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Abstract

Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in
controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published
genetic association of TLR4 non-synonymous and TNF-a promoter polymorphisms with P.falciparum blood infection level
and here we extend the study considerably by (i) investigating genetic dependence of parasite-load on interleukin-12B
polymorphisms, (ii) reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii) exploring genetic
and functional impact of epistatic models and (iv) providing mechanistic insights into functionality of disease-associated
regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001) and AC (P = 0.01) genotypes of IL12B 39UTR
polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC.
Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria
phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction
of IL12B (2.2 fold) and lymphotoxin-a (1.7 fold) expressions in patients’peripheral-blood-mononuclear-cells under
TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models.
Marked reduction of promoter activity of TNF-a risk haplotype (C-C-G-G) compared to wild-type haplotype (T-C-G-G) with
(84%) and without (78%) LPS stimulation and the loss of binding of transcription factors detected in-silico supported a
causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold) and AC (9 fold) genotypes compared to CC
and under-representation (P = 0.0048) of allele A in transcripts of patients’ PBMCs suggested an Allele-Expression-Imbalance.
Allele (A+1188C) dependent differential stability (2 fold) of IL12B-transcripts upon actinomycin-D treatment and observed
structural modulation (P = 0.013) of RNA-ensemble were the plausible explanations for AEI. In conclusion, our data provides
functional support to the hypothesis that de-regulated receptor-cytokine axis of innate immune pathway influences blood
infection level in P. falciparum malaria.
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Introduction

Infection with Plasmodium falciparum is still a major health

problem worldwide, causing about 225 million new malaria cases

each year [1]. Majority of the patients with parasite infection

present febrile symptoms while a subgroup develops life-threaten-

ing complications such as severe malarial anemia (SMA) or

cerebral malaria (CM). Malaria parasitemia which affects disease

severity and transmission is controlled by a balance between

depletion of red blood cells and immune clearance by T-helper

cells, B lymphocytes, and cytokines as shown in murine model of

Plasmodium chabaudi infection [2–4]. The role of innate immunity to

restrict parasite growth in rodent model is further demonstrated by

a recent study which shows when parasite dose saturates the

capacity of innate response; experimentally enhanced innate

immunity can control parasite density indirectly by depletion of

RBCs [5]. In humans, hemoglobin degradation and heme

detoxification by the obligate intracellular malaria parasite results

in the formation of hemozoin (HZ) which along with malarial

glycosylphosphatidylinositol (GPI) prime innate immune response

by the production of pro-inflammatory cytokines through toll-like

receptor mediated signaling [6,7]. Two important functions of
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innate immunity in the defense against the parasite are (i) it

triggers a battery of pro-inflammatory cytokines inhibiting rapid

parasite growth and thereby limiting the onset of malaria

pathology and (ii) it determines the type and efficiency of

subsequent parasite specific adaptive immune responses through

the cytokine mediators at later stages of infection [8–10]. An

account of the etiological components of innate immunity and the

mechanistic framework of their interactions will offer the much

needed therapeutic alternatives for control of the global burden of

malaria.

Genetic studies correlating malaria susceptibility with host

immunity have a long history. Majority of the studies on the role of

host genetics in determining malaria susceptibility have utilized

population based case-control design and candidate or genome

wide markers [11–20]. A general concern about the association

study is that the alliance between disease phenotype and genetic

loci remains tentative unless a functional causality is established.

The major objective of this study is to understand the interactions

and functional contribution of host genetic factors associated with

a measurable phenotype, namely parasitemia, to extract an

improved insight of host regulatory mechanisms controlling the

blood infection level in P. falciparum mediated malaria. We have

published a genetic association study of this phenotype analyzing

fourteen single nucleotide polymorphisms (SNPs) located on genes

encoding toll-like-receptor (TLR)-2, 4 and 9 and tumor necrosis

factor-a (TNF-a) and lymphotoxin-a (LTA) and reported signifi-

cant correlation of blood parasitemia with TLR4 non-synonymous

and TNF-a promoter polymorphisms in Indian patients with mild

malaria [21]. Here we extend this analysis by investigating genetic

association between polymorphic variability of IL12B, which

encodes the IL-12p40 subunit of IL12, with blood parasitemia.

IL12 is a heterodimeric pro-inflammatory cytokine with pleiotro-

pic effects, acting as a potent immune-regulatory molecule and

hematopoietic growth factor in infections caused by Plasmodium

parasites [22]. It is produced by phagocytes and dendritic cells in

response to pathogens through toll-like and other extracellular

receptors. Physiologically the most important target cells of IL12

are hematopoietic progenitors, NK cells and T cells for which it

induces proliferation and production of type-1 cytokines (e.g. IFN-

c). IL12 and IFN-c together enhance activation and production of

Th1 associated classes of immunoglobulin from B cells [23]. IL12 is

composed of a 35 kD subunit encoded by IL12A and 40 kD

subunit encoded by IL12B. Polymorphisms in genes encoding both

the subunits have been reported in a wide range of immune and

inflammatory diseases including malaria [24–34].

Given the complexity of parasite biology and host immune

system, it is unlikely that genetic variation of a single locus would

provide an adequate explanation of inter-individual differences of

host immune response which results in diverse clinical manifes-

tations. To this end, identification of gene-gene interactions could

enhance the power and accuracy of predicting disease outcome of

a complex disorder. We have collated the genetic data on IL12B

from the present report with that on toll-like receptors and

cytokine loci from our previous study [21] to model the possible

genetic interactions that may account for the differences in blood

parasitemia in malaria patients. The functional relevance of

receptor-cytokine epistatic models has been captured by analysis of

receptor-genotype dependence of cytokine expression in vivo.

For a better description of genetic architecture of disease

susceptibility and unambiguous identification of factors responsible

for both causality and predisposition to a disease, functional

appraisal of disease-associated polymorphisms is essential. There is

widespread recognition that differences in gene expression may be

an important source of phenotypic diversity in complex diseases

[35–37] and that non-coding polymorphisms contribute to the

variance and etiology of a trait by regulating the expression of

nearby genes [38,39]. To explore the plausible regulatory

mechanisms exerted by cytokine SNPs we have characterized

the allele specific events by studying their transcriptional

differences in terms of reporter gene activities and allelic-

expression-imbalance (AEI). Our study provides detailed insights

into molecular effects of cis-regulatory variants in controlling

cytokine gene expression in P. falciparum mediated malaria.

However it underscores the possibility that this complex trait

involves even more complex regulatory intricacies than previously

anticipated.

Materials and Methods

Patient recruitment and Laboratory measures
A total of 293 mild malaria patients (age = 16–37 years) with

Plasmodium falciparum infection were recruited from The Calcutta

School of Tropical Medicine between September 2008 and

January 2009 following WHO guidelines after obtaining the

written informed consent from each study participant [40].

Patients with bacteremia, measles, acute lower respiratory tract

infection, severe diarrhea with dehydration and other chronic or

severe diseases such as cardiac, renal or hepatic diseases, HIV/

AIDS were excluded from the study [21,40]. Appropriate

approvals have been obtained from Institutional ethical commit-

tees of University of Calcutta and The Calcutta School of Tropical

Medicine, India. Parasitemia status of each patient was deter-

mined during their first visit to the clinic using Giemsa-stained

blood smears and oil immersion microscopy. Detailed description

of study samples and procedure for parasite enumeration can be

found in our earlier report [21]. For genetic epidemiology, the

patient pool from our previous study was used while for functional

analyses case samples were enrolled (N = 64, age = 4–16 years) and

registered in the year 2010 during July to September, from

Calcutta National Medical College & Hospital, Kolkata, India as

per WHO 2006 guidelines [40]. The blood samples for genetic

and functional analyses were collected before any medical

interventions.

Genotyping IL12B polymorphisms
Genomic DNA was extracted from peripheral blood leukocytes

using a QIAamp DNA Blood Kit (Qiagen, Hilden, Germany).

IL12B promoter (rs17860508) and 39UTR (rs3212227) polymor-

phisms were assayed through PCR followed by an allele specific

restriction enzyme digestion. The primer pairs for genotyping

were listed in Table S1. PCR amplification was carried out in

10 ml reaction mixtures containing 1 U AmpliTaq GoldTM DNA

polymerase, 1.5 mM MgCl2, 250 mM of each dNTP, 5 pmoles of

each primer (Sigma Aldrich, St. Louis, MO). The cycling

parameters consisted of an initial denaturation at 96uC for 5 mins,

followed by 40 cycles of denaturation at 96uC for 30 sec,

annealing at 60uC for 30 sec, extension at 72uC for 30 sec, and

then completed with a final extension at 72uC for 5 mins using a

thermal cycler (Applied BiosystemsH GeneAmpH PCR System

9700). PCR amplicons were digested with AluI (rs17860508) and

TaqI (rs3212227) (Fermentas International Inc.) at 37uC and 65uC
respectively according to manufacturer’s protocol. Digestion

patterns were analyzed by electrophoresis in agarose gel. The

accuracy of the PCR-RFLP assay was confirmed for each locus by

randomly selecting 10% of total samples and sequencing the PCR

products on ABI Prism 3100 Genetic Analyzer using Big-Dye

Terminator v3.1 (Applied Biosystems, Foster City, CA).

Polymorphisms Controlling P. falciparum Parasitemia
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Statistical analysis. All the statistical tests were performed

using SPSS version 10.0 and R-program (version 2.0 package).

Associations between alleles/genotypes and parasite estimate were

considered ‘‘strong’’ and ‘‘statistically significant’’ in cases where

the P-value,0.05.

(a) Single Gene Analysis: Distribution of allele and

genotype frequencies and genetic risk assessment of

IL12B polymorphisms. The allele and genotype frequencies

for IL12B SNPs were estimated by gene counting and Hardy–

Weinberg equilibrium was evaluated by x2 test using Haploview

(http://www.broad.mit.edu/mpg/haploview/). Pairwise compar-

isons between log-transformed parasitemia and genotypic classes

for IL12Bpro and +1188 loci were analyzed by model based

independent t test and ANOVA F-ratio. The results were further

validated using non-parametric Wilcoxon Rank sum and Kruskal

Wallis H tests. Bonferroni correction was done for multiple testing.

For allele based risk assessment, the unprocessed parasitemia data

was previously dichotomized into high (N = 88) and low (N = 205)

parasitemic groups employing the two component mixture model

and expectation-maximization algorithm and a threshold value of

7520 parasites/ml or 3.88 log-parasitemia was derived as the

cutoff. Detailed procedure of this strategy was described earlier

[21]. The proportion of the risk allele for each locus was compared

between high and low parasitemic groups using a two-way

contingency table.

(b) Multi-loci Analyses: Multifactor Dimensionality

Reduction analysis. We adopted the multifactor dimensional-

ity reduction (MDR) method upon merging the IL12B genotype

data with those from our previous genetic epidemiologic study for

identification of non-additive epistatic interactions [21,41–46].

MDR is a non-parametric approach which converts multiple

variables into a single attribute, thereby changing the represen-

tation space of the data. To run MDR, eight out of sixteen loci

from the assembled dataset were selected as they showed an

increasing/decreasing trend of log-parasitemia distribution across

three genotypes which allowed us to code the genotypes into

distinct risk groups. The ‘‘low’’, ‘‘moderate’’ and ‘‘high’’ risk

genotypic classes for each locus were designated as ‘‘0’’, ‘‘1’’ and

‘‘2’’ while the ‘‘low’’ and ‘‘high’’ parasitemic groups were assigned

as ‘‘0’’ and ‘‘1’’ respectively to depict the disease status. Since an

equal number of sample size in high and low risk groups was a

prerequisite for execution of MDR, the sample size of our analysis

was kept to eighty eight, the number that represented in the high

parasitemic group. Of the 205 individuals belonging to low

parasitemic group, 100 distinct files each comprising of 88

individuals were generated using random numbers as seeds using

R version 2.0 package to minimize the chance of detecting

spurious results due to any bias. This was run on MDR software to

obtain 100 independent outputs (version 2.0 beta 8.2). From eight

genetic attributes (SNPs) namely TLR4Thr399Ile (rs4986791),

IL12B+1188 (rs3212227), TNF-1031 (rs1799964), TNF-857

(rs1799724), TNF489 (rs1800610), LTA80 (rs2239704), LTA252

(rs909253), and TLR9P545P (rs352140), the possible multilocus

genotypes were represented in a multidimensional contingency

tables and classified as ‘‘high risk’’ if the ratio between two groups

exceeded a threshold tested over the entire training data set. After

reducing the dimensionality, all factor combinations were evalu-

ated for their ability to classify the disease status in the training

dataset and the best combination of factors with the minimum

prediction error (1-testing balance accuracy) was calculated from

the test dataset. Then the entire data was partitioned into 100

different subsets for cross-validation, from which ninety nine out of

100 subsets were assigned as a training balanced set (99/100) while

the remaining one hundredth dataset (1/100) was termed as

testing balanced set. To assign statistically meaningful gene-gene

combinations, 100 MDR files were permutated 10,000 times using

MDR permutation testing software (version 1.0 beta 2.0). The

models with P value,0.05 and .95% average cross-validation

consistency (CVC) were regarded as the best predictive models. To

infer the genetic risk of the multifactorial models, we used odds

ratio (OR) as a measure of association between genetic polymor-

phisms and blood infection intensity. The value of ORs was

logarithmically transformed and standard errors were derived

from the confidence intervals (CI). Genotype counts of the

constituent loci between high and low parasitemic groups were

used to calculate ORs and their corresponding 95% CIs for each

gene-gene interaction model. A forest plot (blobbogram) was used

to present the ORs and their 95% CIs estimated from the two-way

interaction models where the odds ratio was denoted by a dot and

the width of the horizontal line represented the 95% CI for the

estimated OR.

RNA extraction from PBMC fraction and cDNA synthesis
Peripheral blood mononuclear cells (PBMCs) were isolated from

fresh whole blood collected from malaria patients using Histopa-

que 1077 (Sigma Aldrich, St. Louis, MO) double-gradient density

centrifugation. Total RNA was extracted with TRIH Reagent

(Sigma Aldrich, St. Louis, MO) and dissolved in DEPC treated

water (Bioline). RNA (1 mg) samples were treated with 2 U of

RNAse free DNAse I (Fermentas Life Sciences, UK) and

incubated at 37uC for 30 mins to remove DNA contamination,

reverse transcribed using random hexamers and High Capacity

cDNA Reverse Transcription kit (Applied Biosystems Inc.). The

optimized condition for cDNA preparation was 10 mins at 25uC,

120 mins at 37uC followed by heating at 85uC for 5 mins in a

thermal cycler (Applied BiosystemsH GeneAmpH PCR System

9700) and stored at 220uC.

Quantitative Real Time PCR analyses
To scrutinize the genetic impact of TLR4 non-synonymous

polymorphism (rs4986791) on pro-inflammatory cytokine (IL12B

and LTA) production, we compared the expression of IL12B and

LTA genes under different TLR4Thr399Ile genotypic background.

Since TLR4Ile-Ile and TLR4 Thr-Ile genotypes together and

independently showed significantly low parasitemia compared to

that of TLR4Thr-Thr, we pooled individuals having genotypes Ile-

Ile with Thr-Ile genotypes and examined the pattern of cytokine

gene expression with respect to patients harboring TLR4Thr-Thr

genotype. The relative expression of IL12B was estimated for three

+1188 genotypes by qRT-PCR using 18S rRNA as an endogenous

control. The sequences of oligonucleotides used in the expression

analyses were listed in Table S1. A 1:10 fold dilution of cDNA

samples were used as the template and all qPCR reactions were

carried out in a 10 ml reaction volume with 5 ml of SYBR Green

Master Mix (Applied Biosystems) with optimized concentrations of

specific primers using Applied Biosystems 7900HT Fast Real-

Time PCR System. The thermal cycler was programmed for an

initial denaturation step of 5 min at 95uC and followed by 40

thermal cycles of 30 sec at 95uC, 30 sec at 60uC and 30 sec at

72uC. The experiments were carried out in triplicate including the

non template controls each time. Specificity of PCR amplification

for each primer pair was confirmed by melting curve analysis [47]

and the relative quantification (RQ) data was analyzed between

groups using the DDCt method. Statistical analysis on relative

expression levels was estimated using Mann–Whitney U-test (with

exact probabilities) for independent samples using SPSS (ver.

10.0., SPSS Inc. Chicago, IL).

Polymorphisms Controlling P. falciparum Parasitemia
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Allelic-Expression-Imbalance analysis
To examine the differential expression of IL12B 39UTR A and

C alleles, the peak heights of this transcribed SNP were compared

in patients heterozygous (AC) for IL12B+1188 polymorphism by

resequencing both genomic DNA (gDNA) and complementary

DNA (cDNA) counterpart. IL12Bexp primers (Table S1) were used

to amplify and resequence the 167 bp IL12B region encompassing

the polymorphic site. Sequencing was carried out on ABI Prism

3100 Genetic Analyzer using BigDye Terminator (BDT) v3.1

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) with

0.8 ml of the PCR product, and 5 pmoles of the primer in a 10 ml

reaction mixture. The raw sequence files (.ABI) were analyzed by

PeakPicker Software, originally developed and kindly provided by

Dr. T. Pastinen’s group [48]. Genomic DNA sequence from each

sample was selected as reference and the corresponding cDNA was

aligned with a default cutoff of 70%. The SNP was selected

manually and the peak heights of the alleles were estimated using

PeakPicker. The significant difference of IL12B+1188 A/C allele

ratio between the gDNA and cDNA was tested through a bivariate

Sign test in SPSS version 10.0.

Mapping of microRNA binding sites
To find out the potential microRNA binding sites within IL12B

mRNA, the entire IL12B 39UTR region was scanned using

miRNA-target prediction databases such as TargetScan (www.

targetscan.org/), miRBase (www.mirbase.org/), microRNA.org

(www.microrna.org/), RegRNA (www.regrna.mbc.nctu.edu.tw/),

MicroCosm (www.ebi.ac.uk/enright-srv/microcosm/). Target mi-

croRNAs were selected and compiled on the basis of its conserved

seed match or a seed match with a higher context score. The

thermodynamic stability of the mRNA-miRNA duplex was

calculated using RNAHybrid (www.bibiserv.techfak.uni-bielefeld.

de/rnahybrid/).

Construction of reporter fusion plasmids
(a) For TNF-a promoter assay. Five TNF-a promoter

haplotypes pertaining to four SNPs (TNF-1031, TNF-857, TNF-

308 and TNF-238) were selected for functional evaluation. The

1.2 kb fragment was amplified using TNFa_MluI_F.P and

TNFa_XhoI_R.P (Table S1) where MluI and XhoI recognition

sequences were appended into the primers for efficient cloning

into pGL3 vector. TNF-a haplotypes- T-C-G-G (Hap1), T-T-G-G

(Hap2) and C-C-G-G (Hap3) were directly cloned into TA vector

pTZ57R/T (InsTAcloneTM PCR Cloning Kit, Fermentas) using

the above primers by amplifying gDNA from patients harboring

the homozygous genotypes for all four loci. Haplotypes: T-C-A-G

(Hap4) and T-C-G-A (Hap5) were cloned by amplifying gDNA

from patients harboring genotypes T/T-C/C-G/A-G/G and T/

T-C/C-G/G-G/A respectively, followed by screening the clones

with restriction endonucleases NcoI for TNF-308 locus and

BamHI (NEB Inc., Bethesda) for TNF-238 respectively. DNA

amplification protocol was conditioned with an initial denatur-

ation at 95uC for 5 min, followed by 35 cycles of denaturation at

95uC for 1 min, annealing at 60uC for 1 min, extension at 72uC
for 1 min and a final extension of 15 min at 72uC in a thermal

cycler (Applied BiosystemsH GeneAmpH PCR System 9700). The

unique haplotypes from the TA constructs were subsequently

double-digested, purified using QIAquick Gel Extraction Kit

(Qiagen, Hilden, Germany) and subcloned in the upstream of

pGL3-Basic vector (kindly gifted by Dr. Susanta Roychowdhury).

The integrity of each polymorphic locus and directionality of all

the resulting constructs were confirmed by sequencing using both

vector and insert specific internal primers. Next, the reporter gene

expressions were measured in three different cell lines under the

presence and absence of endotoxin lipopolysaccharide (LPS)

stimulation using Luciferase Reporter Assay System (Promega,

Madison, WI).

(b) For IL12B39UTR assay. IL12B 39UTR sequence

(1047 bp) encompassing the A+1188C polymorphic site was

amplified using gene specific primers (Table S1). XhoI and NotI

(Fermentas International Inc.) restriction endonuclease recognition

sites were incorporated in the oligos for directional cloning. Allele

specific IL12B 39UTR containing the target sites for the

microRNAs was cloned into pTZ57R/T vector (InsTAcloneTM

PCR Cloning Kit, Fermentas) followed by subcloning into

pSiCHECK2 dual luciferase reporter plasmid (kindly gifted by

Dr. Soma Banerjee) in frame to the 39 end of the cDNA encoding

Renilla reniformis luciferase to produce pSiCHECK2-IL12B+1188A

and pSiCHECK2-IL12+1188C constructs. Approximately 100 bp

upstream and downstream sequences flanking the 70 nucleotide

pre-miR sequences (www.genecards.org/) were amplified for hsa-

miR-545, hsa-miR-1284, hsa-miR-23a and hsa-miR-23b using

appropriate primers (Table S1) and cloned into pRNAU6.1 vector

(kindly gifted by Dr. Soma Banerjee). The amplicons were inserted

into pRNAU6.1 vector by double digestion with BamHI and

HindIII (New England Biolabs, UK Ltd.). The orientation of the

recombinant vectors was checked by sequencing. Allele specific

transcript stability and miRNA-mediated IL12B 39UTR expres-

sion were examined with SYBR Green based qRT-PCR analysis

and by Dual-Luciferase Reporter (DLR) Assay System (Promega,

Madison, WI) respectively.

Cell culture, Transient transfection, Luciferase and mRNA
stability assay

HepG2 (hepatocellular adenocarcinoma), HEK293 (human

embryonic kidney), HCT116 (colon carcinoma) and U937 (human

leukemic monocyte lymphoma) cells were obtained from National

Centre for Cell Science, Pune, India and maintained in DMEM

medium containing 10% (v/v) fetal calf serum (Gibco BRL, Life

Technologies, Grand Island, USA), 100 units/ml penicillin,

100 mg/ml streptomycin in a humidified 5% CO2 atmosphere.

U937 cells were cultured in RPMI 1640 supplemented with 5 mM

glutamine and 10% (v/v) heat-inactivated fetal calf serum (Gibco

BRL, Life Technologies, Grand Island, USA) at 37uC in 5% CO2

atmosphere. Cells were seeded 14–16 hrs before transfection.

(a) TNF-a promoter haplotype assay. HepG2 cells

(1.06105) were plated in 12-well plates with DMEM/10% FCS

medium and were transiently transfected with 0.2 mg/ml of each

of the TNF-a promoter constructs (Hap1–Hap5) or empty pGL3-

Basic vector cotransfected with 0.5 mg/ml pSV-b-galactosidase

vector (Promega, Madison,WI) using Lipofectamine 2000 Reagent

(Invitrogen, Life Technologies, Carlsbad, USA) according to the

manufacturer’s protocol. pGL3-Basic vector (Promega, Madison,

USA) was used as control for luciferase assay and b-galactosidase

vector (Promega, Madison, USA) was used as transfection control.

To determine the optimum concentration of LPS (Sigma Aldrich,

St. Louis, MO) for stimulation assay, a dose response experiment

was performed with cells transiently transfected with TNF-Hap1

(T-C-G-G) followed by a stimulation of LPS solutions with five

different concentrations such as 250 ng/ml, 500 ng/ml, 1 mg/ml,

1.5 mg/ml to 2 mg/ml and luciferase activities were measured.

0.2 mg of each of the five reporter plasmids (Hap1–Hap5) were

transiently transfected. Thirty six hours post transfection, cells

were stimulated with optimized dose of LPS for 4–6 hr and

cellular extracts were prepared according to the manufacturer’s

instructions. Luminescence was measured as relative light units

(RLU) in GloMax 20/20 Luminometer (Promega, Madison, USA)

using 15 ml of cell supernatant. To normalize the luciferase

Polymorphisms Controlling P. falciparum Parasitemia
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activity, total protein concentration in each lysate was measured

by the standard Bradford (BioRad) method. Transfection normal-

ization was performed by b-galactosidase assay colorimetrically at

420 nm using O-nitrophenyl-b-D-galactopyranoside (ONPG) as

substrate (Promega, Madison, WI) in JASCO V-630 spectropho-

tometer. Measurements of mean 6 S.D were taken in triplicate.

Fold change represents the difference in promoter activity for

variant TNF-a haplotypes in comparison to the wild-type

promoter (Hap1). All the assays were done in triplicates and

repeated at least for three times. Similar experiments were also

performed in HEK293 and HCT116 cell lines both under LPS

stimulated and unstimulated conditions.

(b) IL12B mRNA stability assay by actinomycin-

D. Actinomycin-D (2-amino-N,N9-bis[(6S,9R,10S,13R,18aS)-

6,13-diisopropyl-2,5,9-trimethyl- 1,4,7,11,14-pentaoxohexadeca-

hydro-1H-pyrrolo[2,1-i] [1,4,7,10,13] oxatetraazacyclohexadecin-

10-yl]-4,6-dimethyl-3-oxo-3H-phenoxazine-1,9-dicarboxamide), a

polypeptide containing antibiotic, can inhibit transcription by

binding tightly and specifically to double-helical DNA [49,50]. It

has been extensively used as a highly specific inhibitor for the

formation of new de novo mRNA synthesis in both prokaryotic and

eukaryotic cells [51,52]. In this experiment, HepG2 cells were

transiently transfected with plasmid DNA containing the IL12B

39UTR fused to pSiCHECK2 vector, as described above. To

determine the optimal concentration of actinomycin-D (SRL,

Mumbai, India) in our experimental system, a range of

concentrations of actinomycin-D (0.1–10 mg/ml) were studied.

Twenty-four hours post-transfection with wild-type +1188AUTR

construct, actinomycin-D was added into the media and the cells

were harvested at different time points, i.e., 0, 1, 2, 4, 6, 18 and

24 hrs. Total RNA was extracted from these cells using TRIzolH
Reagent (Invitrogen Life Technologies) and IL12B mRNA level

was determined by RT-PCR and normalized with GAPDH and

18S rRNA genes. RNA isolated when actinomycin-D was just

added was denoted as the 0-hr time point and served as negative

control. It was compared with samples obtained at different time

points following actinomycin-D addition to select the adequate

incubation time where maximum change in expression could be

found for both alleles. To compare relative mRNA stability of

IL12B 39UTR A and C containing constructs, HepG2 cells were

transfected and de novo transcription was inhibited with the optimal

concentration of actinomycin-D. Cells were collected after 24 hrs

of actinomycin-D treatment and the mRNA levels of the

transfected gene (IL12B-39UTR/Luc) were determined by quan-

titative real-time PCR.

(c) IL12B 39UTR-microRNA interaction assay. HepG2

cells (16105) were transiently transfected with 0.1 mg/ml of the

IL12B+1188 wild type (A) and variant allele (C) containing

pSiCHECK2 dual reporter constructs alone and cotransfected

with either 0.2 mg/ml of empty miR-vector (pRNAU6.1) and/or

with the pre-miRNA (hsa-miR-545, hsa-miR-1284, hsa-miR-23a

and hsa-miR-23b) cloned in pRNAU6.1. Forty eight hours later,

cells were lysed; Firefly and Renilla luciferase activities were

evaluated using dual luciferase reporter assay system (Promega,

Madison, WI) in a GloMax 20/20 Luminometer. Renilla lucifer-

ase activity was normalized with respect to Firefly luciferase

activity and total protein produced was estimated by Bradford

method. All the transfection assays were done in triplicate and

repeated thrice. Measurements of mean 6 S.D were taken in

triplicate. The pairwise comparisons between each mRNA-

miRNA interactions were tested using Student-t test in GraphPad

Prism (http://www.graphpad.com).

Bioinformatic analysis: SNP based DNA and RNA
structural rearrangements

(a) TNF-1031 polymorphism associated DNA two

dimensional configurations. DNA folding was performed

with MFOLD version 3.0 (www.bioinfo.math.rpi.edu/,mfold/

dna/) using the DNA energy rules in structure-melting simula-

tions, with default parameters [53,54], i.e., having 1 M Na+
concentration (and 0.0 M Mg2+) at 37uC. Outputs were generated

in the form of structure plots based on minimum free energy

(MFE) calculations, single strand (ss) frequency count and energy

dot plots [55]. In addition, to identify the transcription factor

binding sites (TFBS) in the genomic sequence; TFBind (http://

tfbind.hgc.jp/) [56] was used to scan the 101 bp long sequence

flanking the promoter SNP (rs1799964) located at 51st position.

This positional pattern detection tool is able to attain high

sensitivity and specificity of detection by capturing the dependen-

cies between nucleotide positions within the TFBS.

(b) IL12B+1188 derived RNA structural ensemble

prediction. In an attempt to improve our understanding of

the structure and function relationship of the IL12B 39UTR

polymorphism on RNA turnover and stability, we performed an in

silico structural analysis including the wild type and variant form of

the locus on IL12B mRNA. An mRNA is unlikely to adopt a single

and stable conformation, but it exists in a population of structures

[57]; therefore instead of evaluating the minimum free energy

(MFE) values of biological sequences, those of randomized

sequences are now taken into account. As RNA secondary

structure might affect the functionality of component regulatory

elements, RNAfold program (http://rna.tbi.univie.ac.at/cgi-bin/

RNAfold.cgi) was employed to predict secondary structures under

default parameters and the folding temperature was fixed at 37uC
[55,58,59]. In addition to the minimum free energy approach

using RNA MFOLD and RNAfold, we adopted a partition

function calculation method which evaluates the entire ensemble

of possible RNA conformations for a given sequence and

computes the effect of single nucleotide polymorphisms on RNA

structural ensemble using SNPfold (http://ribosnitch.bio.unc.edu/

snpfold/SNPfold.html). The structures were also generated with

Sfold (http://sfold.wadsworth.org/) algorithm that computes

equilibrium partition functions for all substrings of an RNA

sequence based on the Turner thermodynamic parameters

[60,61]. Base-pair distances were used [62,63] as the basis for

evaluating dissimilarity between structures where the ‘‘centroid’’ in

the entire structure ensemble space has the shortest total base-pair

distance [62].

Results

The patients participating in this genetic association study were

recruited according to WHO 2006 guidelines [40]. All of them

displayed mild febrile symptoms, the summary of demographic,

clinical and laboratory characteristics of the study participants

were presented earlier [21]. In short, the crude parasitemia data

derived from thick and thin blood smears deviated from normal

behavior (skewness = 3.671), it was processed with log-transforma-

tion (skewness = 0.433) and regressed with respect to the covariate,

age (P value of correlation between age and parasite load was

0.074). For allele based genetic analyses, cases were stratified into

high and low parasitemic groups on the basis of a statistically

derived threshold value of 7520 or 3.88 in terms of crude and log-

parasite counts per ml respectively. The above threshold value was

obtained employing a two component mixture model and

Expectation Maximization algorithm [21]. No significant differ-

ences were observed in the distribution of age (P = 0.2632), gender
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(P = 0.3728), Hemoglobin count (P = 0.2971) and in average body

weight (P = 0.3901) between the high and low parasitemic groups.

Only peripheral parasitemia was found to be significantly different

(high = 15227611014; low = 271561705, P,0.0001) between the

groups.

Genetic analysis with IL12B polymorphisms
We studied the genetic variants located in the promoter and

39UTR region of the gene encoding IL12B by PCR based RFLP

method. Two biallelic markers; rs17860508 (designated as

IL12Bpro): a complex promoter insertion/deletion polymorphism

-/G/GC/TTAGA/TTAGAG situated at 22703 bp upstream of

the transcription initiation site and rs3212227 (designated as

IL12B+1188): an A to C substitution in the 39UTR region at

+1188 position of IL12B gene were selected to examine their

probable association with the blood infection intensity in two

hundred and ninety three patients exhibiting Plasmodium falciparum

mild malaria from Eastern India.

Genetic association between IL12B SNPs and peripheral
parasite load: Genotype & allelic

IL12Bpro (MAF: 0.35760.002) and IL12B+1188 (MAF:

0.40460.002) were found to be highly polymorphic in the study

population and there was no deviation from Hardy-Weinberg

equilibrium (P values = 0.3934 and 0.6799 for IL12Bpro and

IL12B+1188 respectively). The distribution of genotypes for

IL12Bpro and IL12B+1188 loci were summarized in Table 1.

For model dependent association analysis, the crude parasitemia

data collected from malaria patients was log transformed and

subjected to linear regression with respect to age in order to obtain

the standardized residuals which were then used to examine the

influence of genotypes at each locus on the parasite load under

Figure 1. Association between IL12B+1188 genotypes with blood infection level and IL12B gene-expression represented in Box plots.
(A) Diagram represented the distribution of log-parasitemia across three genotypes: 11 (AA), 12 (AC) & 22 (CC) and (B) Diagram represented the
comparison of log-parasitemia of minor homozygous genotype (CC) with AA and AC genotypic groups pooled. Statistical significance between
pairwise comparisons was mentioned. (C) The DCt distribution of IL12B gene expression across AA (N = 24), AC (N = 28) and CC (N = 12) genotypes and
(D) comparison of gene expression between IL12B+1188CC genotype and with that of AA and AC individuals pooled together determined by
quantitative real time PCR. Statistical significance was determined by the Mann Whitney U test. P values and fold changes obtained for each pairwise
combination were appended in each plot. (*) indicates these differences to be statistically significant. The bottom, middle line, and top of each box
correspond to the 25th percentile, median, and the 75th percentile, respectively. Bars extend to the lowest value and to the highest value of each
group.
doi:10.1371/journal.pone.0046441.g001
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different genetic models. To find out the genetic risk conferred by

a SNP, IL12Bpro and IL12B+1188 were independently evaluated

as covariate using three genetic models viz., dominant ((11+12) vs

22), recessive (11 vs (12+22)), and additive (11 vs 12 vs 22), where 1

represents as the risk allele using independent t-test and ANOVA

(SPSS v10.0). The results of parametric analyses were substanti-

ated by Wilcoxon Rank Sum and Kruskal Wallis H tests for two

and three way comparisons respectively using the crude parasit-

emia data. Box-plot diagrams (Figure 1A & B) displayed a gradual

decline in parasitemia across three genotypes of IL12B+1188 locus

in which AA (11), AC (12) and CC (22) had the highest,

intermediate and lowest median values respectively. Significant

differences were obtained for the comparison 11 vs 12 vs 22 using

ANOVA test (P value = 0.001) and for the following pairwise

genotype comparisons namely (11+12) vs 22 (P value = 0.001); 12

vs 22 (P value = 0.014) and 11 vs 22 (P value = 0.0001) using

independent t-test presented in Table 1. The P values in the

parentheses were obtained after Bonferroni correction. Non-

parametric statistical tests yielded similar trends in the results

(Table 1). The mean log parasitemia of 11 (AA = 3.6860.45)

genotype and the heterozygote genotype (AC = 3.5860.41),

separately and jointly, differed significantly (P value = 0.001) from

that of 22 (CC = 3.4060.35), while the difference between mean

parasite loads representing genotypes 11 and 12 was not

statistically significant (P value = 0.153) suggesting a dominant

effect of 1 (A) allele over allele 2 (C) for the IL12B+1188 locus to be

the most likely explanation. Similar statistical tests were conducted

on IL12Bpro (rs17860508), however none of the comparisons were

significant for this polymorphism. The linkage disequilibrium

estimate (r2) between these two loci that were 17,249 bp apart was

0.06 (P = 0.3052) suggesting an independent segregation of the

promoter and UTR polymorphisms in our population.

The allele based risk assessment for IL12B+1188 was performed

by stratifying the patients into ‘‘low’’ (N = 205) and ‘‘high’’

(N = 88) parasitemic groups. A detail of this procedure was

described elsewhere [21]. The proportions of two alleles A and C

of IL12B+1188 compared using a two way contingency table were

significantly different between the groups (P,0.001). The odds

ratio (OR) of comparison (1.887, 95% CI = 1.3–2.78) was due to

an excess of allele A in the ‘‘high’’ parasitemic group (Table 2).

Taken together, the results of the genetic association study

supported a strong influence of IL12B+1188 polymorphism on

P. falciparum infection load in our samples at both genotype and

allelic levels.

Evaluation of gene-gene interactions: Multilocus analyses
and MDR

The genetic etiology of complex diseases is considered to involve

interactions among multiple genetic variants and environmental

conditions. Multifactorial Dimensionality Reduction [41] was

performed to explore potential gene-gene interactions by combin-

ing the IL12B genotype data of this study with our previous one

[21]. We identified five two-factors (Model I–V) and one three-

factor (Model VI) gene-gene interaction models with an average

cross-validation consistency (CVC) .95% and a P value,0.05

using MDR permutation testing program. The gene-gene partners

of MDR models were summarized in Table 3. The interacting

models that satisfied the above criteria, included TLR4Thr399Ile

(rs4986391) and/or IL12B+1188 (rs3212227) in combination with

either TNF-1031 (rs1799964) or LTA80 (rs2239704) or

TLR9P545P (rs352140). The average prediction errors (PE) for

these models ranged from 0.305 to 0.366. To estimate the genetic

risk under a two-factor model, the proportions of individuals

harboring risk genotypes for partner loci, were compared between
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the low and high parasitemic groups. Since IL12B+1188 was

present in five out of six genetic models the odds ratio of the

second locus was estimated under IL12B+1188 risk (AA+AC)

background. The comparison of odds ratio (OR) and 95%

confidence intervals (CI) of two-way and the constituent interact-

ing partners were shown in the Forest plot (Figure 2A). The

proportion of risk genotypes of three SNPs, namely TLR4Thr399Ile

(Model I: OR = 2.024, 95% CI 1.07–3.83, P value = 0.028), TNF-

1031 (Model III: OR = 4.158, 95% CI 1.01–17.1, P value = 0.033)

and LTA80 (Model V: OR = 2.22, 95% CI 1.04–4.73, P

value = 0.034) in association with IL12B+1188 elevated remark-

ably in high parasitemic groups compared to the single SNP

analyses (Figure 2A; ID: G, I and H). For Model II, odds ratio for

LTA80 (OR = 2.113, 95% CI 1.0–4.44, P value = 0.047) under

TLR4 risk background (Thr-Thr) was also increased (Figure 2A;

ID: J). Notably, the difference in mean parasitemia for LTA80

between the genotype comparison (11+12) vs 22 was not

significant (OR = 1.232, 95% CI 0.861–1.766, P value = 0.074)

when the locus was analyzed alone (Figure 2A; ID: A). In short,

except for TLR9P545P, all two-way epistatic models yielded higher

risk of developing high parasitemia compared to the single marker

analyses. Model VI: TLR4Thr399Ile/IL12B+1188/LTA80 did not

modify the risk significantly due to reduction of sample size in the

high parasite group when three loci were pooled.

TLR4 encodes an extra-cellular receptor present in the antigen

presenting cells (APCs) and perceives the malaria antigens to

trigger a complex cascade of downstream signaling events which

ultimately culminates into the production of several pro-inflam-

matory cytokines including IL12 and LTA [64,65]. To translate

functional impact of the above MDR derived gene-gene interac-

tion models (Model I and II) in terms of TLR4 mediated signaling

efficacy, we compared the expression levels of IL12B and LTA

genes under TLR4Thr399Ile risk (11; N = 16) and non-risk (12+22;

N = 33) genotype backgrounds using quantitative RT-PCR

analyses. Patients harboring heterozygous and the rare homozy-

gous genotypes (Thr-Ile and Ile-Ile) showed significantly increased

(2.2 fold, Mann Whitney P value = 0.001) expression of IL12B

gene (median DCt6S.D = 18.8060.87) compared to those with

homozygous (Thr-Thr) genotype (median DCt6S.D = 19.6360.74)

as shown in Figure 2B. The difference in LTA expression between

TLR4Thr399Ile risk and non-risk genotypic backgrounds did not

cross the threshold of statistical significance by non-parametric

Mann Whitney U test (1.7 fold, P value = 0.097), though the

expression of LTA gene (Figure 2C) was higher in TLR4Thr-Ile

and Ile-Ile genotype background (median DCt6S.D = 17.6661.7)

compared to that estimated in TLR4Thr-Thr risk environment

(median DCt6S.D = 18.4361.5). Taken together, our results

provided the genetic (Figure 2A) and functional (Figure 2B & C)

validations of MDR gene-gene interaction models.

Functional analysis: TNF-a promoter and IL12B 39UTR
polymorphisms

In addition to provide functional support to the statistically

inferred epistatic models, we attempted to delineate the molecular

role of TNF-a promoter and IL12B 39UTR polymorphisms using a

combination of methods including quantitative RT-PCR, allelic-

expression-imbalance, mRNA stability assay, luciferase based

promoter (TNF-1031) and 39UTR (IL12B+1188) activity analyses,

bioinformatic prediction of putative mRNA-miRNA binding

interactions and SNP based DNA, RNA secondary structure

assessment.

(a) Efficiency of TNF-a promoter haplotypes under LPS

stimulated and unstimulated conditions: Reporter gene

assay and Bioinformatic support. To explore whether TNF-

1031 polymorphism influenced the basal rate of transcription of

the TNF-a gene, haplotypes pertaining to a 1.2 kb fragment

spanning the proximal promoter SNPs at positions 21031, 2857,

2308 and 2238 were subjected to reporter gene based assay.

Notably, haplotypes were derived using Haploview and out of the

16 possible haplotypes, only six were observed in our population

with haplotype T-C-G-G (1-1-1-1) showing the highest frequency

in both high and low parasitemic groups. This reference haplotype

as well as four other haplotypes that differed from the former at a

single nucleotide position were cloned. The frequency of the

variant haplotypes were .3% in the patient samples. Figure 3A

showed the map of the promoter haplotypes cloned and assayed

for reporter gene activity in HepG2 cells both in presence and

absence of LPS, which was known to be one of the parasite-

associated-molecular-patterns (PAMPs) recognized by TLR mole-

cules [66]. Fold changes in variant promoter (Hap2-5) activities

with respect to reference haplotype Hap1 were indicated in

Figure 3B. All four variant haplotypes (Hap2-5) showed decrease

in luciferase activity both in presence (250 ng/ml) of LPS (27–

84%) and in absence (12–78%) of the antigen (Figure 3B). The

maximum reduction in luciferase activity [78% (2LPS) and 84%

(+LPS), P,0.001] was observed for Hap3 construct (C-C-G-G)

which harbored the risk allele C for TNF-1031, the locus that

showed significant genotypic and allelic association with blood

parasite infection [21]. Our comparative promoter assay identified

Hap1 and Hap3 as the strongest and weakest promoter among the

five different TNF-a haplotypes in HepG2 cell line in three

independent experiments. Similar experiments were performed in

HEK293 and HCT116 in triplicate to compare the promoter

activities of Hap1 and Hap3 (Figure 3C). A consistent reduction of

the reporter gene expression under stimulated and unstimulated

conditions (80%) for Hap3 was noted in both the cell lines. The

control pGL3-Basic vector showed very low levels of relative

luciferase activity in both the unstimulated and LPS-stimulated

cells.

Table 2. Allele based risk assessment in patients with high and low parasite load.

Locus ID Allele
High Parasitemic group (N = 88)
Frequency

Low Parasitemic group
(N = 205) Frequency ORb (95% cCI) x2 (P-value)

IL12Bpro 1 0.68 0.63 1.28(0.88–1.85) 1.39 (0.238)

IL12B+1188 1 0.70 0.55 1.89(1.30–2.78) (0.001*)

Risk allele was boldfaced. N = total number of sample. x2-test was used to estimate the differences between the allele frequencies.
bOR = odds ratio.
cCI = confidence interval.
*P-Value,0.05.
doi:10.1371/journal.pone.0046441.t002
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Figure 2. Genetic and functional association of multifactor models obtained by Multifactorial Dimensionality Reduction analysis.
(A) Forest plots presented the comparison of risk estimates in terms of odds ratio (OR) and 95% confidence interval (CI) for significant gene-gene
interaction models and component single loci. The risk corresponding to each single and two factor models was denoted by a dot and the horizontal
lines represented odds ratio and 95% CI respectively. The model IDs (A–J) and respective ORs (95% CI) were given at the left and right side of each
dot in the forest plot. (B) IL12B and (C) LTA gene expression in patients’ PBMCs classified according to TLR4Thr399Ile genotype status by real time
quantitative PCR. Distribution of DCt was plotted and compared between the genotypic groups. Statistical significance was determined by Mann
Whitney U test. P values and corresponding fold changes obtained for each pairwise comparison were shown in the box plots. (*) indicates these
differences to be statistically significant.
doi:10.1371/journal.pone.0046441.g002

Table 3. Best predictive gene-gene interaction models identified by multifactor dimensionality reduction analysis.

Model No. Best Predictive Interaction Modela
Prediction Error
(1-TBAb)

10,000 Permutations
P-value c CVC (in %)

I TLR4Thr399Ile/IL12B+1188 0.318 0.024* 95

II TLR4Thr399Ile/LTA80 0.358 0.033* 100

III IL12B+1188/TNF-1031 0.341 0.013* 100

IV IL12B+1188/TLR9P545P 0.329 0.005* 100

V IL12B+1188/LTA80 0.366 0.042* 100

VI TLR4Thr399Ile/IL12B+1188/LTA80 0.305 0.031* 100

aThe best model was selected as the one with the minimum prediction error and maximum CVC.
bTBA corresponds to the testing balanced accuracy defined as the prediction error (PE) = 1-TBA.
cCVC corresponds to cross validation consistency.
*P values for gene-gene interaction models were calculated after 10,000 permutations in MDRpt software.
doi:10.1371/journal.pone.0046441.t003
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Scanning of a 101 bp region flanking 50 bp in the either

direction of TNF-1031 locus by TFBind program revealed that T

to C transition caused loss of binding of several transcription

factors. A list of the transcription factors that putatively showed

higher binding affinity for the T allele given by binding scores,

corresponding consensus and signal sequences with relative

nucleotide positions upstream of TNF-a coding sequence were

presented in Figure 3D. The possibility of altered DNA-protein

interactions in terms of changes in local secondary structure due to

the sequence variation at 21031 was examined using MFOLD

web server (Figure 3E and F). Out of the seventeen possible

computed foldings, thirteen (76.5%) with T at 21031 position

were found to be base paired while twenty (83.3%) out of twenty

four possible conformations had variant C allele locked in stems.

The minimum free energy (MFE) conformations constructed using

50 bp local DNA sequence encompassing TNF-1031 were shown

for wild type and variant alleles (Figure 3E & F). Results of these

in-silico comparisons indicated a relative reduction of accessibility

of a transcription factor when the risk allele was present in the

sequence. Taken together, the polymorphism at 21031 of TNF-a
caused a loss of promoter activity as well as transcription factor

binding as per our reporter gene assay and bioinformatics analyses

respectively.

(b) Impact of IL12B+1188 (rs3212227) genotypes and

alleles on gene expression: a quantitative

evaluation. IL12B+1188 polymorphism showed strong genetic

association with the blood parasite level in the malaria patients

both at genotype and allele levels. To test the hypothesis that this

Figure 3. Results of TNF-a promoter assay. (A) Schematic representation of reporter gene constructs for five TNF-a promoter haplotypes (Hap1–
Hap5) used for transfection assays. (B) HepG2 cells (16105 cells/ml) were transiently transfected with all promoter constructs and relative luciferase
activities in supernatants were measured alone (light grey) or with cells stimulated with 250 ng/ml of LPS (dark grey) after 48 hours. Activity of wild-
type promoter haplotype TNF-a-Hap1 served as reference and set at one, and the variant constructs were expressed as fold changes in relation to
this. Statistical significance for all pairwise comparisons was done by t-test. P values of significant differences between haplotype expressions were
marked with asterisks (*). (C) Similar experiments were performed with wild-type Hap1 and variant Hap3 constructs in HEK293 and HCT116 cells and
corresponding differences in promoter activities were measured. (*) indicates the significant comparisons given as P values. (D) Putative transcription
factor binding profiles for TNF-1031 T allele summarizing the TFs with their binding scores, consensus and signal sequences which were completely
abolished in presence of the variant (C) allele. (E & F) MFOLD derived representative DNA secondary structures encompassing 50 bp TNF-a promoter
sequence. The numbers indicate the base position while the arrowhead marks the 21031 site.
doi:10.1371/journal.pone.0046441.g003
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39UTR polymorphism may modulate IL12B transcript turnover,

relative expression of IL12B-mRNA was quantified using the

cDNA synthesized from mRNA extracted from peripheral blood

mononuclear cell (PBMC) fraction of whole blood collected from

individuals harboring three different genotypes namely AA

(N = 24), AC (N = 28) and CC (N = 12) using real-time quantitative

PCR. Expression of IL12B was normalized for each individual

separately using 18S rRNA as an endogenous control. The median

and distribution of IL12B relative expression in terms of DCt for

IL12B+1188 AA, AC and CC genotypes was presented in

Figure 1C. No significant difference (P value = 0.165) in transcript

levels of IL12B gene was observed between genotype groups

representing AA (median DCt6S.D = 17.9861.40) and AC (median

DCt6S.D = 18.7461.67). On the other hand, the median level of

IL12B expression of AA (5 fold; P value = 0.005) and AC (9 fold; P

value = 0.0001) genotypic categories were significantly lower both

separately as well as collectively (7 fold, P value = 0.0001)

compared to that (median DCt6S.D = 15.4961.25) of non-risk

CC genotype group (Figure 1C & D).

To reinforce the hypothesis that A+1188C change affects the

transcription levels of IL12B gene in vivo, we assayed if there was

any quantitative difference of transcripts represented by A and C

alleles in patients harboring heterozygote genotype. The test for

allelic-expression-imbalance (AEI) was carried out by amplification

and resequencing of 167 bp fragment that covered IL12+1188

from cDNAs and gDNAs of twenty eight individuals with AC

genotype. The peak heights representing A (green peak) and C

(blue peak) alleles from individual electropherograms of paired

samples were determined using PeakPicker software (Figure 4A).

The average A to C peak height ratio ranged from 0.42–1.05 and

0.82–1.07 (Figure 4B) in cDNA and gDNA respectively and the

comparison of these ratios was statistically significant (P val-

ue = 0.0048) estimated by nonparametric Sign test (Figure 4C).

The allele specific expression of IL12B in the peripheral blood

mononuclear cells (PBMCs) of malaria patients by 39UTR

polymorphism may be attributed to (i) differential transcript

stability, (ii) influence of microRNAs and (iii) conformational

change in RNA secondary structure.

IL12B+1188 allele-based mRNA stability assay: Inhibition
of transcription by actinomycin-D

In order to directly assay differences in mRNA stability between

IL12B 39UTR alleles, we determined mRNA levels in cells

transfected with plasmids in which 1047 bp region from IL12B

39UTR representing A or C (+1188) allele was cloned under

Renilla luciferase gene with SV40 constitutive promoter in the

vector pSiCHECK2 (Figure 5A). Twenty four hours post-

transfection, HepG2 cells were treated with actinomycin-D

(5 mg/ml) to suppress de novo transcription. Figure 4D represents

the dose response and time kinetics of actinomycin-D treatment

that enabled us to select for the optimum treatment conditions for

the drug. mRNA levels at 0 and 24 hours after the drug treatment

were quantified by real-time PCR using IL12B and GAPDH (as

endogenous control) specific primers. As shown in Figure 4E, the

IL12B mRNA levels had declined 3.2 and 1.6 folds respectively for

A (DCt at 0 hr = 3.5760.39 vs DCt at 24 hr = 5.2360.17) and C (DCt

at 0 hr = 3.4460.68 vs DCt at 24 hr = 4.1260.47) alleles compared to

their respective starting levels suggesting that A+1188C polymor-

phism differentially influenced IL12B mRNA stability.

Influence of microRNA regulators targeting IL12B 39UTR
To identify the putative microRNA binding sites in the 39UTR

of IL12B gene we employed a consensus approach by using

different miRNA target prediction softwares, viz. TargetScan,

MiRanda, MicroCosm, miRBase and RegRNA. A comprehensive

microRNA map of IL12B 39UTR predicted consensusly by at least

three different databases was presented in the Figure 5B. Four

candidate microRNAs from this list were selected for cell based

reporter gene assay as they were located in the closest proximity of

the polymorphic site (hsa-miR545 and hsa-miR-1284) and

conserved among species (hsa-miR23a and hsa-miR-23b). Their

respective seed sequences were shown in Figure 5C.

The precursor microRNA (pre-miR) sequences for each of these

four regulatory RNAs were extracted from GeneCard database

followed by amplification of a region encompassing 100 bp

upstream and downstream of the mature miRNA and cloning in

appropriate orientation into pRNAU6.1 vector. To verify whether

A+1188C SNP alters the binding and regulation incurred by the

above candidate microRNAs, we transfected each of these pre-

miR constructs in HepG2 cells along with the 1047 bp segment of

IL12B 39UTR containing either +1188A or +1188C variant cloned

into the 39UTR of luciferase gene in pSiCHECK2 plasmid.

Reporter plasmid co-transfected with empty miR-pRNAU6.1

vector served as the control and luciferase expression was

measured 48 hours post-transfection. All the experiments were

done in triplicate and repeated thrice and the change of luciferase

gene expression was denoted as normalized RLU (in percentage)

relative to the control. Co-transfection of hsa-miR-23a

(33.33%60.08, P value = 0.0043) and hsa-miR-23b

(22.22%60.04, P value = 0.0179) with pSiCHECK2-IL12B-

+1188A resulted in significant reduction in Renilla luciferase

expression (Figure 5D). Similar reduction of reporter gene

expression was observed when hsa-miR-23a (36.6%61.15, P

value = 0.0001) and hsa-miR-23b (20%62.06, P value = 0.003)

were transfected with pSiCHECK2-IL12B-+1188C (Figure 5E).

On the other hand, luciferase activity from neither pSiCHECK2-

IL12B-+1188A nor pSiCHECK2-IL12B-+1188C construct was

altered by hsa-miR-545 (A = 4.35%60.4 and C = 4.08%60.5)

and hsa-miR-1284 (A = 12.61%60.5 and C = 4.1%60.6). Similar

trend of hsa-miR-23a and hsa-miR-23b mediated reduction of

luciferase activity from pSiCHECK2-IL12B-+1188 A & C

constructs were observed in HCT116 and U937 cells (data not

shown). Taken together, our results suggest that hsa-miR-23a and

hsa-miR-23b bind to IL12B 39UTR, however, none of them exerts

any allele specific influence over the IL12B expression.

Allele dependent conformational changes in RNA
secondary structure

There is increasing evidence that cis-regulatory RNA structural

elements within mRNAs mediate post-transcriptional gene regu-

lation by determining several aspects of the mRNA life cycle such

as stability, localization, and translational efficiency [67,68].

However, RNA structures are dynamic and evolved to adopt

multiple conformations forming an ensemble that may be best

described by a partition function defined as the probabilities of all

possible base pairings [69]. To predict if A+1188C polymorphism

provides any localized effect on the structural ensemble of IL12B

mRNA, we reconstructed foldings of 101 nucleotide RNA

sequences using four different bases (A, G, U and C) in the

central 51st position, keeping 50 nucleotides upstream and

downstream sequences with respect to +1188 site identical. The

partition function matrices computed for all four sequences using

SNPfold were represented as dot-plots where probability of each

base-pairing was denoted by a dot (Figure 6A to D). The pairwise

Pearson correlation coefficients of A to G, A to U and A to C were

0.998, 0.925 and 0.751 respectively indicating a significant (P

value = 0.013) modulation of overall structural assembly for A to C

change (Figure 6A to D).
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Mountain plots were generated for 101 nucleotide sequences

harboring A and C alleles (Figure 6E & F). A mountain plot

represents the secondary structure in a plot of height versus

position where the height m(k) is given by the number of base pairs

enclosing the base at position k. The red, green and blue curves

represent minimum free energy structure, thermodynamic ensem-

ble of RNA structures and the centroid structure respectively. The

overlap between the red and green lines in Figure 6E suggested

that structure produced by A allele was closer to that predicted by

MFE. The blue plateau in Figure 6F indicated the central

tendency of the C allele to remain in open conformation.

Deviation from the base line in the position versus entropy graph

of C allele shown in lower panel signified a higher randomness and

positional entropy in the local structures involving C allele

(Figure 6F). This also gave rise to a higher Ensemble Diversity

(ED) in the structural constellation generated by C at position 51

(EDA = 20.73 vs EDC = 34.06). Taken together, the in silico

modeling of RNA secondary structure indicated an overall

conformational dissimilarity in the base-pairing probabilities of

the RNA thermodynamic ensemble marked by A and C alleles

which could result in an alternative cis-regulatory functions

mediated by IL12B 39UTR polymorphism.

Discussion

Malaria epidemiology studies have shown that, within human

populations, a high degree of variation exists between individuals

with respect to malaria susceptibility phenotypes, including

parasite load, disease incidence, severity, and the magnitude and

type of immune responses to malaria antigens [70]. Immune

response to malaria has been an object of extensive investigation

aiming at understanding the genetic regulation since an inappro-

priate immune response leads to uncontrolled parasite replication

and is detrimental to host fitness [71]. A large body of the

literature has demonstrated that protection against severe P.

falciparum malaria is provided by distinct genetic traits, while

relatively less is known about the mild events which clearly

constitute a substantial fraction of global socioeconomic burden of

malaria [72–74]. To understand the role of host genetics in the

susceptibility and clinical course of mild malaria, we in this study,

primarily rely on reconstruction of genetic interactions among toll-

like receptors (TLRs) and pro-inflammatory cytokine genes

together with an indepth functional appraisal of determinants

associated with variation in blood parasite level.

Over the past several years, genetic epidemiology studies

technologically have progressed from investigating few candidate

markers to interrogating thousands of variants in genome-wide

Figure 4. IL12B 39UTR based AEI analysis. (A) Representative electropherograms showing the peak heights of the sequence encompassing
IL12B+1188 locus in gDNA (lower panel) and cDNA (upper panel) extracted from the heterozygous (AC) patients’ PBMC samples. The arrowhead
indicates the +1188 site. Here A and C alleles are represented as green and blue peaks respectively. Difference in peak heights in sequences between
cDNA and gDNA was evident. (B) Bar graph displays the A/C peak height ratios in individual heterozygous samples (N = 22). The dotted line indicates
the baseline where the A/C ratio is one. (C) The departure of A/C peak height ratios from baseline in gDNA and cDNA were shown in the form of bar
diagram. Each bar represents the mean height and corresponding standard deviation. The statistical difference of this distribution was measured by
Sign test. P value has been indicated. (D) Dose-response and time-course assay of actinomycin-D treatment by real time PCR. (E) HepG2 cells
(16105cells/ml) were treated with the optimum dose of actinomycin-D (5 mg/ml), harvested after 0 and 24 hours after treatment and IL12B mRNA
levels were measured and corrected for GAPDH mRNA for both the wild-type and variant pSiCHECK2-39UTR constructs. Statistical significance was
measured by t-test. (*) indicates the P values to be statistically significant.
doi:10.1371/journal.pone.0046441.g004
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association studies (GWAS) while the data analysis mostly focuses

on detecting single SNP effects [75,76]. Looking beyond the

boundary of additive inheritance of SNPs using marker by marker

approach may offer a better exercise to identify genetic

determinants and biological mechanisms involved in disease

etiology. Keeping this in mind, we have used MDR to reduce

the dimensionality of the multilocus genetic data pertaining to

immune response components to identify combinations of

polymorphisms associated with the risk of high parasite load.

MDR introduced by Ritchie, et al. is a computational strategy to

detect and characterize gene-gene interactions that may be

associated with disease susceptibility [41]. So far, MDR and its

extensions such as GMDR, FAM-MDR, MDR-PDT, EMDR

[77–80] have identified many interacting genetic variants under-

lying a wide variety of complex human diseases such as

Alzheimer’s disease, asthma, atrial fibrillation, autism, bladder

cancer, hypertension, nicotine dependency, prostate cancer,

schizophrenia, sporadic breast cancer and type II diabetes [81–

89]. In our study single SNP and multifactor dimensionality

reduction analyses together identified three genetic loci which

served as important factors in controlling blood parasitemia in

mild malaria. These loci include TLR4Thr399Ile, TNF-1031 and

IL12B+1188. Two additional loci viz. LTA80 and TLR9P545P

appear in combination with TLR4Thr399Ile and IL12B+1188

suggesting that the formers fail to show statistically significant

association in independent analyses because of their minor effects

Figure 5. IL12B mRNA-microRNA interaction assay. (A) Schematic representation of reporter gene constructs for IL12B 39UTR A and C alleles
used for transfection assays. (B) Entire 39UTR region was mapped for putative microRNA binding sites. The highlighted, boldfaced and underlined
segments within IL12B sequence were the seed sequences for the miRNAs. (C) Schematic representation of the score and seed position of four
miRNAs on target IL12B. (D & E) Normalized luciferase relative light units (RLU) in HepG2 cells were measured for IL12B+1188 A and C allele containing
pSiCHECK2 constructs with (+) and without (2) the effect of miRNAs. Co-transfection of the empty pRNAU6.1 (+) vector with pSiCHECK2-IL12B+1188
construct was set as 100% and reductions in luciferase expression in presence of four miRNAs were measured in relation to this. hsa-miR-23a and hsa-
miR-23b resulted in significant reduction in luciferase activities for both pSiCHECK2-IL12B+1188A and pSiCHECK2-IL12B+1188C constructs. Statistical
significance was measured with t-test. (*) indicates the P values and percentage reduction to be statistically significant.
doi:10.1371/journal.pone.0046441.g005
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on trait variation (Table 3) [90]. Notably, the minor allele

frequencies of both LTA80 and TLR9P545P were approximately

40% in our samples [21]. The presence of IL12B+1188 in five of

six models and elevation of odds ratio of TLR4Thr399Ile, TNF-

1031 and LTA80 in combination with IL12B+1188 are suggestive

of a pivotal genetic influence of IL12B on malaria phenotype. This

is supported by the fact that different malaria phenotypes such as

hyperparasitemia, severe malarial anemia or cerebral malaria are

often found to be associated with IL12B gene [34,91–94] while the

genetic alliance between parasitemia with LTA is seldom

unequivocal [95–97]. A study conducted among 198 individuals

belonging to 34 families living in Burkina Faso using the pedigree-

based generalized multifactor dimensionality reduction approach,

identified statistical interactions among immune genes including

IL12B 39 untranslated region, IL12Bpro, LTA+80 for mild malaria,

maximum parasitemia or asymptomatic parasitemia [98] under-

scoring the usefulness of modeling gene-gene interaction in genetic

dissection of complex diseases (Table 3).

The association of high parasitemia with IL12B+1188 (Table 1)

and significantly low expression of the cytokine in individuals

harboring risk genotypes (Figure 1) indicate that the susceptible

individuals are deficient in controlling parasite replication due to

inadequate level of IL12B transcript in mild malaria patients.

Critical role of IL12B in malaria has been demonstrated by other

studies that show IL12 production is inversely associated with

disease severity in human malaria [94,99,100] and the molecule is

extremely effective in correcting malarial anemia in murine model

[101,102]. Reduced expression of IL12B and LTA under TLR4

risk genotype background may be attributed to altered TLR4

signaling (Figure 2). To the best of our knowledge, this is the first

report that provides functional validation of statistical epistatic

models demonstrating in vivo suppression of cytokine gene

expression due to genetic deficiency of TLR4 signaling. The

attenuated TLR4 signaling by the variant receptors may be

ascribed to altered distribution of electrostatic surface potential as

shown by homology modeling in our previous study [21].

However, it should be borne in mind, a comprehensive profiling

of transcriptome and network analyses are necessary to identify

additional genetic partners involved in the pathway.

Pinpointing phenotypically causal variants from a large fraction

of SNPs that show statistical association to diseases remains a

major challenge. Only a handful of disease-associated variants

occur at non-synonymous (nsSNPs) sites while a majority are

located on the non-coding genomic regions (ncSNPs) adjacent to

protein coding genes suggesting that the latter may be involved in

transcriptional regulation. Global expression quantitative trait loci

(eQTL) analyses in yeast, mice, and humans have detected

significant levels of cis and trans-eQTL that simultaneously regulate

a large fraction of the transcriptome [103–108]. We previously

reported that the polymorphism located at TNF-1031 displayed

significant association with peripheral parasite load [21]. Here we

showed that any variation from the TNF-a wild-type haplotype

resulted in reduced promoter efficiency and the maximal

reduction was observed for the haplotype that was altered at

21031 locus. The dysfunctioning of TNF-a promoter due to

21031 polymorphism may be attributed to allelic differences in

Figure 6. IL12B 39UTR polymorphism based RNA ensemble structures. (A–D) display the SNPfold derived partition function heat maps
generated for 101 nucleotide sequences harboring A (risk), G, U and C (non-risk) alleles respectively at the 51st position. The partition function matrix
illustrates the base-pairing probabilities represented by dots. We estimated the pairwise Pearson correlation coefficient with respect to wild-type A
allele and P values to quantify the overall modulation in the RNA structural ensemble caused by a mutation. (*) indicates the P value to be statistically
significant. (E & F) show the mountain plot diagrams for IL12+1188A and C allele for 101 bases using RNAfold. The upper panel demonstrates the
height vs position graph in which the red, green and blue lines depict the minimum free energy structure, the partition function of all possible RNA
secondary structures and ensemble centroid structure respectively. The lower panel represents the entropy vs position profile and arrowhead
denotes the 51st position, the location of A+1188C. (G & H) shows allele specific minimum free energy (MFE) conformations generated from RNA
MFOLD. Numbers indicate the base position while the arrow directs the position of the polymorphic site.
doi:10.1371/journal.pone.0046441.g006
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binding of transcription factors (TFs). A number of transcription

factor binding sites (TFBSs) were abolished in presence of the

variant allele (C) which assumed a sterically inaccessible locked-in

conformation as depicted in the bioinformatic outputs (Figure 3D–

F). Chromatin immunoprecipitation or electrophoretic mobility

shift assays (EMSA) are necessary to validate in-silico prediction of

altered binding affinity between putative TFs and promoter SNP.

Reduction of transcriptional activity due to single nucleotide

variation in TNF-a promoter has been reported for the polymor-

phisms located at 2863 [109], 2376 [110] and 2238 [111].

Allelic-expression-imbalance (AEI) phenomenon which serves

as an integrative quantitative measure of any and all cis-acting

regulatory variants [112] is highly context-specific [113] and

widespread not only in humans and mice but in most organisms

[114–120]. It can affect the transcriptome by altering stability

[121], processing efficiency [122], isoform expression of mRNAs

[123,124] and inducing epigenetic changes [125,126]. The

unequal expression of IL12B between marker genotypes and

allelic imbalance detected in malaria patients’ PBMC samples

strongly suggest that IL12B+1188 polymorphism executes a cis-

regulatory function. To interpret the probable mechanisms of

IL12B+1188 mediated AEI, we have investigated allele specific

transcript stability, differential interaction of IL12B 39UTR with

candidate microRNAs and allele-dependent modulation of RNA

sub-optimal structures. The remarkable modulation of local RNA

secondary structures due to A to C transversion observed in this

study may affect the transcript stability directly or through the

association of RNA-binding proteins (RBPs) indirectly [69]. Many

RNA binding proteins have both sequence-specificity and RNA-

secondary structure binding preferences and are known to co-

regulate functionally related transcripts [127]. From SNP-targeted

studies, it has been estimated that 20% of the measured transcripts

show 1.5 fold differences between alleles while 30% show 1.2 fold

differences [118,128]. However, it is still obscure how small allelic

imbalance may cause a phenotype and how accurate the

bioinformatic predictions are with actual experimental evidences.

Recent studies have also shown that 39UTRs contain recogni-

tion motifs for microRNAs (miRNAs) which play important gene-

regulatory roles by pairing to their target mRNAs to direct

posttranscriptional repression. The most accurate predictors of

miRNA target sites relies on conserved matches to the ,7 bp seed

region near the 59end of the microRNA and also on the

accessibility of target sites. The four candidate microRNAs (hsa-

miR-545, hsa-miR-1284, hsa-miR-23a and hsa-miR-23b) predict-

ed in common from multiple databases target IL12B 39UTR

sequence located proximally to A+1188C. Our data showed hsa-

miR23a and hsa-miR-23b interacts with IL12B 39UTR to repress

gene expression without any allelic bias. This may be attributed to

our reductionist approach to candidate microRNA prediction and

limited ability of the current prediction algorithms that calculate

target efficacy based on interactions between the mRNA with itself

and the mRNA with a miRNA. This is of particular importance

because mRNA-miRNA interaction occurs in a complex cellular

environment in which mRNAs and miRNAs are likely to be

bound by cellular RNA-binding proteins, which are currently

impossible to account for in silico. Our findings exemplify that

diversity of posttranscriptional gene regulation may extend beyond

microRNAs and underscores the importance of characterization of

structural cis-regulatory elements and their interaction partners in

the context of mRNA stability. Recently, there has been renewed

interest in identifying the effects of disease-associated noncoding

SNPs on changes in RNA structure [129,130] which may regulate

gene expression at virtually every possible stage ranging from local

chromatin remodeling to mRNA translation [131–133]. Taken

together, our findings convincingly demonstrated inadequate gene

expression of pro-inflammatory cytokines, namely IL12B and

TNF-a attributable to cis-regulatory polymorphisms together with

loss of efficacious TLR4 mediated signaling due to nsSNP

contribute to uncontrolled parasite growth in P.falciparum malaria

in an epistatic manner. In the study of genetics of complex

diseases, to determine which of the multitude of variants carried by

an individual are responsible for a given phenotype remains a

massive task. Our study emphasizes the need to evaluate gene-

gene interaction and biological credibility of hundreds of common

non-coding variants with low effect size as powerful complemen-

tary research strategies to illuminate the genetic architecture of

common diseases.
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