Comparison with prior chemical genomics
datasets
We incorporated prior results (Lee et al. 2014), which used a sim-
ilar chemical genomics approach to investigate fitness responses
to over 3000 compounds. To do this, we defined gene sets that are
diagnostic of particular types of stress, as follows. Lee et al. de-
fined sets of chemicals with shared fitness profiles, referred to as
‘response signature’ compound sets. We associated a given gene
with a given response signature set if that gene was more likely
to be significant (z > 3.09) within that set of compounds than ex-
pected by chance, based on all significant scores for all chemicals,
using the hypergeometric test. We did this separately for positive
(i.e. beneficial) log2 fitness values and for negative (i.e. deleterious)
fitness values for each gene. This in effect defines gene sets diag-
nostic of benefits (Lee_Positive lists) or defects (Lee_Negative lists)
in response to particular stressors. We combined these diagnos-
tic gene sets with gene functional categories including Gene On-
tology (GO) functional categories, and scored enrichment of such
lists for genes whose deletion is beneficial or deleterious to com-
pounds studied here.

Clustering of functional enrichments
To organize functional enrichments across drugs as shown in
Fig. 5B, we took a clustering approach. For each inhibitor, we
scored GO and Lee-category enrichments for genes whose dele-
tion was beneficial or detrimental, through separate analyses.
We then took the -log10(P-value) for each enrichment; enrich-
ments specific to deleterious gene-deletion lists were multiplied
by −1, and then the categories were hierarchically clustered
with Cluster 3.0 (Eisen et al. 1998), and visualized in Treeview
(Saldanha 2004).

Strain engineering and fitness validation
For validating fitness results from the chemical genomics ex-
periments, deletion mutants were reconstructed in the BY4741
background. Strains were cultured overnight in YPD and di-
luted to OD600 = 0.3 in fresh YPD the next day. When the cells
reached log phase growth (∼3–4 h after dilution), cells were
harvested, washed with sterile water, and inoculated into the
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Figure 1. Chemical-genomic analysis. (A) Schematic of chemical genomic selections. Each colored strain depicts a different gene deletion strain, before
and after exposure to one of 34 different inhibitors. Strain abundance before and after inhibitor exposure is revealed by quantitative sequencing of the
strain barcodes. (B) The number of gene deletions that significantly influence fitness (FDR < 0.05) for each of the inhibitors, sorted according to the
number of affected genes.
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Figure 2. Many gene deletions have an impact on fitness for a large number of inhibitors. (A) The number of significant genes is plotted against the
number of inhibitors in which their deletion provided a fitness effect, considering inhibitors where the effect was only beneficial (orange), only
deleterious (light blue), or either beneficial or deleterious for different inhibitors (dark blue). (B) Histogram of the number of gene deletions plotted
against the proportion of conditions in which their effect was significant that was beneficial. A minority of genes (559) fall at the tails of the trimodal
distribution, indicating that their deletion produces significant fitness effects in only one direction. Most deletions are antagonistic with similar rates
of beneficial and deleterious effects across the data.

appropriate medium at OD600 = 0.1–0.2. Strains were inoculated
in 200 μL of medium in wells of a 96-well plate and cell den-
sities were measured with a Tecan Spark stacker housed within
the same anaerobic chamber described above to measure OD600

for 48 h. The slope of the log-transformed exponential phase
of each growth curve was used to calculate doubling times.
To control for batch effects in multi-plate assays, mutant dou-
bling times were normalized to their within-batch wild-type
control.

Results
Overview
We performed chemical genomic selections in a sensitized yeast
gene-deletion library (Andrusiak 2012, Piotrowski et al. 2017) to
identify genes that impact fitness when cells are grown anaerobi-
cally in the presence of individual inhibitors from plant biomass
hydrolysates. This library, used in previous studies for profil-
ing of hydrolysates and single inhibitors (Dickinson et al. 2016,
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Ong et al. 2016, Bottoms et al. 2018), decreases the general mul-
tidrug response, and thus allows better identification of genes
specific to toxin mechanisms of action. The library includes 4309
strains in which a non-essential gene is replaced with a unique
DNA sequence (barcode) flanked by common sequences for bar-
code amplification. The pooled library of cells was grown anaer-
obically in synthetic medium (‘SynBase’, see Methods) contain-
ing a single inhibitor compound for ∼7–10 generations, along-
side a matched control grown in medium lacking inhibitors, in
biological triplicate (Fig. 1A, see Methods). We used a variety
of compounds found in plant-based hydrolysates, including sol-
vents from pre-treatment methods (such as GVL and the IILs
EMIM-Cl and 1-butyl-3-methylimidazolium chloride (BMIM-Cl or
[C4C1im]Cl)), by-products from lignocellulose breakdown (includ-
ing phenolic compounds, furfural and 5-HMF), and biofuel end-
products (ethanol, isobutanol and 2-methyl-3-buten-2-ol (MBO)),
as along with several other chemicals, including some with known

mechanisms (such as benomyl) (Table S1, Supporting Informa-
tion). Acetic acid is one of the most prevalent and studied in-
hibitors in hydrolysates, but it is found at lower concentrations
in some pre-treatments of our interest such as AFEX (Chun-
dawat et al. 2010). Thus, we focused more on other inhibitors
found in AFEX, GVL, and IIL pre-treated hydrolysates as well as
other less studied compounds. The dose of each inhibitor was
chosen based on estimated 20%–30% inhibition of growth from
dosage curves. Briefly, we compared the growth of the wild type
strain with each inhibitor to a control without inhibitors, measur-
ing it every 15 minutes for 24 h (see Methods). Linear modeling
of quantitative barcode sequence counts identified genes whose
deletion produced reproducible fitness effects in the presence of
each inhibitor compared to the paired SynBase medium control
(see Methods). Deletion strains that increased in relative popu-
lation abundance after inhibitor exposure were inferred to expe-
rience a fitness benefit, while deletion strains that decreased in
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abundance were inferred to suffer from fitness defects, thus im-

plicating those genes as important for growing in the presence
of that compound. We performed gene ontology (GO) enrichment
analysis separately for genes whose deletion is beneficial or detri-
mental to each toxin. We also compared our results to a prior
chemical genomic analysis of over 3000 compounds, including
some pharmaceutical drugs and other molecules (Lee et al. 2014).
We defined gene sets from that study that are diagnostic of phar-
maceutical drugs and other compounds that had been charac-
terized with signature biological responses, and then included
those gene sets in our functional enrichment strategy (see Meth-
ods). This identified overlap in genes required for model stressors
from prior work and compounds studied here, thereby contribut-
ing to our understanding of mechanisms of action of hydrolysate
toxins.

In total, we identified 3233 gene deletions conferring a fitness
effect to at least one compound at a false discovery rate (FDR)
of 5%. The number of significant genes ranged from as few as 12
genes for the dose of benomyl used here to 1706 genes affect-
ing ethanol tolerance (Fig. 1B). Although the doses of the chem-
icals used in the experiment were chosen to impart a consis-
tent level of stress (see Methods), it is possible that some chemi-
cal exposures produced more severe stress than others. Another
possibility is that the number of significant genes reflects the
breadth of the inhibitor effects on cell physiology. For example,
genes important for surviving the microtubule disrupting drug
benomyl were heavily enriched for genes related to microtubule
and tubulin complex assembly (P = 1.48e-08, Hypergeometric
test, see Dataset1_HyperG, Supporting Information). In contrast,
cationic dye crystal violet (CV) and ethanol treatment identified
gene lists enriched for a wide range of processes, including trans-
membrane transport, membrane lipid biosynthesis, and amino
acid metabolism in the case of CV, and membrane fluidity, protein
unfolding, microtubule integrity, and oxidative stress for ethanol
treatment.

Similarities in fitness profiles reveal classes of
inhibitors
To better understand the architecture of gene contributions to
chemical fitness, we plotted the number of significant gene dele-
tions against the number of compounds in which they had a ben-
eficial or a detrimental effect (Fig. 2A). When considering genes
whose deletion had the same effect on fitness across compounds
(i.e. only beneficial or only detrimental), most genes were scored
as important for only a few compounds. However, plotting the
number of significant gene knockouts regardless of the direction-
ality of the fitness effect revealed that a large fraction of genes
impacted fitness, in one direction or the other, under many in-
hibitors. For example, only 32–34 gene deletions produced an ex-
clusive fitness benefit or fitness cost, respectively, for 10 or more
compounds; however, when we ignored the directionality of the
fitness effect, nearly 200 deletions affected fitness for at least 10
compounds. This result suggests that many gene deletions pro-
duce antagonistic fitness effects, i.e. a defect in response to one
inhibitor but a benefit in response to others.

We next classified the inhibitors based on similarities in fit-
ness profiles across all significant genes. We calculated the pair-
wise Pearson correlation between compounds, based on the log-
transformed fitness contributions of 3233 genes whose deletion
produced a fitness effect for at least one of 34 inhibitors (Fig. 3).
Based on the clustering of the data, we then manually defined
boundaries for classes of inhibitors, based on off-diagonal simi-
larities. Some compounds (e.g. methylglyoxal and benomyl) did
not correlate well with others and therefore were not grouped into
larger classes, but other compounds fell into larger categories. In
some cases, these categories related to shared chemical proper-
ties of the compounds. In other cases, the groupings were not de-
fined by chemical properties and instead reflected shared cellular
response strategies.

In the case of IILs, BMIM-Cl and EMIM-Cl are thought to in-
flict cellular stress via their cationic components (Stolte et al.
2006, Kumari et al. 2020). However, the global response to these
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Figure 5. Gene and functional-category clustering inform on inhibitor mechanisms. (A) Mclust clustering of 3233 genes whose deletion significantly
(FDR < 0.05) influences one or more of 34 inhibitors (Dataset2_mclust_cdt, Supporting Information). log2 fitness effects of gene deletion strains (rows)
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solvents was distinct from cationic dyes CV and nonyl-acridine
orange (NAO). Instead, IILs grouped more closely with the metal
chelator 2,2′-dipyridyl (see more below). Phenolic compounds
were divided into distinct groups that partly correlated with their
chemical structures. For example, Phenolic Group 1 included sy-
ringic acid (as well as syringaldehyde), benzoic acid, 4-hydroxy
benzoic acid, and cinnamic acid. Phenolic Group 2A contained
coumaric and ferulic acids and their amide forms, which are
prevalent in ammonia fiber expansion (AFEX) pretreated biomass
(Keating et al. 2014), along with sinapic acid. Phenolic Group 2B
also correlated to these compounds, albeit with lower correla-
tion, and included the ketones acetosyringone, acetovanillone,
and 4-hydroxyacetophenone, as well as the aldehydes vanillin
and 4-hydroxybenzaldehyde. Phenolic Group 3 included vanillic
acid and the non-phenolic azelaic acid; the two compounds also
shared similarity in global fitness profiles with compounds in Phe-
nolic Group 2A and, to a lesser extent, other phenolic compounds.
In other cases, inhibitor correlations did not recapitulate chemical
relatedness. For example, the response to alcohol IBA was more
similar to MBO and solvent GVL than it was to ethanol.

Relationships across groups of inhibitors were also in-
formative. In addition to sharing high similarity with IBA
and MBO, GVL uniquely shared similarities with ethanol and

2,6-dimethylpyrazine (Fig. 3, green arrows). The latter result is
consistent with previous studies showing that GVL and ethanol
can damage and permeabilize membranes and produce synergis-
tic effects when in combination (Ding et al. 2009, Huffer et al. 2011,
Lam et al. 2014, Bottoms et al. 2018). Interestingly, IILs showed
strong cross-group relationships that negatively correlated to the
global fitness profile of many other compounds, especially phe-
nolic compounds in Group 2A. This result suggests that many of
the antagonistic effects in gene fitness contributions implicated
in Fig. 2 emerge due to unique differences in the response to IILs.

Extensive levels of antagonism in defense
mechanisms
The vast majority of gene deletions that affected fitness in more
than one condition exhibited antagonism across inhibitors (2362
out of 2921 deletions), and most antagonistic genes were ben-
eficial and deleterious at roughly equal rates across inhibitors
(Fig. 2B). Fitness tradeoffs between environments are not unex-
pected (Qian et al. 2012, Jakobson and Jarosz 2019). However, such
tradeoffs could complicate attempts to engineer broadly toler-
ant yeast strains, because a gene deletion beneficial for surviv-
ing one toxin could be highly deleterious for other toxins in the
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same hydrolysate. Because many of these inhibitors are present
in the same hydrolysates, the effect results in widespread antago-
nistic selectional pleiotropy (Paaby and Rockman 2013), a type of
pleiotropy wherein perturbation of a single gene affects multiple
components of fitness.

As an orthogonal approach to determine the most relevant
instances of antagonistic selectional pleiotropy, we determined
the proportion of antagonistic deletions among the union of sig-
nificant deletions for inhibitor combinations that could be ex-
pected to co-occur in real hydrolysates (Fig. S1, Supporting Infor-
mation). We found evidence of tradeoffs between pre-treatment
chemicals, alcohol biofuels, and plant-derived inhibitors. IIL hy-
drolysates were particularly problematic since IILs demonstrated
widespread antagonism with phenolic inhibitors, reinforcing re-
sults outlined above. When we examined the identity of genes
with opposing effects in EMIM-Cl and individual phenolic in-
hibitors, we found that there was not a core set of genes respon-
sible for antagonism (Fig. 4). Instead, the genetic basis of antago-
nism with EMIM-Cl is largely unique for each phenolic inhibitor.
An exception to this is the shared set of 48 deletions showing fit-
ness tradeoffs with EMIM-Cl in both syringic acid and syringalde-
hyde. No genes share opposing effects in EMIM-Cl with all pheno-
lic inhibitors nor with all inhibitors belonging to the same pheno-
lic group.

We also observed high levels of antagonism between IILs and
ethanol (Fig. S2, Supporting Information). Indeed, the strongest
tradeoff observed was between ethanol and EMIM-Cl, with 28%
of gene deletions that were significant to either condition show-
ing antagonistic pleiotropy. Interestingly, the apparent tradeoff be-
tween ethanol and EMIM-Cl tolerance did not extend to BMIM-Cl,
for which only 5% of deletions had opposing effects in ethanol.
Aside from IILs, ethanol also exhibits conflicting cellular re-
sponses with a number of lignocellulose-derived toxins, as well
as with the two other biofuels included in our screen, IBA and
MBO. Other than a group of 95 genes in common between ace-
tosyringone and acetovanillone, the cellular processes under-
lying antagonism between tolerance to ethanol and other in-
hibitors again differed amongst inhibitors (Fig. S2, Supporting In-
formation). Taken together, the pervasive antagonistic selectional
pleiotropy present in the genetic responses to toxins suggests that
optimizing strains to overcome some classes of inhibitors found
in hydrolysate could lead to decreased tolerance of others, poten-
tially nullifying any fitness benefits.

Clustering of gene fitness contributions suggests
mechanisms of action
The inhibitor classifications in Fig. 3 were based on global corre-
lations in gene-fitness profiles. However, many compounds have
pleiotropic effects on the cell, and thus they may share some as-
pects of their response with one class of inhibitors but different
aspects of their response with others. Therefore, identifying sub-
sets of genes whose deletion similarly impacts subsets of com-
pounds can be especially informative on the chemical’s mecha-
nism of inhibition.

We took two approaches to understand similarities and differ-
ences in inhibitors responses. First, we used mixture modeling
and hierarchical clustering of gene fitness contributions to iden-
tify subsets of gene deletions with similar fitness effects across
subsets of compounds (Fig. 5A, Dataset2_mclust_cdt (Supporting
Information), see Methods). Second, we devised an approach to or-
ganize the dense enrichments of functional annotations for each
inhibitor’s significant gene list, and we looked for similarities in

enrichment patterns across subsets of toxins. The utility of this
approach is that it can identify toxin relationships based on
shared enrichments of the same functional categories, aiding in
interpreting cellular responses. For each inhibitor, we converted
the enrichment p-values to the negative log10 of that P-value,
which was multiplied by −1 if the enrichment was specific to
deleterious gene-deletion lists. We then clustered functional cat-
egories based on these scores, which indicate enrichments spe-
cific to beneficial gene deletion lists (colorized orange, Fig. 5B) or to
detrimental deletion lists (blue, Fig. 5B) separately. A key feature of
our approach is the inclusion of pharmaceutical drug and stress-
response categories from (Lee et al. 2014) to aid in mechanistic
interpretation. We used this analysis to understand physiological
mechanisms of several inhibitor classes, as described below.

Imidazolium Ionic Liquids share similarities and
distinctions with other cationic toxins
While IILs are promising solvents for deconstruction of plant
biomass, they are well known for their toxicity to S. cerevisiae
(Ouellet et al. 2011, Dickinson et al. 2016, Higgins et al. 2018). IIL
toxicity is linked to their cationic components and their lipophilic-
ity (Stolte et al. 2006, Kumari et al. 2020); while previous work in-
dicated that IILs impact mitochondrial function (Dickinson et al.
2016), their specific mechanisms of toxicity are not completely un-
derstood.

Several responses were shared between IILs and cationic dyes
CV and NAO, thereby implicating cationic stress. One group of
645 genes (Fig. 5A, Cluster 8) was important for tolerance of
these compounds and included genes involved in cation trans-
port such as zinc, iron, and potassium (MSC2, TRK2, MMT1, FSF1,
MMT2, FET5, ARN2, FRE2, SMF3, FRE7, FSF1, VNX1, YKE4). This
group also included SGE1 and ILT1, which encode membrane-
bound proteins previously implicated in EMIM-Cl tolerance and
proposed to export cationic toxins out of the cytoplasm (Higgins
et al. 2018). Additional genes in Cluster 8 included SAT4/HAL4 and
HAL5, which encode homologous protein kinases that regulate the
Trk1/2 potassium transporters (Mulet et al. 1999), hinting that the
Trk system may play a role in IIL tolerance. Other genes relate to
pH response, including those encoding the weak-acid transcrip-
tion factor War1, Rim101 that mediates the alkaline-pH response,
and many of Rim101’s target genes (Obara and Kihara 2014, Obara
and Kamura 2020).

We identified a contrasting group of genes whose deletion was
actually beneficial to IILs and other cationic compounds (101
genes in Cluster 28, Fig. 5A), and these may also relate to pH stress.
This group includes the kinase Ptk2, which regulates the plasma
membrane H+-ATP pump Pma1, and the kinase Sky1, which has
been implicated in ion homeostasis, potentially through regula-
tion of Trk1/2 potassium transporters or other potassium home-
ostasis components (Goossens et al. 2000, Erez and Kahana 2002,
Forment et al. 2002, Eraso et al. 2006). Cluster 28 was heavily
enriched for genes localized to the Golgi and vacuole, including
the vacuolar V-ATPase Vph1 that maintains the acidic vacuolar
pH and Stv1 in the Golgi, which creates a gradient that facili-
tates the transport of substrates such as Ca2+, toxins, and amino
acids (Martínez-Muñoz and Kane 2008, Cyert and Philpott 2013).
Beneficial deletions were also enriched for genes encoding pro-
teins localized to the endoplasmic reticulum (ER) and plasma
membrane—but the group was also enriched for genes identi-
fied by Lee et al. 2014 whose deletion causes sensitivity to ergos-
terol and fatty acid depletion, cell wall damage, and plasma mem-
brane duress (see Fig. 5B and Dataset4_HyperG_cdt (Supporting
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Information)). Together, the relationships between IIL and cationic
dyes suggest that cationic stress impacts ion balance, pH, and the
secretory pathway, in an opposing way to published compounds
that induce lipid and cell-surface stress (see Discussion).

Despite the similarities with cationic dyes, other distinctions
reveal responses unique to the IILs EMIM-Cl and BMIM-Cl. Most
striking was genes in Cluster 27, whose deletion was beneficial
for growth in CV and NAO but extremely detrimental for surviv-
ing IILs and also the iron chelating agent 2,2′-dipyridyl. This group
was heavily enriched for genes involved in the biosynthesis of
amino acids, including lysine, histidine, and arginine, as well as
mitochondrial functions, including the electron transport chain.
IILs have been proposed to disrupt the mitochondrial membrane
potential and its activity (Dickinson et al. 2016), which could ac-
count for the response. The relationship between IILs and 2,2′-
dipyridyl with regard to these gene deletions was unexpected. In
fact, some genes in Cluster 27 whose deletion is deleterious for IIL
tolerance (such as RIM1, AIM22, IMG2, HMI1, SWS2, LIP2, and PCP1)
were among genes identified by Lee et al. as important to manage
iron homeostasis or to provide resistance to mitochondrial stres-
sors (P-value ≤ 10−4) (Fig. 5B). These results raise the possibility
that IILs either chelate iron or impact mitochondria in a way that
disrupts iron stores.

Phenolic compounds display antagonistic
responses with cationic toxins
Phenolic compounds fell into multiple subclasses in Fig. 3. Clus-
tering the fitness profiles for gene knockouts important for growth
in one or more phenolic inhibitors revealed subtle differences that
distinguished the phenolic classes (see Fig. S3, Supporting Infor-
mation). Although there were some functional enrichments for
these class-specific responses, the mechanisms for their differ-
ential effects remain unclear; nonetheless, these results confirm
that different phenolic compounds can impart distinct effects on
cells.

Several clusters of gene deletions had broadly similar fitness
benefits or defects shared across many of the phenolic com-
pounds; strikingly, many were the same as those discussed above
for IIL tolerance, but they had the opposite fitness effects for
phenolic compounds. For example, many of the Cluster 28 genes
whose deletion was beneficial to IIL tolerance were required
for normal growth in multiple phenolic compounds, such as
coumaric and ferulic acid. Some of these genes (ARL1, MAK10,
DRS2, YPT6, COG6, COG8, and VPS38) were previously identified
as being important for ferulic acid tolerance under aerobic con-
ditions (Fletcher et al. 2019); our results show they are important
regardless of oxygen condition. Genes involved in Golgi function,
cellular trafficking, membrane, and cell wall stress were impor-
tant for growth in the presence of phenolics but detrimental in
the presence of IILs. In contrast, deletion of genes in Cluster 27 in-
volved in mitochondrial function, amino acid synthesis, iron ho-
moeostasis and mitochondrial stress response were all beneficial
to growth in phenolics but detrimental for growth in IILs. So too
were genes in Cluster 8, many of which function in pH mainte-
nance and ion homeostasis. Thus, deletions of these genes affect
ion and pH homeostasis in opposite ways for tolerance to cationic
and phenolic compounds, which may have opposing effects that
raise or lower the intracellular pH, respectively (see Discussion).

To validate these antagonistic effects, we measured growth
rates in strains lacking several of these genes that function to-
gether in cargo trafficking at the trans-Golgi Network (Graham
2004, Yu and Lee 2017). Wild-type, arl3�, mak10�, and sys1�

mutant strains were cultured separately in medium containing
EMIM-Cl or coumaric acid. The three mutant strains generally
grew faster in the IIL EMIM-Cl compared to the wild-type strain
and more slowly in coumaric acid, although these differences
were not significant due to wide variation in mutant doubling
times (Fig. 6). The molecular mechanism of this tradeoff is unclear,
but it may relate to the role of Arl1 (and presumably its interacting
partners in the ARL pathway) in regulating ion influx and mem-
brane potential (Munson et al. 2004). The ARL pathway genes may
have opposing functions to the ion transporters and regulators in
Cluster 8 (see Discussion).

GVL shares similarities in cell response with
several biofuel products
Three compounds with hydrophobic properties, MBO, IBA, and
GVL, were grouped together by chemicals classification in Fig. 3.
Interestingly, the chemical genomic profile for GVL was also sim-
ilar to that of ethanol, to a greater extent than the other com-
pounds. To better understand these differences, we selected genes
whose deletion impacted fitness upon MBO, IBA, GVL, and ethanol
treatment and clustered the genes separately (Fig. 7).

A substantial fraction of 548 genes (Fig. 7, Cluster PG1) were re-
quired for survival of all four compounds to varying degrees. Many
of these genes are related to inter-organelle communication, in-
cluding members of the ERMES (MDM10, MDM34, and GEM1) and
GET (GET1 and GET2) complexes that are important for ER and mi-
tochondrial contacts and/or morphology, proteins localized to the
vacuole and the peroxisomes, and proteins important for nucleus-
mitochondrial signaling (such as RTG1, RTG2, and TOR1). Many
proteins implicated in protein transport were important for sur-
viving these solvents (P = 2.6e-5, hypergeometric test), as well as
proteins involved in monoubiquitination (P = 1e-4) that are impor-
tant for endocytosis. Together, these fitness effects suggest that
the solvents perturb protein trafficking and inter-organelle com-
munication. ERMES and GET complexes also influence phospho-
lipid biosynthesis and transfer, as well as targeting and insertion
of tail-anchored proteins in the ER membrane (Schuldiner et al.
2008, Zhang et al. 2014, Onishi et al. 2018). Genes related to lipid
biosynthesis were also enriched (P = 5.3e-6), including those in-
volved in ergosterol and fatty acid biosynthesis (ERG2, ERG3, SUR4,
TYR1, and ARO2), as well as genes involved in tryptophan biosyn-
thesis (TRP2, TRP3, and TRP4), which have been also observed to
function in isobutanol tolerance (Kuroda et al. 2019). Alcohols, as
well as GVL, are known to permeabilize membranes, which may
contribute to these effects (Ding et al. 2009, Huffer et al. 2011).
Interestingly, many of the gene deletions detrimental for growth
in these four compounds fell into Cluster 30 from Fig. 5A, reveal-
ing that the deletions produce fitness benefits to IILs and other
cationic compounds. These genes were significantly enriched in
functions for protein urmylation (P = 0.0092), a ubiquitin-like
pathway involved in nutrient sensing and budding (Furukawa et
al. 2000, Goehring et al. 2003).

Interestingly, genes required for tolerating the four solvents
also included many genes involved in cell cycle progression,
mainly G2/M transition of mitotic cell cycle (PIN4, CLB3, HSL1, BIK1,
KIP2, KCC4) and encode proteins of the spindle pole body and/or
microtubules, the septin ring, or the bud neck (KCC4, BIK1, BIM1,
SSD1, BUD6, ELM1). Figure 5B revealed some similarity in func-
tional enrichments between these compounds and benomyl, a
known tubulin depolymerizer that disrupts cell cycle progress,
since genes annotated as ‘microtubule’ were enriched among
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genes required to tolerate MBO, IBA, GVL, and to a lesser extent
ethanol.

Clustering the gene-fitness profiles for the four chemicals re-
vealed similarities between GVL and ethanol that were not seen
for MBO and IBA. Nearly 500 gene deletions were detrimental
to growth in the presence of GVL and ethanol (Fig. 7, Cluster
PG4), and this gene list was enriched for carbohydrate metabolism
and glycosphingolipid synthesis genes (P < 0.001, Hypergeomet-
ric test). In contrast, other gene deletions were beneficial to GVL
and ethanol stress compared to IBA and MBO (Fig. 7, Cluster PG7);
many of these overlapped with Cluster 8 from Fig. 5A, whose dele-
tion presented a fitness defect in response to cationic compounds
and implicated the importance of pH balance (see Discussion). Al-
though results in this analysis suggest a partly shared mechanism
among these four compounds, we also observed differences in the
cellular adaptive response to them, especially between IBA and
ethanol. This opposite effect of the two main products may be of
importance when developing tolerance approaches according to
the compound generated.

Discussion
Chemical genomics has been successfully applied in previous bio-
fuel studies, helping to uncover new insights that foster micro-
bial engineering for increased efficiency. Many prior studies used
such approaches to investigate cellular defense mechanisms to
hydrolysates or to specific compounds studied in isolation and
under aerobic conditions (Pereira et al. 2014, Dickinson et al. 2016,
Ong et al. 2016, Bottoms et al. 2018, Fletcher et al. 2019). Here,
we undertook a broader, comparative approach to study a vari-
ety of lignocellulose-derived inhibitors, solvents, and biofuel prod-
ucts relevant to multiple pretreatment methods and under anaer-
obic conditions. We used a drug-sensitive strain library that al-
lows to uncover a large number of genes involved in the adap-
tive response, and consequently, to reveal specific mechanisms of
toxicity of the toxins studied. Despite the high sensitivity of this
strain background, our validation experiments with a less sensi-
tive strain confirm findings under the conditions used here. How-
ever, we note that strains can vary significantly in their tolerance
profiles due to genetic background; understanding the influence
of genetic background on toxin tolerance is an important and ac-
tive area of research (Sardi and Gasch 2017, 2018, Cámara et al.
2022). We used concentrations of each inhibitor for a consistent
growth among them, but differences in composition of inhibitors
in hydrolysates from batch to batch could cause a variance in the
severity of the stress for the same inhibitors. This approach allows
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for both a deeper understanding of defense mechanisms while de-
veloping a rich dataset for further analysis, in certain industrially
relevant fermentative conditions.

Our results have important implications on both cellular
defense and engineering strategies. First, comparative analysis
of a larger set of inhibitors helped to distinguish shared and
unique mechanisms of stress. Clustering gene fitness contribu-
tions across many inhibitors helped to distinguish subsets of
genes with shared, or opposing, effects across compounds in-
cluding those with known mechanisms. For example, although
the molecular details remain to be worked out, the shared re-
sponses suggested that maintenance of the plasma membrane
potential as well as secretion, membrane/cell surface stress re-
sponses, pH, mitochondrial function, and lipid biosynthesis play
important roles in IIL and cation tolerance.

However, many of these responses were inversely important
for surviving phenolic compounds, suggesting that these inhibitor
classes are provoking opposing effects to the same cellular phys-
iology. We propose that a key aspect of that physiology is influ-
enced by ion and pH homeostasis, in opposing ways for toler-
ance to cationic compounds, which may induce alkalinization,
and some phenolic compounds that acidify the cell. Cation influx
is predicted to raise internal pH due to corresponding efflux of H+,
and the requirement of the Rim101 alkaline-response regulon for
tolerating these compounds is consistent with this notion (Arino
et al. 2010). IILs can insert into lipid bilayers, and permeability of
IIL can be affected by differences in lipid composition, fluidity, and
other properties (Gal et al. 2012, Cook et al. 2019). Perturbations
to lipid bilayer asymmetry can directly activate Rim101, under-
scoring the intimate relationship between membrane status and
pH (Ikeda et al. 2008, Obara and Kamura 2020). The inverse rela-
tionships extended to gene deletions sensitized to phospholipid
flipase perturbation, including Neo1; ergosterol biosynthesis; and
vesicle trafficking, all of which also influence vacuolar pH home-
ostasis and membrane biology (Brett et al. 2011).

In contrast, phenolic compounds (especially phenolic acids)
and other stresses may decrease cellular pH leading to acid stress.
Many of these compounds may become deprotonated inside the
cell, in a similar manner to other organic acids. Ethanol stress is
known to acidify the cytosol due to plasma membrane perme-
abilization and H+ influx (Madeira et al. 2010, Lam et al. 2014,
Charoenbhakdi et al. 2016), thereby producing inverse dependen-
cies on pH-related genes.

The widespread antagonistic effects for certain mutants ex-
posed to different classes of inhibitors raise some considerations
for strain engineering. While previous strategies have success-
fully identified engineering strategies that improve tolerance of
single inhibitors (Dickinson et al. 2016, Bottoms et al. 2018, Hig-
gins et al. 2018, Fletcher et al. 2019, Kuroda et al. 2019), our
results show the importance of considering that those genetic
changes could affect resistance to other toxins in the same hy-
drolysates, producing a strain that is, in the end, less fit for the
complex mixture. Hydrolysate composition is influenced by dif-
ferent factors such as the type of biomass, plant growth condi-
tions, or pre-treatment methods (Cunha et al. 2019). Phenolics are
produced in higher concentrations in AFEX-treated biomass than
acid hydrolysates, including specific phenolic compounds, such as
amides (Keating et al. 2014). Our results showed some differences
between amides and ketones when compared to other phenolics,
which would also imply variable responses according to the pre-
treatment method. The antagonistic analysis between couples of
inhibitors also showed the importance of selecting the appropri-
ate pre-treatment according to the desired product to decrease

negative effects during the fermentation. An alternative strategy
may be to engineer suites of strains with resistance to sets of in-
hibitors that co-fluctuate across hydrolysate types or batches, and
to choose the best strain for each batch of hydrolysate based on
their composition and the desired product.

Conclusion
We anticipate that the rich dataset of yeast cellular responses to
hydrolysate toxins presented here will aid in future biofuel studies
including strain engineering. Selecting gene targets may be most
effective by considering the response of engineered strains like
the gene-deletion lines studied here to multiple toxins, including
those that may be present in the same hydrolysate. This data set
may also provide a useful backdrop for modeling toxins in com-
plex mixtures, by comparing chemical genomic footprints in those
mixtures to the single inhibitors studied here.
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