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ABSTRACT
The Winton Formation is increasingly recognised as an important source of informa-
tion about the Cretaceous of Australia, and,more broadly, the palaeobiogeographic his-
tory of eastern Gondwana. With more precise dating and stratigraphic controls starting
to provide temporal context to the geological andpalaeontological understanding of this
formation, it is timely to reassess the palaeoenvironment in which it was deposited. This
new understanding helps to further differentiate the upper, most-studied portion of the
formation (Cenomanian–Turonian) from the lower portions (Albian–Cenomanian),
allowing a coherent picture of the ecosystem to emerge. Temperatures during the
deposition of the Upper Cretaceous portion of theWinton Formation were warm, with
high, seasonal rainfall, but not as extreme as the modern monsoon. The landscape was
heterogeneous, a freshwater alluvial plain bestrode by low energy, meandering rivers,
minor lakes andmires. Infrequent, scouring flood events were part of a multi-year cycle
of drier and wetter years. The heavily vegetated flood plains supported abundant large
herbivores. This was the final infilling of the great Eromanga Basin.

Subjects Evolutionary Studies, Paleontology
Keywords Palaeoclimate, Reconstruction, Palaeoecology, Flora, Fauna, Diversity, Disturbance,
Dinosaur, Mesozoic

INTRODUCTION
The Winton Formation of central-western Queensland provides a detailed insight into the
continental biota of eastern Gondwana during the middle part of the Cretaceous Period,
with deposition spanning from the upper Albian to the upper Cenomanian–lower Turonian
(approximately 101–92 million years ago; Tucker et al., 2013; Tucker et al., 2016; Tucker
et al., 2017). Its faunal assemblage includes evidence of a diverse range of invertebrates
(insects, freshwater bivalves and gastropods), along with both aquatic and terrestrial
vertebrates (dinosaurs, crocodyliforms, teleosts and dipnoan lungfishes, lizards, and turtles;
Thulborn & Wade, 1979; Thulborn & Wade, 1984; Dettmann & Clifford, 1992; Hocknull,
1997; Kemp, 1997; Hocknull, 2000; Molnar & Salisbury, 2005; Hocknull & Cook, 2008;
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Scanlon & Hocknull, 2008; Dettmann, Clifford & Peters, 2009; Hocknull et al., 2009; Agnolin
et al., 2010; Molnar, 2010; Romilio & Salisbury, 2011; Dettmann, Clifford & Peters, 2012;
Romilio, Tucker & Salisbury, 2013; Berrell et al., 2014; Fletcher & Salisbury, 2014; Romilio
& Salisbury, 2014; Poropat et al., 2015a; Poropat et al., 2015b; White et al., 2015a; White
et al., 2015b; Poropat et al., 2016; White et al., 2016). At least 50 macrofossil plant taxa
are present, from 10 orders, showing a co-dominance of araucariacean, podocarp and
cupressacean conifers with early angiosperms (Bose, 1955; Whitehouse, 1955; White, 1966;
Dettmann & Playford, 1969; Peters & Christophel, 1978; McLoughlin, Drinnan & Rozefelds,
1995; Chambers, Drinnan & McLoughlin, 1998; Martin, 1998; Pole, 1999; Pole & Douglas,
1999; Dettmann & Clifford, 2000; Pole, 2000a; Pole, 2000b; Clifford & Dettmann, 2005;
Dettmann, Clifford & Peters, 2009; McLoughlin, Pott & Elliott, 2010; Dettmann, Clifford &
Peters, 2012; Fletcher et al., 2014a).

Prior to 2013, the age of Winton Formation could only be constrained relatively, based
mainly on palynological and biostratigraphic correlations (Cookson & Dettmann, 1959;
Dettmann & Playford, 1969; Burger, 1970; Senior, Harrison & Mond, 1978; Frakes et al.,
1987; Helby, Morgan & Partridge, 1987; Burger, 1990; Dettmann et al., 1992; Burger, 1993),
and there was limited stratigraphic framework in which to place fossil-bearing localities.
Work by Bryan et al. (2012), Tucker et al. (2013), Tucker et al. (2016), Tucker et al. (2017))
and Syme et al. (2016) has greatly improved the temporal framework of the Winton
Formation through the determination ofmaximum ages for specific fossil-bearing localities
using detrital zircon chronology along with more detailed stratigraphic, sedimentological
and architectural analyses. It is now apparent that the Winton Formation was deposited
over a span of at least 10–12 million years, during what can be regarded as the terminal
phase of the Eromanga Sea, with regression frommarine to continental ecosystems driving
environmental change across the basin (Tucker et al., 2017). The tempo of this transition
and how it affected the local flora and fauna has only recently begun to be appreciated and
assessed (Syme et al., 2016; Tucker et al., 2017; Syme & Salisbury, 2018).

Given the pace at which new information on the age and stratigraphy of the Winton
Formation has emerged in recent years, a reassessment of its changing palaeoenvironment
using new data on its geology, hydrology, palaeoclimate, flora, and fauna, is timely. This
is particularly the case for the Upper Cretaceous (Cenomanian–Turonian) portion of the
Winton Formation, in which the bulk of the described fossil sites occur. A more refined
model of the changing palaeoenvironmental conditions that existed during the time the
Winton Formation was deposited will be of use not only for future research on the Winton
Formation specifically but also for Cretaceous researchers more broadly. The refined
models can also be used as a base from which future finds may be used to clarify, resolve
or change our understanding of this increasingly important suite of ‘mid’ Cretaceous
terrestrial localities, with the added advantage of considerably simplifying comparisons
with other Cretaceous Gondwanan fossil assemblages.

SURVEY METHODOLOGY
Multiple electronic searches were conducted from study conception to February 2018,
with no language or period restrictions, in online databases including the ISI/Web of
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Science, Scopus and Google Scholar. Initial search terms included ‘Winton Formation’, as
well as combinations of ‘Cretaceous’, ‘Queensland’, and ‘Australia’. The search included
materials in peer-reviewed journal articles, geological reports, conference proceedings
and academic books. Non-peer-reviewed sources such as unpublished theses, conference
abstract volumes and popular articles were not included. We also searched the reference
section of these publications, which aided discovery of older sources, particularly where
the age and name of units has been reassigned since publication. Materials were included
that were considered to inform the authors on the palaeoenvironment. Articles related to
the Winton Formation, but on derived topics (e.g., biomechanics of Winton Formation
dinosaurs), were only included if they also contributed to the broader palaeoenvironmental
reconstruction.

GEOLOGY
The Winton Formation covers a large geographic area of western Queensland, northeast
South Australia and northwest New SouthWales (Fig. 1;Gray, McKillop & MeKellar, 2002)
and has been the subject of interest for both economic geology and basic research (Table 1).
At the time the Upper Cretaceous portion of the formation was deposited, central western
Queensland was at ∼50◦S palaeolatitude (Li & Powell, 2001). The Winton Formation
conformably overlies the marine Mackunda Formation, forming the uppermost unit of
the Manuka subgroup within the Rolling Downs Group in the intracratonic Eromanga
Basin, and its surface is either exposed or overlain locally by Paleogene or younger strata
(Fig. 2; McLoughlin, Pott & Elliott, 2010). Deep weathering of the Winton Formation
has oxidised palynomorphs in those parts close to the surface, limiting the capacity to
estimate the youngest age of deposition (McLoughlin, Pott & Elliott, 2010). The formation,
as a whole, consists of volcanolithic sandstones, likely derived from the Whitsundays
Volcanic Provence (Bryan et al., 1997; Bryan et al., 2000; Bryan et al., 2012; Tucker et al.,
2013; Tucker et al., 2016; Tucker et al., 2017), and facies that are complex and repetitive
including fine- to medium-grained feldspatholithic or lithofeldspathic arenite, siltstone,
mudstone, and claystone (Fielding, 1992; Romilio & Salisbury, 2011; Romilio, Tucker &
Salisbury, 2013; Tucker et al., 2013; Syme et al., 2016; Tucker et al., 2016; Tucker et al., 2017)
with very minor coal seams (Senior, Harrison & Mond, 1978).
On the basis of detrital zircon chronology, stratigraphy, sedimentology, and architectural
analysis, theWinton Formation is now informally divided intoUpper andLowerCretaceous
parts (Tucker et al., 2013; Tucker et al., 2016; Tucker et al., 2017). Fossil-bearing localities
in the greater Winton area, such as those on Elderslie, Belmont and Lovelle Downs
Stations, Lark Quarry Conservation Area, and Bladensburg National Park, come from a
portion of the Winton Formation that was deposited during the early Late Cretaceous
(late Cenomanian–early Turonian, ∼93.9 Ma), with a number of distinct horizons and
facies associations that are fairly continuous across the region (Tucker et al., 2013; Tucker
et al., 2017). Other Winton Formation fossil-bearing localities, such those in the Isisford
area (Salisbury et al., 2006; Berrell et al., 2014; Syme et al., 2016; Syme & Salisbury, 2018)
were deposited some 10 million years earlier during late Early Cretaceous (late Albian to
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Figure 1 Amap of the outcropping of theWinton Formation in Queensland, Australia. This map of
Australia shows the outcropping of the Winton Formation in Queensland (in grey), focusing on the fos-
siliferous area around Winton (enlarged; adapted from Fletcher et al., 2014a). Coloured symbols indicate
sites dated by detrital zircons (dark blue/red) or sites stratigraphically correlated to sites dated by detri-
tal zircons (light blue/pink) in Tucker et al. (2013) and Syme et al. (2016). Stars indicate surface samples;
squares indicate Geologic Survey of Queensland (QSQ) cores; circles are correlated surface exposures.
(A) Bladensburg National Park; (B) Lark Quarry Conservation Area—Eureaka sample; (C) Lark Quarry
Conservation Area—Hades Hill sample; (D) Isisford concretion; (E) GSQ Eromanga 1; (F) GSQ Lon-
greach 1-1B; (G) GSQ McKinlay 1 (Sample 2 and 16); (H) GSQ Blackall 1; (I) GSQ Blackall 2; (J) Lovelle
Downs/Elderslie Station (QM L311); (K) Alni Station; (L) Belmont Station. QLD, Queensland; NSW, New
South Wales; ACT, Australian Capital Territory; VIC, Victoria; SA, South Australia; NT, Northern Terri-
tory; QM L, Queensland Museum Locality.

Full-size DOI: 10.7717/peerj.5513/fig-1

early Cenomanian, ∼103–100.5 Ma). Using the same approach, Tucker et al. (2016) were
able to constrain the upper Mackunda Formation to the latest Albian (∼104–102 Ma).
The onset of deposition of the lowest parts of the Winton Formation can therefore be
no older than this. Fossil-bearing sites in the Lower Cretaceous portion of the Winton
Formation, near Isisford, are stratigraphically much lower than those that occur in the
Upper Cretaceous portion despite having similarmodern altitudes to localities farther north
(Winton area) and south (Eromanga) due to local faulting (Tucker et al., 2013; Tucker et
al., 2017). Whereas the younger sites occur in sediments indicative of a freshwater alluvial
plain (Exon & Senior, 1976; Senior, Harrison & Mond, 1978; Moore & Pitt, 1984; Fielding,
1992; Romilio, Tucker & Salisbury, 2013; Tucker et al., 2017), the older ones are thought to
have been deposited in brackish waters in a tidally influenced fluvial-deltaic setting near
the shores of the still present Eromanga Sea (Berrell et al., 2014; Syme et al., 2016; Tucker
et al., 2017). Accordingly, Tucker et al. (2017) informally refer to this part of the Winton
Formation as the ‘lowerWinton Formation’. Earlier studies of core samples (e.g., Pole, 1999;
Pole, 2000a; Pole, 2000b) did not have as well constrained dates, but demonstrated that there
is up to 300 m of stratigraphic thickness of fossil-bearing Winton Formation deposition
below the now dated 93 million year old sites, corroborating the ‘upper’ designation for
this part of the formation proposed by Tucker et al. (2017). For example, the cores from
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Table 1 Key literature on the geology of theWinton Formation.

Topic Reference

Sedimentology Dunstan (1916)
Wopfner (1963)
Vine et al. (1967)
Casey (1970)
Senior & Mabbutt (1979)
Coote (1987)
Fielding (1992)
Draper (2002)
Tucker et al. (2017)

Stratigraphy Dunstan (1916)
Exon & Senior (1976)
Senior, Harrison & Mond (1978)
Henderson & Stephenson (1980)
Fielding (1992)
Draper (2002)
Gray, McKillop & MeKellar (2002)
Mavromatidis & Hillis (2005)
Tucker et al. (2017)

Age Palynology Dettmann & Playford (1969)
Burger (1986)
Frakes et al. (1987)
Helby, Morgan & Partridge (1987)
Burger (1990)
Burger (1993)
Partridge (2006)
Clifford & Dettmann (2005)
Dettmann, Clifford & Peters (2009)
Dettmann, Clifford & Peters (2012)

Geo-chronological methods Bryan et al. (2012)
Tucker et al. (2013)
Tucker et al. (2016)
Tucker et al. (2017)

Source material Bryan et al. (1997)
Bryan et al. (2000)
Bryan et al. (2012)
MacDonald et al. (2013)
Tucker et al. (2013)
Tucker et al. (2016)
Tucker et al. (2017)

(continued on next page)
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Table 1 (continued)

Topic Reference

Geomorphology and Tectonics Casey (1967a)
Casey (1967b)
Casey (1970)
Hawkins & Harrison (1978)
Mathur (1983)
Moss & Wake-Dyster (1983)
Moore & Pitt (1984)
Wopfner (1985)
Finlayson, Leven & Etheridge (1988)
Murray, Scheibner & Walker (1989)
Green et al. (1991)
Cartwright & Lonergan (1997)
Veevers (2000)
Veevers (2006)
Hower (2011)
MacDonald et al. (2013)
Tucker et al. (2013)
Moya et al. (2015)
Tucker et al. (2016)

GSQManeroo, although shallower, are stratigraphically equivalent to deeper samples from
GSQ Thargomindah (Pole, 1999; Pole & Douglas, 1999; Pole, 2000a; Pole, 2000b) as a result
of uplift of the Maneroo Platform. Based on palynology, these units were likely deposited
at close to the Albian-Cenomanian boundary, and appear to contain a different plant
community that is overwhelmingly dominated by conifers (Pole, 2000a) distinct from the
conifer-angiosperm co-dominant outcropping localities of the Upper Cretaceous portion
of the Winton Formation (McLoughlin, Pott & Elliott, 2010).

HYDROLOGY
It is clear from surface sediment localities in the greater Winton region that the Upper
Cretaceous portion of the Winton Formation was derived from terrestrial and freshwater
depositional environments (Table 2; Tucker et al., 2013; Syme et al., 2016; Tucker et al.,
2017). This is also confirmed by the presence of freshwater gastropods (Cook, 2005) and
freshwater bivalves (Hocknull, 1997; Hocknull, 2000). Although some earlier studies (e.g.,
Thulborn & Wade, 1979; Thulborn & Wade, 1984) proposed that lakes may have been
present at sites such as near Lovelle Downs Station (QM L311) and the Lark Quarry
Conservation Park, more recent work has shown lacustrine sedimentation did not occur
either before and during the formation of the track-bearing surface at LarkQuarry (Romilio,
Tucker & Salisbury, 2013) and that lakes were a relatively minor component of a landscape
that primarily comprised channels and floodplains (Tucker et al., 2013; Tucker et al., 2017).
The great thickness of theWinton Formation (up to 1,000m in some areas; seeTucker et al.,
2013; Tucker et al., 2017), suggests a massive river system that, over at least 10 million years
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Figure 2 Stratigraphic column showing the relative position of the Upper and Lower Cretaceous por-
tions of theWinton Formation.

Full-size DOI: 10.7717/peerj.5513/fig-2
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Table 2 Key literature that informs the interpretation of the hydrology of the Upper Cretaceous portion of theWinton Formation.

Evidence type Feature Water chemistry Flow rate Winton citation

Sedimentology Sedimentary structures
such as crossbedding, rip-
ple marks etc

Expansive fluvial flood-
plain system, changing over
time with waxing and wan-
ing flow to low flow.

Tucker et al. (2013),
Tucker et al. (2017)

Lithology such as fine-
grained sandstones, silt-
stones and mudstones

Low flow river with minor
lacustrine component in-
cluding oxbow lakes

Tucker et al. (2013)

Lithology and sedimentary
structures

Main channel deposits with
flood plains and small lakes
suggesting variability tem-
porally and geographically

Fielding (1992)

Faunal Gastropods
Melanoides sp.

Freshwater but some
species saline tolerant

Widely tolerant Cook (2005)

Bivalves
Alathyria jaqueti
Megalovirgus wintonensis
Hyridella macmichaeli

Freshwater Widely tolerant Hocknull (1997),
Hocknull (2000)

Lungfish
Metaceratodus ellioti
Metaceratodus wollastoni

Freshwater Still to slow flow Kemp (1997)

Turtles Freshwater Widely tolerant Molnar (1991)
Crocodyliforms
Crocodyliformes indet.

Fresh or saline Widely tolerant Hocknull et al. (2009)

and in various forms, filled the epicontinental Eromanga Sea, whilst during distinct periods,
also flowing south-west as part of the continental Ceduna River system (Lloyd et al., 2016).
The sediments directly associated with the plant-bearing horizons that are considered in
this study were predominantly siltstone (McLoughlin, Drinnan & Rozefelds, 1995), with
mudstone and dolostone also present at QM L311 (Dettmann, Clifford & Peters, 2009).
This, added to the sedimentary features identified in outcrops, including current ripple
cross-lamination, trough and tabular cross-stratification (Tucker et al., 2013; Tucker et al.,
2017), and the probable ox-bow lakes (Hocknull et al., 2009; Tucker et al., 2017) suggests a
meandering river system, and has been confirmed by the more detailed sedimentological
assessments presented in Tucker et al. (2017).

The movement, distribution, and quality of water and how these characters change
through time, are important determinants of the biota and ecological processes in
fluvial systems (e.g., Gorman & Karr, 1978; Allan, 1995; Richter et al., 1996; Matthaei,
Peacock & Townsend, 1999). Thus, the composition of biota left by a system can inform
interpretation of the hydrology of the system. The presence or absence of animals that
have specific hydrological requirements are the most useful faunal evidence. The most
informative amongst the fauna is the presence of lungfish tooth plates (Kemp, 1997). The
Australian lungfish Neoceratodus forsteri Krefft, 1870, a living example from the family
Neoceratodontidae to which the Cretaceous lungfish found in the Winton Formation
belong, live in low-flow to still waters and require a low-flow regime in spring for egg
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laying on shallow-water plants (Espinoza, Marshall & McDougall, 2013). The African
lungfishes, of the genus ProtopterusOwen, 1839, also live in low energy environments such
as swamps, marshes and lakes, with a preference for shallow, inshore waters, with only some
large adults found offshore in large lake systems (Chapman et al., 1996; Goudswaard, Witte
& Chapman, 2002). The final genus of lungfish with extant examples, Lepidosiren from
South America, also live in swamps and lakes (Johansen & Lenfant, 1967), cumulatively
suggesting a conserved habitat preference. No evidence of lungfish has been found among
the semi-articulated teleosts (Berrell et al., 2014) of the marginal marine-deltaic system
that formed the Lower Cretaceous (upper Albian–lower Cenomanian) portion of the
Winton Formation (Tucker et al., 2017), despite substantial sampling. This suggests that
modern habitat preferences hold for Cretaceous lungfish (Berrell et al., 2014). Other key
aquatic fauna from the Upper Cretaceous portion of the Winton Formation have wide
tolerances amongst their modern analogues and so were not informative. For example,
modern crocodiles such as Crocodylus johnstoni Krefft, 1873—an analogue for Isisfordia
duncani—live in a wide range of hydrological environments (Webb, Manolis & Sack,
1983) including tidal and saline waters (Messel et al., 1981). The brackish conditions of the
depositional setting associated with the Lower Cretaceous portion of theWinton formation
that was inhabited by I. ducani (Syme & Salisbury, 2018) is consistent with this range of
environmental tolerance. Freshwater turtles have differing responses to flow rates due to
how they use the habitat, with some preferring higher velocity water flow and others slow
(Lenhart, Naber & Nieber, 2013). A slow, but flowing freshwater hydrologic regime, such
as a meandering river system, is in keeping with the geology of the Upper Cretaceous
sediments, the composition of the aquatic fauna, and the gradual dip of the infilling flood
plain.

PALAEOCLIMATE
Previous palaeoclimatic assessments of the Winton Formation treated it as one
palaeoenvironment, generally regarded as warm temperate (e.g., Dettmann & Playford,
1969), and although the presence of coal suggested humidity, Dettmann et al. (1992)
interpreted the composition of the floral community to be indicative of overall dry
conditions. The refined higher resolution dating of the floral and faunal communities and
the addition of fossils discovered in the last 25 years, provides an opportunity to investigate
the climate at a higher resolution.

Recently, quantitative methods have been applied to investigate the palaeoclimate of
the Upper Cretaceous portion of the Winton Formation in greater detail (Table 3). These
studies have shown that the palaeoclimate of these localities was generally warm (∼16 ◦C
mean annual temperature) andwet (>1,300mmmean annual precipitation) as estimated by
the foliar physiognomic methods of Leaf Area Analysis, Leaf Margin Analysis and Climate
Leaf Analysis Multivariate Program, and mutual climatic range methods from the floral
assemblage (Fletcher, Moss & Salisbury, 2013; Fletcher et al., 2014b). Although precipitation
appears to have been high and seasonal, it was not as high as what is experienced in some
high elevation modern forests today, nor with extremes of wet and dry as is associated with
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Table 3 Key literature that informs the palaeoclimatic interpretation of the Upper Cretaceous portion of theWinton Formation.

Climate variable Estimate Evidence source Reference

Temperature Mean annual >16 ◦C Crocodilians Hocknull et al. (2009)
>16 ◦C (tropical to
subtropical)

Lungfish Kemp (1997)

16.4 ◦C± 5 ◦C Leaf Margin Analysis - LQ Fletcher, Moss & Salisbury (2013)
16 ◦C± 2 ◦C CLAMP - LQ Fletcher, Moss & Salisbury (2013)
13.6± 2 ◦C CLAMP - QM Fletcher et al. (2014b)
15.9± 1.2 ◦C Bioclimatic Analysis Fletcher et al. (2014b)

Warmest mean monthly 20.3± 2 ◦C Bioclimatic Analysis Fletcher et al. (2014b)
21.2± 2.7 ◦C CLAMP - QM Fletcher et al. (2014b)
>17.5 ◦C Freshwater turtles Molnar (1991)

Coldest mean monthly 10.3± 1 ◦C Bioclimatic Analysis Fletcher et al. (2014b)
6.7± 3.4 ◦C CLAMP - QM Fletcher et al. (2014b)

Growth Season Length 9 months CLAMP - LQ Fletcher, Moss & Salisbury (2013)
7.8± 1.1 months CLAMP - QM Fletcher et al. (2014b)

Precipitation Mean annual 1,321 mm+ 413
mm–315 mm

Leaf Area Analysis –LQ Fletcher, Moss & Salisbury (2013)

1,646± 370 mm Bioclimatic Analysis Fletcher et al. (2014b)
Growth season 1,073± 483 mm CLAMP - LQ Fletcher, Moss & Salisbury (2013)
Growth season 1,289± 483 mm CLAMP - QM Fletcher et al. (2014b)
3 driest months 268± 137 mm CLAMP - QM Fletcher et al. (2014b)
3 wettest months 630± 206 mm CLAMP - QM Fletcher et al. (2014b)

Inter and intra-annual variability Wet season double
dry season precipi-
tation

CLAMP Fletcher et al. (2014b)

‘High seasonality’ Ring markedness index Fletcher, Moss & Salisbury (2015)
High inter-annual
variability

Mean sensitivity >0.3 (ring index) Fletcher, Moss & Salisbury (2015)

Sea Surface temperatures ‘Warm’ Dolichosaurs Scanlon & Hocknull (2008)

the modern monsoon. For example, in modern Darwin, which is subject to monsoonal
weather systems, the cumulative three wettest months receive 1,120 mm on average and the
three driest receive 8.1 mm (BOM, http://www.bom.gov.au/climate/data-services/, date
accessed: 26/01/2014). Compare this with the Upper Cretaceous portion of the Winton
Formation, which is estimated to have received 630 ± 206 mm during the three wettest
months and 268 ± 137 mm during the three driest months (Fletcher et al., 2014b). The
growth indices of the fossil wood also indicate that climate variables differed between years
to the extent that it had a notable influence on ring width in the podocarp-like wood at the
locality (Fletcher, Moss & Salisbury, 2015). This variability appears to be non-random and
oscillatory, and may indicate that phenomena similar to the Pacific Decadal Oscillation
(Mantua & Hare, 2002;McGowan et al., 2009) were driving patterns of climate in the early
Late Cretaceous.

In addition to botanical indicators, elements of the fauna are climatically informative.
Crocodyliform remains have been reported in the Upper Cretaceous portion of theWinton
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Formation at AOD L-85, on Elderslie Station approximately 60 km north-wet of Winton
(Hocknull et al., 2009). Assuming this material is assignable to Isisfordia duncani or a
closely related species, and if eusuchians are accepted as paleothermometers (Markwick,
1994; Markwick, 1998) their presence supports a MAT of ≥16 ◦C. Modern lungfish, as
analogues forMetaceratodus ellioti (Kemp, 1997) from the Upper Cretaceous portion of the
Winton Formation, have a distribution limited to the tropics and subtropics. Freshwater
turtles from the upper portion of the Winton Formation (Molnar, 1991) also suggest
warmth as even cold-adapted modern turtles require warmest mean monthly temperatures
over 17.5 ◦C (Tarduno et al., 1998). Finally, the presence of dolichosaurs in the Upper
Cretaceous portion of the Winton Formation suggests sea surface temperatures conducive
to oceanic dispersal, in keeping with warming through to the end of the Turonian (Scanlon
& Hocknull, 2008).

FLORA
Macrofloral composition
Although the geological evidence suggests a broadly connected and coeval sedimentary
layer, some of the plant-bearing fossil localities in the Upper Cretaceous portion of the
Winton Formation are over 100 km apart and are not likely to represent one continuous
flora. Although regarding the Winton Formation as a whole, McLoughlin, Pott & Elliott
(2010) noted the variation in plant assemblages across sites in the 16 major studies
of the Winton macroflora. Indeed, the Lark Quarry locality conifer leaf impressions
suggest a dominance of multiple species of araucarians (Fletcher, Moss & Salisbury, 2013),
while at QM L311 Protophyllocladoxylon owensii Fletcher et al., with likely podocarp
affinities, appears dominant, both in terms of wood remains and from a frequency count of
pollen (Dettmann, Clifford & Peters, 2009; Fletcher, Moss & Salisbury, 2015). This suggests
a heterogeneous distribution of plant communities across the landscape (Fig. 3).

The podocarp-dominated plant community at QML311 is of particular palaeoecological
interest as such communities are rare in modern systems. In modern forests podocarps
are universally slow growing and are usually only a significant component in communities
growing on nutrient-poor soils (Coomes & Bellingham, 2011). These species mitigate the
problem of low nutrient availability by limiting mineral loss through long leaf retention
times (Monk, 1966) and through nutrient uptake via endomycorrhizal symbionts (Baylis,
McNabb & Morrison, 1963; Baylis, 1969; Russell, Bidartondo & Butterfield, 2002). Indeed,
Baylis, McNabb & Morrison (1963) found that on poor nutrient soils, podocarps are
dependent on mycorrhizal fungi. Cantrill & Falcon-Lang (2001) reported impressions of
nodules on roots similar to those seen in podocarps as early as the Albian. Thus, it is likely
that associations between conifer roots and fungi were present in the Late Cretaceous.
In addition, it was found that P. owensii had a likely leaf retention time (∼3–6 years)
similar to modern podocarps, including those that grow on low nutrient soils (Fletcher,
Moss & Salisbury, 2015). However, the fluvial plains of volcanically derived sediments that
constitute the upper portion of theWinton Formation were unlikely to be low in nutrients,
and thus modern centres of podocarp diversity, such as New Caledonia (Contreras-Medina
& Vega, 2002;Mutke & Barthlott, 2005) are unlikely to be good analogues.
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Figure 3 A sample of the variety of taxa, organs, and preservation of plant fossils from the Upper
Cretaceous portion of theWinton Formation. (A) A transverse section of Protophyllocladoxylon owensii
Fletcher et al. showing repeated crushing in early wood, QM F44336 (Fig. 2A; Fletcher, Moss & Salisbury,
2015)1; (B) Winton Formation Leaf morphotype B, QM F32459 (Fig. 3D; Fletcher, Moss & Salisbury,
2013); (C) Winton Formation Leaf morphotype C, QM F32510 (continued on next page. . . )

Full-size DOI: 10.7717/peerj.5513/fig-3
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Figure 3 (. . .continued)
(Fig. 2D; Fletcher, Moss & Salisbury, 2013); (D) Araucaria sp. cf. A. mesozoicaWalkom foliage, QM F32561
(Fig. 8F;McLoughlin, Drinnan & Rozefelds, 1995); (E) Part and counterpart of leaf impression from Lark
Quarry Conservation Area, UQL-LQ-III 24 (Fig 2A; Fletcher, Moss & Salisbury, 2013); (F) Ginko winto-
nensisMcLoughlin et al. holotype leaf impression, QM F32478b (Photo: T.F.); (G) Austrosequoia win-
tonensis Peters and Christophel, silicified ovulate cone and terminal leaves, QM F9509 (Fig 2; Peters &
Christophel, 1978); (H) cf. A. wintonensis longitudinal imprint of a terminal cone and stem with scale-like
leaves, QM F3250 (Fig. 11G;McLoughlin, Drinnan & Rozefelds, 1995); (I) Sphenopteris sp. fragmentary
frond, UQL-LQ-III 2 (Photo: T.F.).1 Reprinted from Palaeogeography, Palaeoclimatology, Palaeoecol-
ogy, 417, T. Fletcher, P.T. Moss, S.W. Salisbury, Wood growth indices as climate indicators from the Up-
per Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, Australia, 35–42., Copyright
2015, with permission from Elsevier.

The exceptions to this low-nutrient rule are the three podocarp species that dominate the
forests of the alluvial flood plains in south-western New Zealand: Dacrycarpus dacrydioides
(A.Rich.) de Laub., Prumnopitys taxifolia (Sol. ex D.Don) de Laub., and Podocarpus totara
G.Benn. ex D.Don (Coomes & Bellingham, 2011). The success of these species can be linked
to catastrophic disturbances (earthquakes and floods) by their single age stands (Duncan,
1991; Duncan, 1993; Wells, Duncan & Stewart, 2001) and by the effect of long periods
without disturbance. Where Wardle (1974) was able to locate undisturbed forest, canopy
spaces generated by windfall etc. of the dominant D. dacrydioides were replaced by tree
ferns and broad-leafed angiosperm species. Otherwise, a frequency of disturbance in the
order of hundreds of years is sufficient for these podocarps to remain dominant due to
their longevity (Coomes & Bellingham, 2011). Holloway (1954) described these resulting
podocarp forests as patchworks containing many kinds of podocarp communities, some of
whichwere specialised to particular sites and soils, as well as different severity of disturbance
(Duncan, 1993).

Given that this portion of the Winton Formation comprises alluvial sediments that are
generally considered nutrient rich, it seems likely the podocarp-dominated forests were
driven by successional patterns as part of a broader disturbance regime. Thus, despite the
differences in climate, the south-western New Zealand podocarp forests may be the best
modern analogue for the Upper Cretaceous podocarp-dominated flora. That no modern
flora is a good analogue for the Winton flora may not indicate taphonomic bias, but rather
that the role of podocarps in the depositional setting of the Upper Cretaceous portion of
the Winton Formation is taken by tall woody angiosperms in modern systems.

A Cretaceous example of a similarly heterogeneous community structure, with a
dominant podocarp component, is described by Falcon-Lang, Cantrill & Nichols (2001).
Within the Lower Cretaceous (upper Albian) Triton Point Member of the Neptune
Glacier Formation on Alexander Island, there appears to be two distinct communities
based around a braided alluvial plain system and a meander-belt coastal plain, yet both
comprise a number of sub-communities: broken podocarp woodland, gymnosperm-fern-
angiosperm thickets, cycadophyte-conifer scrub, and liverwort mats in the braid-plain
system, and podocarp-araucarian climax forest, fern thickets/conifer woodland, and
ginkgo-conifer scrub in the coastal meander-belt system (Falcon-Lang, Cantrill & Nichols,
2001). Although the composition of the plant communities and the kind of fluvial setting in
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the Upper Cretaceous portion of the Winton Formation is somewhat different from these,
it provides a framework to understand the difference in floral composition between sites.
The general low diversity may suggest we do not have climax forest preserved amongst
the Upper Cretaceous plant localities, although such sites may have existed within the
palaeo-landscape. QM L311 may represent an ecosystem similar to the broken podocarp
woodland of Falcon-Lang, Cantrill & Nichols (2001), or the podocarp dominated alluvial
plains and wetlands of south-western New Zealand (Wardle, 1974; Duncan, 1991; Duncan,
1993;Wells, Duncan & Stewart, 2001).

Compared with the majority of sites in the upper portion of the Winton Formation,
QM L311 is also unusual in its preservation and lithology. The majority of sites of this age
are now thought to have been deposited in meandering river systems and flood plains,
comprising predominantly leaf impressions in siltstone. In contrast, the cones, fruits
and palynomorphs of QM L311 are silica-replaced and preserved in silica-rich claystone,
suggesting a very slow flow or lacustrine environment. Although the taphonomic history of
these localities has not been systematically evaluated, it appears the material was deposited
in a silica-rich, anaerobic environment (Dettmann, Clifford & Peters, 2009). Given there
is no evidence for volcanic or hydrothermal conditions that are thought to cause rapid
silicification (Spicer, 1991; Locatelli, 2017), it is likely that anaerobic conditions were stable
such that decay was slow enough to allow slow silicification. This suggests a lacustrine
deposition and requires that either the lake did not overturn and was deep compared to
its surface area (Hutchinson, 1957) or that it had a high perimeter to surface area, resulting
in high organic input and limited surface gas exchange (Spicer, 1991). Given that the floral
material entering a lake generally reflects the waterside flora (Greenwood, 1991), QM L311
likely reflects a local snapshot of the vegetation. Some podocarps survive well in swampy,
poorly drained soils that may have occurred around the lake edge, and so may dominate
the local signal.

The somewhat more diverse leaf impression assemblages of the Lark Quarry plant
localities and of the localities from which McLoughlin, Drinnan & Rozefelds (1995) and
McLoughlin, Pott & Elliott (2010) sourced material, may reflect more diverse, perhaps more
mature, stands in which succession has taken place, more intensely sampled material, the
lumping of these sites of similar deposition environments, or the increased natural sampling
of a flora that occurs in a stream system as opposed to a lake (Burnham, 1989; Greenwood,
1991). Fluvial systems are biased to the river edge flora (Christophel & Greenwood, 1988)
and thus the higher representation of angiosperm leaves may derive from their dominance
of that niche. Early angiosperms are considered weedy in their growth habit (Royer et al.,
2010) and common to disturbed, moist sites such as stream edges (Feild et al., 2004; Feild
& Arens, 2005). Although most of the angiosperm leaf impressions cannot be precisely
identified, many are assigned to Fagales, with the most common reminiscent of Cretaceous
Nothofagus from New Zealand, and another to a Cretaceous leaf type from New Zealand
tentatively assigned to Betulaceae (McLoughlin, Drinnan & Rozefelds, 1995). According to
recent molecular studies (Xiang et al., 2014), the upper portion of the Winton Formation
was deposited at approximately the time of the first diversification of Fagales, but prior
to the divergence of Nothofagaceae and Betulaceae proper. The broad distribution of the
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Fagales, uncertainty in assignation and timing of diversification generally proclude further
ecological interpretation based on these identifications, as opposed to those based on the
leaf traits for early angiosperms more broadly. Similarly, the flower Lovellea wintonensis
from QM L311, is assigned to Laurales, a diverse group with representatives from the
tropics to the temperate regions. The higher representation of araucarians over podocarps
in that setting may indicate very long leaf retention times in the podocarp species thus
biasing against their proportional preservation, that these localities had not been subject
to disturbance, for example by flood, as recently as QM L311 and thus succession taken
place, or that the fluvial flora’s soils were better drained than those near QM L311. Either
way, the discrepancy in floras is likely a true signal, in that it represents a heterogeneous
landscape comprising various plant sub-communities, likely determined by abiotic factors
such as disturbance, depositional environment and local topography.

Diversity
The apparent diversity of the macroflora of the Upper Cretaceous portion of the Winton
Formation (<30 species; Table 4), is low when compared with many similar latitude and
high latitude broadly coeval floras of both the Northern (Upper Cretaceous (Turonian)
Raritan Formation, USA – 250+ species (Knowlton, 1919; Martínez-Millán, Crepet &
Nixon, 2009 and references within); Upper Cretaceous (Cenomanian–Turonian) Sarbay
flora, Kazakhstan – 100+ taxa (Frumin & Friis, 1999; Frumin, Eklund & Friis, 2004); Upper
Cretaceous (Turonaian) Novaya Sibir’, Russian High Arctic – ∼50 species (Herman &
Spicer, 2010)) and Southern Hemisphere (‘mid’-Cretaceous (Late Albian–Cenomanian)
Warder Formation, New Zealand – 57+ species (Parrish et al., 1998); Lower Cretaceous
(upper Albian) Triton Point member of the Neptune Glacier Formation, Antarctica – 67
species (Falcon-Lang, Cantrill & Nichols, 2001)) especially if accounting for the latitudinal
biodiversity gradient (Fig. 4). The most similar comparison found is that of the Upper
Cretaceous portion of theWinton Formation flora to the Upper Cretaceous (Cenomanian–
Coniacian) upper Mata Amarilla portion of Mata Amarilla Formation, Argentina. The two
flora compare well in sedimentary environment—an inland flood-plain—and richness of
angiosperm morphotypes—10 morphotypes—though Iglesias et al. (2007), note the large
difference in the proportion of plant groups preserved (gymnosperms more frequent in the
Winton flora) and differences in the size, shape, and diversity of forms of the angiosperm
leaves.

Causes of low diversity
A potential cause of the low diversity is sampling intensity. Fletcher, Moss & Salisbury
(2013) investigated specimens from two new sites at Lark Quarry Conservation Area
(Fig. 1; Romilio & Salisbury, 2011) and found no new taxa when compared with the known
<30 species from 12 sites in the Upper Cretaceous portion of the Winton Formation
(Table 4). Ideally, rarefaction would be conducted to assess the impact of sampling;
however, not all of the information necessary for comparative analysis is available. In a
simplified system, if additional, as-yet unidentified species were present in the total sample
pool at Lark Quarry, to have a significant probability (≥5%) of finding none of them in
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Table 4 Described elements of the macroflora of the Upper Cretaceous portion of theWinton Formation.

Fossil type Taxonomic group Name Reference

Wood Pinophyta; Podocarpaceae Protophyllocladoxylon owensii Fletcher et al. (2014a)

Flower Magnoliophyta; Laurales Lovellea wintonensis Dettmann, Clifford & Peters (2012)

Cone Pinophyta; Cupressaceae Austrosequoia wintonensis Peters & Christophel (1978)
Pinophyta; Araucarian Emwadea microcarpa Dettmann, Clifford & Peters (2009)

Leaf impression Pterophyta Aff. Lygodium? Peters & Christophel (1978)
Pterophyta; Osmundaceae Phyllopteroides macclymontae McLoughlin, Drinnan & Rozefelds (1995),

McLoughlin, Pott & Elliott (2010)
Pterophyta; ?Osmundaceae Cladophlebis sp. McLoughlin, Drinnan & Rozefelds (1995)
Pterophyta Microphyllopteris sp. cf.M. gle-

ichenoides
McLoughlin, Drinnan & Rozefelds (1995)

Pterophyta Sphenopteris sp. cf. S. warragu-
lensis

McLoughlin, Drinnan & Rozefelds (1995)

Pterophyta Sphenopteris sp. McLoughlin, Drinnan & Rozefelds (1995)
Pterophyta Indeterminate fern pinnule McLoughlin, Drinnan & Rozefelds (1995)
Ginkgoales Ginko wintonensis McLoughlin, Drinnan & Rozefelds (1995)
Pinophyta c.f. Austrosequoia wintonensis Peters & Christophel (1978);

McLoughlin, Drinnan & Rozefelds (1995)
McLoughlin, Pott & Elliott (2010)

Pinophyta; Araucariaceae Araucaria sp.
(scale-like leaves)

Bose (1955)
McLoughlin, Pott & Elliott (2010)

Pinophyta; Araucariaceae Araucaria sp.
(strap-like leaves)
cf. A. mesozoica

White (1974)
Dettmann & Clifford (1992)
McLoughlin, Drinnan & Rozefelds
(1995)

Pinophyta; Araucariaceae Araucaria cf. fletcheri
(awl-like leaves)

Bose (1955)
McLoughlin, Pott & Elliott (2010)

Pinophyta; ?Podocarpaceae Elatocladus plana McLoughlin, Drinnan & Rozefelds (1995)
Pentoxylales Taeniopteris sp. McLoughlin, Drinnan & Rozefelds (1995)
Bennetitales Otozamites sp. cf. Otozamites

bengalensis
McLoughlin, Pott & Elliott (2010)

Bennetitales Ptilophyllum sp. McLoughlin, Pott & Elliott (2010)
Magnoliophyta; Magnoliopsida Angiosperm morphotype A McLoughlin, Drinnan & Rozefelds (1995)
Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype B McLoughlin, Drinnan & Rozefelds (1995)

Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype C
‘reminicient of’ Nothofagus from
New Zealand (Pole, 1992)

McLoughlin, Drinnan & Rozefelds (1995)

Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype D McLoughlin, Drinnan & Rozefelds (1995)

Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype E McLoughlin, Drinnan & Rozefelds (1995)

Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype F McLoughlin, Drinnan & Rozefelds (1995)

(continued on next page)
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Table 4 (continued)

Fossil type Taxonomic group Name Reference

Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype G
Similar to a NZ specimen
tenatitvely assigned to Betulaceae
(Pole, 1992)

McLoughlin, Drinnan & Rozefelds (1995)

Magnoliophyta; Magnoliopsida;
Hamamelidae; ?Fagales

Angiosperm morphotype H McLoughlin, Drinnan & Rozefelds (1995)

Magnoliophyta - dicotyledon Angiosperm morphotype I McLoughlin, Pott & Elliott (2010)
Other Axes and

nodal di-
aphrams

Equisitales Equisetites sp. Bose (1955),
McLoughlin, Pott & Elliott (2010)

False trunk Pterophyta; Tempskyaceae Tempskya judithae Clifford & Dettmann (2005)
Gammae Hepaticales Marchantites marguerita Dettmann & Clifford (2000)

150 samples, the new species would need to comprise less than 2% of the total sample
pool (0.98150= 0.048). By comparison, Iglesias et al.’s (2007) revision of the flora from the
Cenomanian–Coniacian Mata Amarilla Formation report on >500 leaf specimens, >300
from the Mata Amarilla Level. While the use of macrofossils in palaeoecological studies of
diversity is an area in need of greater research (Birks et al., 2016), the probability suggests it
is reasonable that other factors may have contributed to the apparent low diversity of the
flora in the Upper Cretaceous portion of the Winton Formation.

Taphonomy also must be accounted for, which may bias preservation of parts of a
palaeo-landscape over others, and can result in a low apparent diversity of the death
assemblage. The Turonian Raritan Formation (Christopher, 1979), for example, exhibits
exquisite preservation in clays that lends itself to identification and quantification of the
diversity of the flora in detail, while the Upper Cretaceous Winton Formation flora is
variable in preservation, with many sites consisting of partial leaf impressions in silts or
leaf impressions that are difficult to prepare whole (cf. QM L311). This argument cannot
be made for all of the sites to which we have compared the Winton Formation flora herein;
the plant materials in upper Albian Triton Point Member of Alexander Island, Antarctica,
for example, exhibit similar preservation with no cuticle present and complete specimens
rare (Cantrill & Nichols, 1996).

The effect of taphonomy can be investigated by comparing apparent diversity of
different types of fossils. If we compare the angiosperm macrofossil record from the
Upper Cretaceous portion of the Winton Formation to angiosperm pollen regionally
from borehole studies, it seems pollen is recording a higher diversity (∼30 angiosperm
palynomorphs; Burger, 1993). Yet difficulty assessing ages of the samples in light of new
understanding of the temporal deposition of the Winton Formation, may mean this
is a sum of 10 million years of deposition, artificially inflating the apparent diversity.
Instead we compared different kinds of fossils at one site: pollen, wood and leaf
impressions. For example, at QM L311, all of the wood is assigned to the podocarp,
Protophyllocladoxylon owensii (Fletcher et al., 2014a) and in agreement, 87% of the pollen
is referred to Podocarpaceae (Dettmann, Clifford & Peters, 2009). Pollen is considered to
represent the diversity of the palaeo-landscape, even if not at a 1:1 ratio due to differences
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Figure 4 Histogram of species richness at fossil sites referred to in the text, from low to high latitude.
Full-size DOI: 10.7717/peerj.5513/fig-4

in pollen syndromes and low morphological distinctiveness within some groups (Birks
et al., 2016). In a modern system, different genera of podocarp pollen were found to
either truly represent the prevalence or under-represent the prevalence of podocarps in a
system (Pocknall, 1978). Thus, although a taphonomic influence on the apparent diversity
cannot be disproven, the congruence of microfossil and macrofossil evidence, and the fine
sediments and preservation of microfossils at some localities, suggests other factors may
also be causing the apparent low diversity.

Of the 12 factors that may influence diversity in modern systems compiled from Brown
(1988), Roy et al. (1998), and Krebs (2001), two palaeoclimatic influences are proposed to
have affected the diversity of the flora of the Upper Cretaceous portion of the Winton
Formation in addition to taphonomy and sampling: super-annual climatic variability—in
particular a potential multi-year cycle of wet and dry years—and related to this cycle,
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disturbance through flood events. Evidence for these influences in the environment
comes from the sedimentary geology of the region (Tucker et al., 2013), growth indices in
fossil wood (Fletcher, Moss & Salisbury, 2015), comparison of the fossil floral community
composition with modern ecosystems (e.g., Holloway, 1954; Duncan, 1991; Duncan, 1993;
Jaffré, 1995) and similarly low angiospermdiversity represented in the flood plain ecosystem
of the coeval Mata Amarilla Formation (Iglesias et al., 2007). Whilst low diversity within a
locality may frustrate some attempts to understand the palaeoenvironment e.g., diversity
thresholds for using certain leaf physiognomic methods for palaeoclimatology (Spicer,
Herman & Kennedy, 2005) the low diversity itself may be a palaeoenvironmental indicator,
if one can account for the effects of sampling intensity and taphonomy. Future studies,
particularly of well constrained palynological samples, may disprove the hypothesis
posited here that the flora of the Upper Cretaceous portion of the Winton Formation
was low diversity; however, evidence from the sediments, wood and analogous floral
communities are consistent with a diversity depressed by disturbance in the form of floods,
and super-annual climate variability.

FAUNA
The current faunal list of the Upper Cretaceous (Cenomanian–Turonian) portion of
the Winton Formation (Table 5; Fig. 5) includes evidence of invertebrates such as
dragonflies and mecopteroids (Jell, 2004), freshwater bivalves (Hocknull, 1997; Hocknull,
2000), freshwater gastropods (Cook, 2005), and oribatid mites (Fletcher & Salisbury, 2014).
Vertebrates are represented by turtles (Molnar, 1991), eusuchian crocodyliforms (Salisbury
et al., 2006), semi-aquatic lizards (Scanlon & Hocknull, 2008), dipnoan lungfishes (Kemp,
1997), and dinosaurs such as small and large ornithopods (Thulborn & Wade, 1979;
Thulborn & Wade, 1984)—represented by a single tooth (see Hocknull & Cook, 2008)
and primarily through tracks (see Romilio & Salisbury, 2011; Romilio, Tucker & Salisbury,
2013; Thulborn, 2013; Romilio & Salisbury, 2014; Thulborn, 2017)—an indeterminate
ankylosaurian (Leahey & Salisbury, 2013), titanosauriform sauropods (Coombs & Molnar,
1981;Molnar, 2001;Molnar & Salisbury, 2005; Hocknull et al., 2009;Molnar, 2010;Molnar,
2011; Poropat et al., 2015a; Poropat et al., 2015b; Poropat et al., 2016) and a megaraptoran
theropod (Hocknull et al., 2009; Agnolin et al., 2010; Benson et al., 2010; White et al., 2012;
White et al., 2013;White et al., 2016).

As well as the climatic (see Palaeoclimatology) and hydrological (seeHydrology) needs of
the animals for which we havemodern analogues, the environmental preferences of some of
the groups that have no modern analogue (e.g., non-avian dinosaurs) are also informative.
Some nodosaurid ankylosaurs seem to have a broad range of ecological tolerances
(Coombs & Deméré, 1996) and examples of ankylosaurians can be found living from
polar latitudes (Molnar & Wiffen, 1994) to at least sub-tropical areas (Amiot et al., 2010)
and from riparian (Wang et al., 1989; Amiot et al., 2010) to coastal environments (Molnar
& Wiffen, 1994; Coombs & Deméré, 1996; Petti et al., 2010). However, what seems to link
them is a preference for wet and well-vegetated environments (Vickaryous, Maryanska &
Weishampel, 2004). Three titanosaurian and one non-titanosaurian titanosauriform are
currently recognised from the Upper Cretaceous portion of the Winton Formation
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Table 5 Described elements of the fauna of the Upper Cretaceous portion of theWinton Formation.

Fossil type Taxonomic group Name Reference

Body fossil Mollusca Bivalvia Alathyria jaqueti
Megalovirgus wintonensis
Hyridella macmichaeli

Hocknull (1997)
Hocknull (2000)

Gastropoda Melanoides sp. Cook (2005)
Insecta Mecoptera 2 mecopteroid insects Jell (2004)

Odonata;
Anisoptera

1 dragonfly

Osteichthyes Sarcopterygii; Dipnoi Metaceratodus ellioti
Metaceratodus wollastoni

Kemp (1997)

Reptilia Squamata;
Pythonomorpha;
?Dolichosauridae

cf. Coniasaurus Scanlon & Hocknull (2008)

Crocodiliformes;
Mesoeucrocodylia;
Eusuchia

Crocodyliformes indet. Hocknull et al. (2009)

Reptilia;
Dinosauria

Megaraptora Australovenator wintonensis Hocknull et al. (2009)

Titanosauriformes;
Titanosauria

Diamantinasaurus matildae Hocknull et al. (2009)
Poropat et al. (2015b)

Savannasaurus elliottorum Poropat et al. (2016)
unnamed Coombs & Molnar (1981)

Molnar (2001)
Molnar (2011)

Titanosauriformes;
Somphospondyli

Wintonotitan wattsi Coombs & Molnar (1981)
Molnar (2001)
Molnar & Salisbury (2005)
Hocknull et al. (2009)
Poropat et al. (2015a)

Ankylosauria indet. ‘hypsilophodontid’ Leahey & Salisbury (2013)
Ornithischia;
Ornithopoda

[=Ornithopoda indet.] Hocknull & Cook (2008)

Trace fossil Insecta Arachnid Oribatid mite Fletcher & Salisbury (2014)
Dinosauria Ornithischia; large-bodied

ornithopod trace
cf. Iguanodontipus Romilio & Salisbury (2011),

Romilio & Salisbury (2014)
Romilio, Tucker & Salisbury (2013)
cf.
Thulborn (2013)
Thulborn & Wade (1979)
Thulborn & Wade (1984)
Thulborn (2017)
White, Cook & Rumbold (2017)

Ornithischia;
small-medium-bodied ornithopod trace

Wintonopus latomorum Thulborn & Wade (1984)

Romilio, Tucker & Salisbury (2013)
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Figure 5 Representative animal fossils from the Upper Cretaceous portion of theWinton Formation.
(A)Melanoides sp., QM F49451 (Fig. 1; Cook, 2005); (B) Alathyria jaqueti Newton, QM F103903 (Fig. 2M;
Hocknull, 2000); (C) Diamantinasaurus matildae Hocknull et al., right humerus in lateral view, AODF 603
(Fig. 5D; Hocknull et al., 2009); (D)Metaceratodus ellioti, Kemp, QM F14971 (Photo: Rodney Berrell); (E)
Probable oribatid mite trace, QM F44338 (continued on next page. . . )

Full-size DOI: 10.7717/peerj.5513/fig-5
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Figure 5 (. . .continued)
(Fig.2 ; Fletcher & Salisbury, 2014)1; (F) Australovenator wintonensisHocknull et al. dentary teeth in labial
view, AODF 604 (Fig. 20E, F; Hocknull et al., 2009); (G)Wintonotitan wattsiHocknull et al., reconstructed
right humerus in posterior view, QM F7292 (Fig. 16F; Hocknull et al., 2009); (H) cf. Igunodontipus,
track 3 (L2), left pedal impression (contested; Fig. 5D; Romilio & Salisbury, 2014)2. 1Probable oribatid
mite (Acari: Oribatida) tunnels and faecal pellets in silicified conifer wood from the Upper Cretaceous
(Cenomanian–Turonian) portion of the Winton Formation, central-western Queensland, Australia,
T.L. Fletcher and S.W. Salisbury, Alcheringa, copyright c©Association of Australasian Palaeontologists,
reprinted by permission of Taylor & Francis Ltd, www.tandfonline.com on behalf of Association of
Australasian Palaeontologists. 2Reprinted from Cretaceous Research, 51, A. Romilio and S.W. Salisbury,
Large dinosaurian tracks from the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton
Formation, Lark Quarry, central-western Queensland, Australia: 3D photogrammetric analysis renders the
‘stampede trigger’ scenario unlikely, 186–207, Copyright (2014), with permission from Elsevier.

(Table 5). The presence of titanosaurians in the Upper Cretaceous portion of the
Winton Formation is considered indicative of inland, fluvio-lacustrine environments,
as opposed to coastal plains (Mannion & Upchurch, 2010). However, the presence of the
non-titanosauriform somphospondyl Wintonotitan wattsi is contra this pattern. In their
study of sauropod environmental preferences Mannion & Upchurch (2010) found eight
localities that also had a mixed sauropod fauna. Although there is strong evidence of
environmental preference, sauropod habitats were not strictly exclusive. Ornithopods have
been shown to exploit a range of humid region habitats including wetlands (Nadon, 1993),
lacustrine (Platt & Meyer, 1991), fluvial and riparian settings (Vila et al., 2013; Herne et al.,
2018), and coastal environments (Diedrich, 2011) including lagoons (Vila et al., 2013). Both
large and small ornithopods have been found in polar environments, with some potentially
overwintering there, through to temperate climates (Rich & Rich, 1989; Chinsamy, Rich
& Vickers-Rich, 1998; Chinsamy et al., 2012; Herne et al., 2018; Woodward, Rich & Vickers-
Rich, 2018). Ornithopods appear to dominate high latitude to temperate localities, while
saurichians, particularly sauropods, seem to dominate low latitude ‘tropical’ climate
zones (Matsukawa, Lockley & Jianjun, 2006), although both extend beyond these ranges,
as demonstrated by Antarctic (Cerda & Chinsamy, 2012) and Patagonian (Apesteguía,
2004; Salgado, Apesteguía & Heredia, 2005; Filippi & Garrido, 2012 and others) sauropods.
Evidence from other localities suggests habitat partitioning between sauropods and
ornithopods at the same latitude (Vila et al., 2013), but the co-occurrence of both is
also known from the ichnological data (Salisbury et al., 2017). As such, ornithopods are
not a strong indicator of palaeoenvironmental conditions.

There does not seem to be a clear pattern of distribution of megaraptoran theropods,
but that they are almost always found in association with other dinosaurs (Smith et al.,
2008; Novas et al., 2013), from polar localities (Molnar, Flannery & Rich, 1981; Benson et
al., 2012) to lower latitudes (Bell et al., 2016). This suggests that as long as the environment
can support the necessary sized prey animals, they will find it suitable and are unlikely a
specific indicator of palaeoenvironment.
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GAPS AND FUTURE DIRECTIONS
QM L311 comprises the most well-preserved flora of the Upper Cretaceous portion of the
Winton Formation, and although investigation of this flora has been pursued (e.g., Peters
& Christophel, 1978; Dettmann, Clifford & Peters, 2009; Dettmann, Clifford & Peters, 2012),
undescribed material remains. Further investigation of its diversity and taphonomy may
increase our understanding of the diversity of the Winton Formation and its place in the
early evolution of the angiosperms. In addition, although much interest in the Winton
Formation has centered around its faunal communities, prospecting for additional sites
with similar lithology to QM L311 should continue in order to uncover similarly preserved,
rich floral deposits.

The insect record is also very poor for the Winton Formation, likely due to the rapid
destruction of specimens by weathering once exposed (Jell, 2004). The same kinds of
exposures that could improve our floral record—fine matrix, newly exposed, silicified
material—are also key sites to explore for insect body and trace fossils. Although some
unreported specimens have been found, increased awareness among researchers and
landholders that work in the region regarding the rarity and importance of these fossils
may also improve the chances of increasing our understanding of this group given the
current record comprises serendipitous finds uncovered during dam building (Jell, 2004).

Upper portions of theWinton Formation are the most likely to have been exposed to the
extensive Cenozoic weathering that hampers understanding of the palaeoecology of this
unit and surface exposures of the Winton Formation are very limited. Much of the detailed
stratigraphic work to date, identifying Upper and Lower Cretaceous portions of the unit,
has been conducted on data core logs or surface concretions. Many of the fossil-bearing
localities, particularly those aroundWinton, do not have site-specific sedimentological and
stratigraphic data associatedwith them, so broad scale stratigraphic correlations that include
these sites are tentative and limited to a few key sites (namely Lark Quarry Conservation
Park and Bladensburg National Park). This problem is exacerbated by extensive vertical
faulting throughout the area. Continued investigation of the stratigraphy, sedimentology,
and geomorphology of the region, along with the application of absolute dating methods
to fossil-bearing localities within the Winton exposures, are key steps to guide future
prospecting and to inform interpretation of the palaeoecology and palaeoenvironement of
this important Australian Cretaceous formation.

CONCLUSION: PALAEOENVIRONMENTAL
RECONSTRUCTION
When all of the current evidence—sedimentological, taphonomic, floristic, vertebrate, and
invertebrate—is combined, a coherent yet complex image of the climate and environment
of the Upper Cretaceous portion of the Winton Formation is apparent. The temperatures
were warm, mesothermal, and probably similar to those of the sub-tropics today despite
the palaeolatitude of ∼50◦ S. This was in keeping with globally high temperatures that
supported forest in the southern polar regions during the Cretaceous (Cantrill & Falcon-
Lang, 2001; Falcon-Lang, Cantrill & Nichols, 2001; Korasidis et al., 2016; Tosolini et al.,
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2018) at atmospheric CO2 as high as 1000 ppm (Franks et al., 2014). Precipitation was high
and seasonal but not with extremes of wet and dry as is associated with the monsoon. The
changing communities and ecology of the region over the 10 Ma deposition of the total
Winton Formation was affected by the massive sediment loads derived from Whitsundays
volcanism that infilled the inland sea (Tucker et al., 2016). This resulted in at least two
distinct systems—an esturine, near-coastal system of higher energy, and a freshwater,
inland, lower energymeandering river and flood plain—thatmust be considered separately.

The landscape that is preserved at the many sites where the Upper Cretaceous portion
of the Winton Formation is exposed may be broadly continuous both temporally and
stratigraphically, but in terms of their floral communities, they are heterogeneous. In some
parts of the palaeolandscape, low diversity appears to be linked to a disturbance regime
that may have comprised primarily flooding events. These flooding events were likely
infrequent and possibly scouring in places when they occurred, leading to the establishment
of long-lived podocarp stands that excluded other plants early in their establishment on
the barren sediment. Other parts of the landscape were either less affected by flood events,
or were affected at different times, such that their floral community was comprised of
a different combination and abundance. These communities appear to have been more
diverse, although not as diverse as would be expected of a forest climax community, and
not as high or as diverse as at the other Late Cretaceous mid-latitude fossil floras to which
it has been compared.

Comparing the range of communities recorded within the Upper Cretaceous portion
of the Winton Formation to the other well-studied Australian Cretaceous plant localities,
the older Albian Otway Basin flora, the Winton communities and their sediments are not
as distinct as the six biofacies recorded in the Otway Basin (Tosolini et al., 2018). Whereas
Tosolini et al. (2018) record broad leafed araucarians as part of a hinterland, high energy
riverine and fire dominated systems, and flood plains, the outcroppings of the Upper
Cretaceous portion of the Winton Formation represent a broadly continuous meandering
river and flood plain system that dominated the landscape. The semi-aquatic reptiles, fish
and invertebrates thatwere present are consistentwith this system and accompanyingminor
lacustrine components. This created a landscape with high densities of vegetation necessary
to support large, herd-living herbivorous dinosaurs in wet, riparian environments. In
contrast to the small ornithopod and theropod polar dinosaurs that characterise the Otway
fauna (Rich & Rich, 1989; Rich, Vickers-Rich & Gangloff, 2002), the Winton Formation was
abundant in large sauropods, ornithopods and therapods perhaps reflecting differences in
primary productivity not mirrored by diversity.

The disturbance events suggested to have shaped this palaeoenvironment may be linked
to the influence of a ‘Pacific Decadal Oscillation’-like cycle affecting Queensland during the
Late Cretaceous. This may have influenced both precipitation and temperature covariantly,
as in modern climate systems. It is likely that precipitation varied between years, possibly
on an oscillation of relative drought years and years of higher precipitation similar to the
Pacific Decadal Oscillation. Thus, during the earliest part of the Late Cretaceous, when
the rocks that now form the Upper Cretaceous portion of the Winton Formation were
deposited, this part of eastern Gondwana was a dynamic and heterogeneous environment.
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Institutional Abbreviations

QM L Queensland Museum Field locality
AOD L Australian Age of Dinosaurs field locality
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