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Lipids can undergo modification as a result of interaction with reactive oxygen species
(ROS). For example, lipid peroxidation results in the production of a wide variety of highly
reactive aldehyde species which can drive a range of disease-relevant responses in cells
and tissues. Such lipid aldehydes react with nucleophilic groups on macromolecules
including phospholipids, nucleic acids, and proteins which, in turn, leads to the formation
of reversible or irreversible adducts known as advanced lipoxidation end products (ALEs).
In the setting of diabetes, lipid peroxidation and ALE formation has been implicated in the
pathogenesis of macro- and microvascular complications. As the most common diabetic
complication, retinopathy is one of the leading causes of vision loss and blindness
worldwide. Herein, we discuss diabetic retinopathy (DR) as a disease entity and review
the current knowledge and experimental data supporting a role for lipid peroxidation and
ALE formation in the onset and development of this condition. Potential therapeutic
approaches to prevent lipid peroxidation and lipoxidation reactions in the diabetic retina
are also considered, including the use of antioxidants, lipid aldehyde scavenging agents
and pharmacological and gene therapy approaches for boosting endogenous aldehyde
detoxification systems. It is concluded that further research in this area could lead to new
strategies to halt the progression of DR before irreversible retinal damage and sight-
threatening complications occur.

Keywords: diabetes, retina, oxidative stress, polyunsaturated fatty acids, lipid peroxidation, aldehydes, advanced
lipoxidation end products, detoxification
INTRODUCTION

Diabetic Retinopathy
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia, resulting
from defects in insulin secretion, insulin action, or both. The chronic hyperglycemia of diabetes is
associated with long-term damage, dysfunction, and failure of various organ systems, especially the
eyes, kidneys, nerves, heart, and blood vessels (1). DM is a major healthcare issue of global epidemic
proportions and is mainly divided into type 1 diabetes (T1D) and type 2 diabetes (T2D). T1D is an
autoimmune disorder characterized by insufficient insulin production stemming from the loss of
n.org February 2021 | Volume 11 | Article 6219381
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pancreatic b-cells (2). T2D is a metabolic disorder that is
multifactorial in its etiology, resulting from insulin resistance
and/or abnormal insulin secretion (3). T2D is strongly linked
with changes in dietary and lifestyle factors and is increasing at
an alarming rate globally (4). It is estimated that the prevalence
of DM will increase substantially from the 451 million recorded
cases in 2017 to 693 million by 2040 (5).

Diabetic retinopathy (DR) is the most common microvascular
complication of DM and is a leading cause of blindness in the
working age population worldwide (6, 7). It is a progressive sight-
threateningeyedisease causedbyhyperglycemia,whichdamages the
retinal microvasculature leading to vascular permeability, retinal
ischemia, neovascularization, retinal detachment, and blindness (8,
9). Althoughhyperglycemia is central to the development ofDR, it is
exacerbated by hypertension (10), renal disease (11), and
dyslipidemia (12). Globally, DR affects approximately one third of
the general diabetic population. Within 20 years of DM diagnosis,
almost all of those affected by T1D and over 60% of those affected by
T2D will have at least some retinopathy (13).

Clinically, DR is classified into two progressive stages termed
non-proliferative DR (NPDR) and proliferative DR (PDR). The
diagnosis of DR is primarily based on symptoms or features that
are visible during fundus examination. NPDR is often
asymptomatic and is characterized by various pathological
changes including intraretinal hemorrhages, microaneurysms,
hard exudates (lipid leakage), cotton wool spots (localized
disruption of axoplasmic flow), changes in vessel caliber, and
ischemic spots (14). PDR involves the development of new blood
vessels on the surface of the retina and is graded according to
their location on the fundus and the presence or absence of
vitreous hemorrhage (9).

Beyond the features visible in fundus images, NPDR is
associated with a number of functional changes that usually
occur within the first few years of diabetes, including alterations
in rate of retinal blood flow (15), breakdown of the inner blood-
retinal-barrier (iBRB) (16), and loss of neurovascular coupling
mechanisms that adjust retinal capillary perfusion to neuronal
metabolism (17). As NPDR progresses, vasodegenerative
pathology ensues including the thickening of capillary
basement membranes (BM), the loss of vascular mural cells
(pericytes and vascular smooth muscle) and the formation of
acellular capillaries, leading to areas of retinal non-perfusion and
ischemia (18–20). Retinal ischemia induces the upregulation of
pro-inflammatory cytokines and growth factors, which drive
vascular permeability and pathological neovascularization (14).

Visual impairment in DR can result from PDR or the
development of diabetic macular edema (DME). PDR can
cause vision loss through various mechanisms including
tractional retinal detachment, vitreous hemorrhaging and
neovascular glaucoma (9). DME can occur at any stage of DR,
where the disruption of the iBRB results in vascular leakage and
the accumulation of sub- and intra-retinal fluid in the macula
region of the retina, disrupting central vision (6, 13).

Recently, it has been suggested that DR should be re-categorized
as a neurovascular rather than a microvascular complication of
diabetes (21, 22). The neurovascular nature of the disease is evident
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even during early diabetes, with retinal neuronal dysfunction being
widely reported in clinical electrophysiology studies (23–25). At a
histological level, detailed analyses of post-mortem retinas from
both diabetic patients and experimental animal models suggest that
neurodegeneration forms an important component of DR, whereby
retinal ganglion cells (RGCs), amacrine cells and even
photoreceptors may be lost as diabetes progresses (26–28).
Retinal glial cells also suffer during diabetes and display both
functional and morphological changes (29). There are two main
types of macroglial cell in the retina, namely, astrocytes and Müller
glia (30). Astrocytes are largely restricted to the nerve fiber layer of
the retina and play a key role in the maintenance of the iBRB and in
modulating neuronal signaling (31, 32). Müller glia span the entire
thickness of the retina and perform a wide range of functions
including stabilization of the retinal architecture, regulation of ion
homeostasis, maintenance of the iBRB, neurotransmitter recycling,
and neuronal survival (33–35). Previous work in experimental
animals has suggested that astrocytic intercellular communication
is impaired in the diabetic retina (33), alterations which have been
previously associated with the development of neuronal
dysfunction (36). Müller glia display numerous changes in
diabetes, with the most obvious being the induction of gliosis,
characterized by cellular hyperplasia and the upregulation of the
intermediate filament protein, glial fibrillary acidic protein (GFAP)
(37). These cells also exhibit disturbances in their ability to regulate
glutamate and K+ in the extracellular space and consequently have
been linked to retinal excitotoxicity and the development of retinal
edema during diabetes (36). As the resident immune cells of the
retina, microglia also participate in the development of DR. During
diabetes, retinal microglia assume a reactive phenotype, which
results in the propagation of pro-inflammatory signalling and
inflammatory damage (38). Because neuroretinal and glial cell
alterations occur at an early stage of the disease process, these
cells are thought to play an important contributory or causative role
in the onset and progression of the vascular pathology associated
with DR (9). Figure 1 summarizes the main vascular, glial and
neuronal changes reported in the diabetic retina.

Large, prospective, randomized clinical trials have shown that
long term glycemic control reduces the risk of development and
progression of DR in both T1D and T2D patients (39). Beyond the
maintenance of tight glycemic control, laser photocoagulation is a
late-stage treatment for PDR that sacrifices peripheral retinal
regions to prevent further vision loss and preserve central vision
(8). Intravitreal injection of vascular endothelial growth factor
(VEGF) inhibitors is the current standard of care for patients
with DME, but not all patients respond to these drugs and others
become refractory to therapy (40). Aside from their destructive
or invasive nature, neither treatment addresses the underlying
pathophysiology of DR, with their effects being limited
to preventing further late stage vasculopathy. They are also
ineffective at managing or repairing the neuronal or glial cell
dysfunction in early-stage DR. A greater understanding of the
pathophysiological mechanisms that underlie neuroretinal
dysfunction during diabetes could open up new possibilities
to therapeutically manage and impede the progression of
the disease.
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Lipid peroxidation and lipoxidation reactions have been
implicated in various neurodegenerative and cardiovascular
diseases (41, 42). Lipid peroxidation refers to the oxidative
degradation of lipids (43). Lipoxidation, on the other hand,
describes the formation of covalent adducts between reactive
products of lipid peroxidation and macromolecules such as
proteins, phospholipids and DNA (44). A growing body of
evidence suggests that lipid peroxidation and lipoxidation plays
a key role in the development of diabetic vascular complications,
including DR (45–47). In the current review, we discuss in detail
the involvement of lipid peroxidation and lipoxidation reactions
in the pathogenesis of DR. We also highlight therapeutic
approaches that could hold promise for preventing such
reactions in the diabetic retina. Further work in this area could
lead to new therapeutic options for the early-stage treatment of
DR, and thus negate or reduce the need for end-stage therapies
such as laser photocoagulation or intravitreal anti-VEGF drugs.
OXIDATIVE STRESS AND LIPIDS

Oxidative Stress
Oxidative stress results from an imbalance between the production
of reactive oxygen species (ROS) and the capability of biological
systems to detoxify them (48). It has long been recognized that high
levels of ROS can inflict direct damage to important cellular
structures including proteins, lipids, and nucleic acids (49–51).
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ROS can be classified into two groups of compounds called free
radicals and non-radicals (52). Free radicals contain at least one
unpaired electron in their outer orbit. The commonly defined free
radicals include superoxide radicals ( O•−

2 ), hydroxyl radicals
(•OH), hydroperoxyl radicals (HOO•), alkoxy radicals (RO•) and
peroxyl radicals (ROO•) (53, 54). Non-radical species include
hydrogen peroxide (H2O2), singlet oxygen (1O2), hypochlorous
acid (HOCl), organic peroxides (ROOH) and peroxynitrite
(ONOO−) (54, 55). •OH is the most reactive and harmful ROS,
being capable of accepting an electron from almost any nearby
biomolecule (56, 57). The primary sources of endogenous ROS are
the mitochondria, plasma membrane, endoplasmic reticulum and
peroxisomes, with their generation occurring through a range of
mechanisms including enzymatic reactions and the autooxidation
of several compounds and xenobiotics (58). Cells deploy an
antioxidant defensive system based mainly on enzymatic
components, such as superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GPx), glutathione transferase,
ceruloplasmin and hemoxygenase to protect themselves from
ROS-induced cellular damage (59, 60). In addition to these
enzymatic antioxidants, there are several non-enzymatic
antioxidants of importance, including glutathione (GSH), vitamin
E and vitamin C, which can reduce ROS from a variety of sources
(61). The ROS discussed above are summarized in Table 1.

The retina displays high rates of ROS production (62, 63).
Phototransduction, phagocytosis of photoreceptor outer
segments by retinal pigment epithelial cells (RPE) and the
oxidization of polyunsaturated fatty acids (PUFAs) in the
FIGURE 1 | Schematic representation of neuronal and vascular structure in the healthy and diabetic retina. The healthy retina comprises of glial elements including
Müller cells and astrocytes, neuronal elements including photoreceptors, ganglion, amacrine and bipolar cells, resting microglia and healthy retinal blood vessels. In
contrast, the diabetic retina exhibits multiple abnormalities such as Müller cell swelling, neuronal damage, activated microglia and vascular changes (pericyte dropout,
hemorrhage and neovascularization). Dysfunction of the iBRB results in the accumulation of fluid. Created with BioRender (https://app.biorender.com).
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retina leads to the chronic production of ROS (64). Oxygen
consuming mitochondria in the photoreceptor inner segments
also play a major role in retinal ROS production (65). During
normal homeostasis, retinal cells maintain a balance between
pro- and anti-oxidative signaling (66). In this regard, SOD2 plays
a particularly important role by converting O•−

2 into H2O2 and
O2 in the mitochondria (67). In peroxisomes, oxidases reduce O2

to H2O2 during lipid breakdown, while catalases remove any
excess H2O2 (66, 68). In diabetes, ROS production in the retina is
significantly increased through several mechanisms including the
autoxidation of glucose (69), elevated nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity (70) and
mitochondrial dysfunction (71–73). The oxidative stress that
results is further exacerbated by the concomitant impairment of
endogenous antioxidant defenses, including SOD2 and catalase
(74). Thus, during diabetes, the cells of the retina operate in a
highly oxidative environment, making them especially prone to
lipid peroxidation and lipoxidation reactions.
Lipids
Lipids are a heterogeneous and ubiquitous group of compounds
that form key components of all living cells. They are vital in energy
metabolism, cell signaling, cell recognition and as major structural
components of biological membranes (75). Lipids of biological
significance can be classified into eight well-defined categories
according to their distinct chemical structures. These include fatty
acyls (including fatty acids), glycerolipids, glycerophospholipids,
sphingolipids, saccharolipids, polyketides, sterol lipids and prenol
lipids (75). Many lipid-derived products function as signaling
Frontiers in Endocrinology | www.frontiersin.org 4
molecules in cellular signal transduction (76). Lipid signaling can
occur via activation of a variety of receptors, including G protein-
coupled and nuclear receptors (77). The main intracellular enzymes
that generate signaling lipids are lipoxygenases (LOX),
cyclooxygenases (COX) and enzymes of the cytochrome P450
system (CYP).

Neural tissues are extremely rich in lipids with a 50–60% lipid
content of their dry weight (78). As an element of the central
nervous system, the retina displays similar characteristics (79). The
lipids present in the retina play a vital role in retinal function and
disease. PUFAs comprise 35 to 40% of the lipids found in the retina
(80). Of these, the majority are membrane phospholipids,
sphingolipids, and cholesterol (78, 81, 82). Docosahexaenoic acid
(DHA; 22:6) is the most abundant PUFA in the healthy retina, with
other major fatty acids such as arachidonic acid (AA; 20:4), linoleic
acid (LA 18:2), oleic acid (OA; 18:1), stearic acid (SA; 18:0), and
palmitic acid (PA 16:0) also present (80, 83). Listed in descending
abundance, the lipid species present in the human retina include
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylinositol (PI), phosphatidylserine (PS), and
sphingomyelin (SM) (81). Contemporary lipidomic research is
playing a key role in elucidating the precise lipid compositions
(i.e. simultaneous discernment of lipid head groups and tails
present) in the retina (84). DHA accounts for approximately 50%
of the fatty acids in the photoreceptors, where it plays a vital role in
visual transduction and protection against cell injury (85, 86). DHA
is converted into neuroprotectin D1, which promotes cell survival
through its anti-apoptotic and anti-inflammatory properties (87).
PUFAs, particularly n-3 and n-6 species, are consistently found to
be reduced in the retina during diabetes (88–90). Presently, it is
unclear whether the reduction of PUFA composition in diabetes is
due to increased lipid peroxidation or changes in lipid synthesis
or recycling. Themain lipid species present in the retina are featured
in Table 2.
LIPID PEROXIDATION AND LIPOXIDATION

Formation of Lipid Aldehydes and ALEs
As highlighted earlier, lipid peroxidation refers to the metabolic
process whereby ROS cause the oxidative degradation of lipids (43).
The process of lipid peroxidation consists of three phases called
initiation, propagation, and termination (91, 92). The initiation
phase involves pro-oxidants such as •OH removing the allylic
hydrogen and forming a carbon-centered lipid radical. PUFAs,
which contain allyls (R–C=C–C–R’), are thus particularly prone to
lipid peroxidation and exhibit high propagation rates for the
peroxidation reaction (91). Subsequently, in the propagation
regime, the lipid radical (L•) rapidly reacts with oxygen to form a
lipid peroxyl radical (LOO•), which removes a hydrogen from
another lipid molecule generating a new lipid radical (reviving the
chain reaction) and lipid hydroperoxide (LOOH). Finally, the
termination reaction may involve antioxidants such as vitamin E
donating a hydrogen atom to the LOO• species and forming a
corresponding vitamin E radical, that reacts with another LOO•
TABLE 1 | Reactive oxygen species.

Name [type]
<formula>

Structure

superoxide radical [radical]
< O•−

2 >
O

-
O

hydroxyl radical [radical]
< •OH >

O H

hydroperoxyl radical [radical]
< HO•

2 >

•
O OH

alkoxy radical [radical]
< RO• >

R O

peroxyl radical [radical]
< RO•

2 >
R

O

O

hydrogen peroxide [non-radical]
< H2O2 >

HO OH

singlet oxygen [non-radical]
< 1O2 >

1O2

hypochlorous acid [non-radical]
< HClO >

ClHO

organic peroxide [non-radical]
< RO2R

’ > O

R O

R'
peroxynitrite [non-radical]
< NO−

3 > N

O O

O
-
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TABLE 2 | Lipid species present in the retina.

Name {abbreviation}
[type; subtype] <formula>

Structure

docosahexaenoic acid {DHA}
[lipid tail;
n‐3 polyunsaturated fatty acid]
< C22H31O2R >

O

OR

arachidonic acid {AA}
[lipid tail;
n-6 polyunsaturated fatty acid]
< C20H31O2R >

O

OR

linoleic acid {LA}
[lipid tail;
n-6 polyunsaturated fatty acid]
< C18H31O2R >

O

OR

oleic acid {OA}
[lipid tail;
monounsaturated fatty acid]
< C18H33O2R >

O

OR

stearic acid {SA}
[lipid tail;
saturated fatty acid]
< C18H35O2R >

O

OR

palmitic acid {PA}
[lipid tail;
saturated fatty acid]
< C16H31O2R >

O

OR

phosphatidylcholine {PC}
[lipid headgroup;
choline phospholipid]
< RC10H18NO8PR' >

O

O

O
O

R'

P
OO

O-

N+

O

R

phosphatidylethanolamine {PE}
[lipid headgroup;
ethanolamine phospholipid]
< RC7H12NO8PR' >

O R

O
O R'

O 
O

-O
+

P NH3

O O

(Continued)
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forming non-radical products via radical disproportionation. The
propagation of chain reactions continues until termination
products are produced (77, 92). LOOHs are the primary
products of lipid peroxidation and yield the generation of short
chain unesterified aldehydes and a second class of aldehydes still
esterified to the parent lipid. Steps involved in lipid peroxidation
are detailed in Figure 2.

Although lipid aldehydes are often regarded as the final
products of lipid peroxidation, it is important to appreciate that
they remain highly reactive with intra- and extra-cellular
macromolecules and may exacerbate oxidative stress through
their reaction with membrane phospholipids. It is worth noting
that lipid aldehydes are considerably more stable than ROS, and
can propagate oxidative injury by diffusing to sites distant from
their site of origin (93–95). These aldehydes exert a wide range
Frontiers in Endocrinology | www.frontiersin.org 6
of biological effects due to their ability to react with various
cellular components to form relatively stable chemical adducts
called advanced lipoxidation end products (ALEs) (94, 96). By
forming on the nucleophilic side chains of cysteine (Cys),
histidine (His) and lysine (Lys) residues, ALEs modify the
structure and function of cellular proteins (94, 97). Protein
adduction by ALEs has been shown to exert detrimental effects
on cell function and survival by altering the activity of protein
targets or by causing them to undergo rapid degradation via the
proteosomal pathway (98). Table 3 shows the main lipid
aldehydes and ALEs formed during lipid peroxidation and
lipoxidation reactions.

While ROS and reactive aldehydes have been widely implicated
in the development and propagation of retinal diseases, other lines
of research have studied their role in normal immunological
TABLE 2 | Continued

Name {abbreviation}
[type; subtype] <formula>

Structure

phosphatidylinositol {PI}
[lipid headgroup;
inositol phospholipid]
< RC11H16O13PR'

- >

O R

O
O R'

HO O
OH 

O
-O

OH 

O O

HO
OH

P

phosphatidylserine {PS}
[lipid headgroup;
serine phospholipid]
< RC8H11NO10PR'

- >

O R

O
O R'

O 
O

-O
NH +

3

O O

O O

P

sphingomyelin {SM}
[lipid headgroup + sphingosine;
choline sphingolipid]
< RC24H48N2O6P >

HO

H R N

O 
O

-O
+P N

O O
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processes and physiological cell signaling. It is well known,
for example, that neutrophils and macrophages use high
concentrations of ROS and reactive aldehydes (micromolar or
greater) as part of their arsenal to destroy bacteria and other
microorganisms (99–103). Under physiological conditions, these
molecules are normally present at sub-micromolar concentrations
in most cells and tissues and serve as important signaling
agents, activating antioxidative-, endoplasmic reticulum (ER)
stress-, autophagic- and pro-apoptotic pathways (104, 105).
Consequently, they play a critical role in adjusting the cell’s
redox state, metabolism and survival. ROS seem to directly
switch off phosphatases PTP1b, PTEN and MAPK (106); thus a
change in the level of ROS concentration could shift the balance of
tyrosine phosphorylation-dependent signals. ROS and reactive
aldehydes may also fulfil additional roles in regulating gene
expression and cell-to-cell communication (107, 108), the latter
being particularly relevant in the case of the more stable, longer-
lived lipoxidation products and their adducts. While there is little
doubt that the presence of high concentrations of ROS, reactive
Frontiers in Endocrinology | www.frontiersin.org 7
aldehydes and ALEs is detrimental, there remains insufficient
information on the consequences of reducing their levels below
those that normally occur physiologically. Indeed, a lack of insight
into the beneficial effects of these molecules has been cited as the
probable cause of unfavorable outcomes in some human clinical
trials using antioxidant therapies (109–111).

Measurement of Lipoxidation
Lipid peroxidation products can be detected in their free form and
the most common techniques used include spectrophotometric
methods and gas liquid chromatography (GLC) or high-
performance liquid chromatography (HPLC) coupled to mass
spectrometry (MS) (112). However, these products are more likely
to be present in biological samples in the form of ALEs (97). The
common methods for detection and quantification of protein-
bound ALE adducts are proteomic methods based on MS and
antibody-dependent techniques (113). Currently, MS is the method
of choice because it is possible to detect the mass shift caused by
adduction and acquire fragmentation spectra that can be used for
O
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FIGURE 2 | Schematic representation of lipid peroxidation and the formation of lipid aldehydes. The chemical structure of docosahexaenoic acid (DHA) is used to
represent a lipid (L) undergoing peroxidation (1). Lipids (L) can become radicalized to form an alkyl radical (L•) (2) by some initiating radical species, (R•), (e.g. reactive
oxygen species (ROS) via oxidative stress or other lipid peroxidation-derived radical molecules (L•, LOO•, etc.)) by abstracting a hydrogen from a lipid’s allylic carbon.
Alkyl radicals can reversibly rearrange to form conjugated dienes (3), resulting in a higher susceptibility to oxygenation, forming a lipid peroxyl radical (LOO•) (4). Lipid
peroxyl radicals will then accept hydrogen from any number of sources, forming lipid hydroperoxide (LOOH) (5). Abstracting another lipid’s allylic hydrogen leads to a
propagation of the prior reaction in other lipids (2–5). LOOHs and PUFAs degrade to form lipid aldehydes under a plethora of mechanisms, both non-enzymatic and
enzymatic. Abbreviations: polyunsaturated fatty acid (PUFA), lipid (L), lipid radical (e.g. alkyl radical/conjugated diene radical) (L•), lipid peroxyl radical (LOO•), lipid
hydroperoxide (LOOH), acrolein (ACR), 4-hydroxy-2-nonenal (4-HNE), malondialdehyde (MDA), glyoxal (GO), 4-hydroxy-2-hexenal (4-HHE) 4-oxo-2-nonenal (4-ONE),
spermine oxidase (SMOX), acetylpolyamine oxidase (APAO), cyclooxygenase (COX), prostacyclin synthase (PTGS), thromboxane synthase (TXA), lipoxygenase
(LOX), hydroperoxide lyase (HPL), alkenal oxygenase (AKO), peroxygenase (PO).
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TABLE 3 | Lipid aldehydes and ALEs.
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the identification of specific fragment ions for each modified amino
acid within the protein sequence. Antibody-dependent techniques
such as immunohistochemistry, enzyme-linked immunosorbent
assay (ELISA), and gel-based approaches are time consuming and
site-specific characterization of oxidative modifications is often not
possible using these methods (96, 114). The thiobarbituric acid
(TBA) reactive substances (TBARS) assay is the most frequently
used technique to measure the concentration of malondialdehyde
(MDA), where TBA reacts withMDA to form a colored chromogen
fluorescent red adduct which is quantified using spectrophotometry.
However, there have been concerns about the specificity and validity
of this assay, as TBA may react with many other compounds in
addition to MDA, generating further oxidation and inaccurate
estimation of quantitative results (115).
LIPID PEROXIDATION, ALES AND DR

In recent years, strides made in the research of lipid peroxidation
have shed light on the role of this process in the pathogenesis of
ocular diseases. Whilst most work to date has focused on DR,
there is also evidence supporting a possible role for lipid
peroxidation and ALE formation in the development of other
major eye diseases, including age-related macular degeneration
(AMD), cataract formation, glaucoma, retinopathy of
prematurity, retinitis pigmentosa and uveitis (47). A body of
evidence from our group and others strongly suggests that lipid
aldehydes and ALEs are key contributors to the development of
DR (47, 116). Correlations between lipid peroxidation products
detected in the blood and retinal changes have been reported in
the streptozotocin (STZ)-induced rat model of experimental
T1D (45, 117). Higher LOOH levels have also been found in
retinas from human subjects with diabetes and STZ-diabetic rats
(117, 118). This work has been followed up by several studies
investigating how levels of specific lipid peroxidation products,
primarily the lipid aldehydes, acrolein (ACR), 4-hydroxy-2-
nonenal (4-HNE), MDA and glyoxal (GO), may correlate with
disease progression. In the next section, we discuss the
experimental and clinical evidence supporting a role of lipid
aldehydes (a, b-unsaturated aldehydes, dialdehydes and g-
ketoaldehydes) and their ALEs in the initiation and
progression of DR.

a, b-Unsaturated Aldehydes
Acrolein
ACR is the strongest electrophile of the a, b-unsaturated
aldehydes and exhibits the highest toxicity and reactivity with
protein nucleophiles (119). ACR is produced by both cellular
biochemical processes and oxidative reactions outside of the
body. The source of endogenous ACR is not only peroxidation of
lipids, but also metabolism of amino acids, polyamines, and
drugs (41, 119, 120). Exogenous ACR is a ubiquitous
environmental pollutant, originating from the incomplete
combustion of coal, petrol, plastics, wood and tobacco (120).
Studies by Uchida et al. showed evidence that ACR is a product
of lipid peroxidation reactions, from studies exploring the metal-
Frontiers in Endocrinology | www.frontiersin.org 10
catalyzed (Cu2+) oxidation of LDL and autoxidation of PUFAs
(41). Under conditions of oxidative stress and inflammation,
ACR is produced endogenously by myeloperoxidase-mediated
degradation of threonine and the amine oxidase-mediated
degradation of spermine and spermidine (120). Phagocytic
white blood cells eliminate invading pathogens such as viruses
and bacteria by utilizing the myeloperoxidase system, which
catalyzes the formation of HOCl, from chloride and H2O2. HOCl
reacts with threonine to generate ACR (via 2-hydroxypropanal)
and this mechanism of ACR generation is thought to mediate
permanent tissue damage at sites of inflammation (121). ACR
production via the polyamine pathway arises due to the activity
of two enzymes, namely, spermine oxidase (SMOX) and
acetylpolyamine oxidase (APAO) (122, 123). SMOX oxidizes
spermine to produce H2O2, spermidine, and 3-aminopropanal
(3-AP), with the latter breaking down to form ACR. APAO
generates ACR through the formation of 3-acetamidopropanal
(3-AAP), which together with H2O2, results from its metabolism
of N1-acetylspermine or N1-acetylspermidine to spermidine
or putrescine.

The major adduct formed upon reaction of ACR with protein
has been identified as the novel Lys product, N ϵ-(3-formyl-3,4-
dehydropiperidino)lysine (FDP-Lys), which requires the
attachment of two ACR molecules to one Lys side chain (41).
ACR also forms ALEs with His and Cys, as detected in oxidized
low-density lipoproteins (41). Unlike most other ALEs, FDP-Lys
is not a stable end product, but a reactive intermediate that
covalently binds to thiols, thereby initiating or exacerbating
oxidative stress through the depletion of the endogenous
antioxidant GSH (124). More recently, an ACR-Lys adduct
called N ϵ-(3-methylpyridinium)lysine (MP-Lys) has been
identified as a major antigenic adduct generated in reactions of
ACR with proteins. In contrast to FDP-Lys, the MP-Lys adduct is
a highly stable end-product and does not readily react with
cellular nucleophiles (125).

Due to the high reactivity of ACR and availability of reactants,
it is generally not regarded as a useful biomarker in its free form.
To circumvent this issue, the accumulation of ACR-derived
ALEs is frequently used as an alternative approach, providing a
time-integrated measurement of lipid peroxidation (41). Studies
from our group compared serum and hemoglobin levels of the
ACR adduct, FDP-Lys, in T1D and T2D patients with or without
DR pathology (126). Our data showed that while the serum levels
of FDP-Lys did not correlate significantly with the presence of
DR, hemoglobin bound FDP-Lys was positively associated with
the stage and severity of the disease. Given the longer lifespan of
erythrocytes in comparison to the half-life of serum albumin
(~120 days versus ~20 days respectively) the disparity between
our serum and hemoglobin data is most likely explained by a
more efficient removal of adducts from dissolved blood
protein components.

We went on to investigate whether ACR-protein adducts
contribute to the pathogenesis of DR using the STZ-diabetic rat
model (127). Specifically, we began by examining the retinal
distribution and accumulation of FDP-Lys after 4 months of
experimental diabetes. FDP-Lys immunoreactivity increased
February 2021 | Volume 11 | Article 621938
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significantly in diabetic animals whilst being only sparsely
present in healthy, control retinas (127). During diabetes,
FDP-Lys accumulated predominantly within the Müller
glial cells and neurons of the RGC and inner nuclear layers
(Figure 3). Investigation of multiple, monthly time-points
allowed for the determination of the spatiotemporal pattern
in which FDP-Lys accumulates, initially occurring at the inner
limiting membrane with a gradual spread distally to Müller
cell radial processes as the disease progresses. In vitro cultures
of MIO-M1 human Müller cells demonstrated how exposure
to FDP-Lys induced increased oxidative stress, impacted K+

ion homeostasis and caused upregulation of VEGF and
proinflammatory cytokines (102, 127). As discussed earlier
(Diabetic Retinopathy), these in vitro features of Müller cell
dysfunction concur with the pathology seen in these cells
during DR (20). A schematic diagram showing how Müller
cell FDP-Lys accumulation contributes to the pathogenesis of
DR is shown in Figure 4.

Our experimental work into the role of FDP-Lys in DR has
been supported by studies from other groups. FDP-Lys was
reportedly elevated within the vitreous of human PDR patients
in comparison to those of non-diabetic individuals, and
immunohistochemical analysis of retinal fibrovascular tissue
demonstrated co-localization of FDP-Lys with Müller cell,
endothelial and pericyte markers (128, 129). Furthermore, the
same group showed that in vitro exposure of human endothelial
cells to ACR increased oxidative stress and decreased cell
viability, similar to what we observed in our Müller cell FDP-
Lys investigations.

As mentioned above, ACR and its associated adducts may be
produced via the polyamine pathway (130). The polyamine
spermine, a precursor of ACR in the polyamine catabolic pathway,
was reported to reach a 15 times increased concentration in the
Frontiers in Endocrinology | www.frontiersin.org 11
vitreous of PDR patients (131). Furthermore, a very recent study
showed that pharmacological inhibition of SMOX significantly
reduced retinal FDP-Lys accumulation, neurophysiological
dysfunction and neurodegeneration in a mouse model of diabetes
(132). These findings indicate that FDP-Lys accumulation in the
diabetic retina may be related not only to lipoxidation, but also to
dysregulation of the polyamine pathway. Thus, overall, it seems that
accumulation of ACR and its FDP-Lys adduct may have an
important role in DR and both of these molecules may represent
potential therapeutic targets for the early-stage treatment of
this disease.

4-Hydroxy-2-Nonenal
4-HNE represents the most abundant a, b−unsaturated
hydroxyalkenal (i.e. a hydroxylated unsaturated aliphatic
aldehyde) formed among the products of lipid peroxidation
reactions (98). It is produced via enzymatic and non-
enzymatic oxidation of n-6 PUFAs, including AA and LA (77).
4-HNE is considered one of the most toxic products of lipid
peroxidation due to its rapid reaction with proteins and other
macromolecules (133). However, due to cellular, high-capacity
enzymatic detoxification processes, 4-HNE is largely and rapidly
metabolized and only a small fraction of it escapes to react with
biomolecules (134). 4-HNE reacts mainly with sulfhydryl groups
of thiols in proteins to form Michael adducts and these adducts
subsequently undergo secondary reaction to form cyclic
hemiacetals (119, 135). It also reacts with primary amines and
phosphatidylethanolamine to form Michael and pyrrole adducts
(136, 137), and with DNA bases to form exocyclic DNA
adducts (138).

In terms of glycemic control, recent work has shown that low,
non-toxic concentrations of 4-HNE can activate peroxisome
proliferator-activated receptor d (PPARd) complexes and thereby
FIGURE 3 | Representative confocal images showing FDP-Lys immunoreactivity (green) in transverse retinal cryosections from a non-diabetic and STZ-diabetic rat
of 4-months disease duration. Nuclei were counterstained with propidium iodide nuclear stain (red). In the diabetic animal, a marked accumulation of FDP-Lys was
observed in the Müller glia radial fibers and neurons of the inner retina. ONL, Outer Nuclear Layer; INL, Inner Nuclear Layer; GCL, Ganglion Cell Layer.
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increase the release of insulin from cultured b pancreatic cells (139).
However, when 4-HNE levels rise in response to nutrient overload
or obesity, this may contribute to the onset and progression of
insulin resistance and b cell dysfunction (140). Within the context
of DR, clinical studies have reported elevated levels 4-HNE in the
blood of diabetic patients with retinopathy compared to those
without retinopathy and healthy controls (46). There is also
evidence showing that 4-HNE and 4-HNE-derived ALEs increase
in the retinas of rats rendered diabetic for 4-6 weeks (118, 141).
Another study confirmed these findings and showed that 4-HNE
may contribute to the pathogenesis of DR by activating the WNT
signaling pathway through stabilization of the WNT co-receptor
LRP6 (142). Other studies have linked 4-HNE to retinal
hemodynamics changes during DR. Retinal perfusion deficits
during early diabetes are thought to be mediated, at least in part,
through the reduced activity of large-conductance Ca2+-activated
K+ (BK) channels on the retinal vascular smooth muscle cells,
causing vasoconstriction (131, 143). 4-HNE impairs BK channel
function in rat retinal arterioles, as demonstrated by reduced
vasodilatory responses to the BK channel opener, BMS-191011
(132). 4-HNE accumulation may also be involved in the
development of DME. Evidence for this comes from studies in
cultured retinal Müller glia, where it has been shown that 4-HNE
triggers downregulation of Kir4.1 and AQP4 channels (144, 145),
two of the main proteins associated with Müller glia swelling and
the disruption of water homeostasis in the diabetic retina (146, 147).
4-HNE exposure can also result in endoplasmic reticulum stress,
mitochondrial dysfunction and apoptosis in cultures of human
retinal capillary pericytes and Müller glia (148, 149). Our own
immunohistochemical analysis of 4-HNE-His levels in rat retinas
after 4 months of experimental diabetes found no evidence for
Frontiers in Endocrinology | www.frontiersin.org 12
accumulation of this adduct (127). The reasons for this are presently
unclear, although the duration of diabetes was longer in
our experiments compared to those conducted by others.
Whether the retina adapts, enabling it to cope better with excess
4-HNE production during longer-term diabetes, warrants
future investigation.

Dialdehydes
Malondialdehyde (MDA)
MDA is a moderately toxic dialdehyde molecule (LD50 600-650
mg/kg in rats (150), and due to its relative stability compared to
the aldehydes mentioned above, it is usually considered as a good
biomarker of oxidative stress and lipid peroxidation (151). MDA
originates from lipid peroxidation of PUFAs (152) containing at
least two C=C double bonds flanking a single C-C link (i.e. a
conjugated diene) such as AA or DHA (153). The reactivity of
MDA is pH-dependent and at physiological pH, it rapidly forms
enolates, which are of lower reactivity and do not react as avidly
with nucleophilic species as other aldehydes (119). However,
MDA exists as b-hydroxyacrolein at lower pHs, exhibiting a
higher reactivity, readily reacting with Lys residues of proteins to
form the enaminal type MDA adduct, N ϵ-(2-propenal)lysine,
and the fluorescent product, dihydropyridine (DHP) lysine
(154, 155).

Being one of the most commonly used biomarkers of lipid
peroxidation, there is a significantly larger number of reports on
the assessment of MDA levels in DR when compared to 4-HNE
or ACR (156). An elevation of MDA concentration was found in
the blood of DR patients by several studies (46, 157–159).
Moreover, there is evidence demonstrating correlations
between serum MDA levels and the severity of DR, further
FIGURE 4 | Schematic diagram showing the central role of Müller glia FDP-Lys accumulation in the pathogenesis of DR. FDP-Lys accumulation in Müller glia
induces increased oxidative stress, the release of angiogenic and inflammatory factors, dysregulation of retinal K+ transport, and apoptosis in the diabetic retina
which contributes to the sight-threatening complications of DR. Created with BioRender (https://app.biorender.com).
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substantiating a possible role for MDA in its pathogenesis (160,
161). By normalizing MDA levels to SOD as a proxy to obtain a
ratio of lipid peroxidation stress to cellular antioxidant capacity,
diabetic individuals with DR were found to have significantly
reduced SOD/MDA ratios when compared to those without this
complication (162). There is some evidence pointing to an
increase of MDA levels in human eyes in diabetic patients. A
high-performance liquid chromatography (HPLC)-based
analysis of sub-retinal fluid collected from subjects affected by
retinal detachment, found increased MDA concentrations in
those also affected by diabetes (163). MDA levels were also
reportedly increased in the lenses of diabetic individuals
undergoing cataract surgery (164).

Some recent studies, however, have cast doubt on the
involvement of MDA in the development of DR. A study of
the aqueous humor and serum of T2D patients, found that
neither were significantly different from controls (165) and
investigation of MDA levels in both the vitreous humor and
serum of PDR patients, found increased concentrations only in
the vitreous, but not in the serum (166). In STZ-diabetic rats, we
were unable to detect an elevation of MDA adducts in retinal
sections using confocal immunolabelling techniques (127).
Further work is clearly necessary to substantiate the notion
that MDA contributes to the pathogenesis of DR and thus may
be useful as a biomarker for the development of this condition.

Glyoxal
GO, generated by lipid peroxidation of AA and LA (98), is the
simplest dialdehyde (167). As an aldehyde, it is unstable, readily
forming hydrates and polymers in solution. As such, it is a
natural alkylating fixative, forming crosslinks between
biomolecules. GO reacts with Lys residues of proteins to form
N ϵ-(carboxymethyl)lysine (CML) and Arg residues to give rise
to dihydroxyimidazolidine which is slowly degraded to N w-
carboxymethyl-arginine (CMA) (168). Since GO can also be
produced during glycation reactions, adducts formed by this
aldehyde are often termed either advanced glycation end
products (AGEs) or ALEs (169). The GO-derived CML adduct
has been the most widely studied within the context of DR.
Various clinical studies have focused on the quantification of
CML in patient serum and tissues using ELISA-based methods
and have demonstrated that levels of CML in serum and aqueous
humor correlate with the onset or grade of DR (170, 171). CML
has also been extensively quantified in the retinas of post-
mortem human donor eyes and those from experimental
rodent models of diabetes. These studies have revealed that
diabetes significantly enhances the accumulation of CML-
modified proteins throughout both the vascular and neural
tissue components of the retina, causing impairment of normal
retinal function and cell survival (116, 172).

Other Aldehydes
Most studies to date have focused on the production,
accumulation, and effects of ACR, 4-HNE, MDA, and GO in
DR. However, there are several other aldehydes produced by
lipid peroxidation, such as 4-hydroxy-2-hexenal (4-HHE), 4-
oxo-2-nonenal (4-ONE), and isoketals (IsoKs—e.g. levuglandin
Frontiers in Endocrinology | www.frontiersin.org 13
D2 (LGD2) and levuglandin E2 (LGE2)), the roles of which have
yet to be determined in DR. 4-HHE is structurally similar to 4-
HNE, and forms stable ALE adducts with His, Cys or Lys
residues of proteins (173). 4-HHE is generated through the
peroxidation of n-3 fatty acids and it has been reported to
induce both cell dysfunction and cell death in vitro (174). 4-
HHE is considered less toxic than 4-HNE due to its lower
lipophilicity and reduced chemical reactivity (47, 175). 4-ONE
is formed by the peroxidation of LA, but it is also produced by
the two-electron oxidation of 4-HNE (176). It is a potent
crosslinker of proteins and nucleotides and does so an order of
magnitude more rapidly than 4-HNE. Finally, IsoKs are formed
by the peroxidation of AA and rearrangement of endoperoxide
intermediates of the isoprostane pathway (177, 178). They are
usually found as protein adducts, as the free form is highly
reactive with amine groups. Thus, there is still a considerable
amount of work to be done in determining the involvement of
other lipid aldehyde species in the pathogenesis of DR.
ENDOGENOUS DETOXIFICATION OF
LIPID ALDEHYDES AND DR

Cells have evolved a range of protective mechanisms that enable
the rapid metabolism and detoxification of lipid aldehydes
produced during lipid peroxidation reactions. In most cells,
lipid aldehydes are oxidized to acids, reduced to alcohols or
conjugated with cellular nucleophiles such as ascorbic acid,
glutathione and carnosine (179).

The oxidation of lipid aldehydes to their corresponding acids
is primarily catalyzed by enzymes of the aldehyde dehydrogenase
superfamily (ALDH). The ALDH superfamily comprises a wide
variety of NAD(P+) dependent enzymes that irreversibly
catalyze the oxidation of aldehydes to their respective
carboxylic acids (180). Humans express 19 isoforms of
ALDHs, which are grouped into several classes (ALDH 1–9, 16
and 18). ALDH 1, 2 and 3 family members play a central role in
oxidizing lipid peroxidation products (95, 181). Members of the
ALDH superfamily are expressed in a species and tissue specific
fashion. ALDHs also play a vital role in the modulation of cell
proliferation, differentiation, and survival, especially through
participation in retinoic acid synthesis (182). There remains a
significant amount of work to be done in assessing the substrate
specificity of many of these enzymes. A large proportion of them,
however, seem to have multiple roles in aldehyde processing with
varying catalytic efficiency for the conversion of lipid-derived
electrophiles (181).

The enzymes responsible for reducing lipid aldehydes to
alcohols include the aldo-keto reductase (AKR) superfamily,
alcohol dehydrogenase family and the short-chain
dehydrogenase/reductase family (179). Conjugation reactions
such as glucuronidation and sulfation, subsequently prevent re-
oxidation of the alcohol back to its parent aldehyde (181). AKRs
comprise a large family of enzymes, which are catalytically active
in the modification of a range of substrates. These enzymes are
NAPDH-dependent oxidoreductases which catalyze the reduction
of a wide range of aldehydes and ketones to primary and
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secondary alcohols, respectively. There are 13 isoforms that are
known to be expressed in humans and several of those belonging
to families 1 and 7 are associated with the reduction of aldehydes
(183). AKR1B1, or aldose reductase, is perhaps best known for its
pathological role in diabetic vascular complications by converting
excess glucose to its sugar alcohol, sorbitol (184). Paradoxically,
however, AKR1B1 is a relatively poor catalyst for glucose
reduction and in recent years it has become increasingly
recognized that its normal cellular function is linked with
aldehyde metabolism (184, 185). AKR1a1, AKR7A3, AKR7a2,
AKR1B1 and AKR1B10 have been identified as ACR-metabolizing
enzymes (186–189). Other enzymes of the AKR family for which
aldehyde reducing capabilities have been established include
AKR1C1 and its rat homolog AKR1C9, which have been shown
to efficiently catalyze the oxidation of 4-HNE in vitro (190). In
addition, AKR7A1 and AKR7A2 when overexpressed in V79 cells
(Chinese hamster lung fibroblasts) have been reported to protect
against the harmful effects of ACR (186). AKR enzymes display
very broad substrate specificities, although the vast majority have
been shown to have a role in aldehyde detoxification (191).

We have recently screened for the mRNA expression of ALDH
and AKR enzymes in the retina (95). Of the enzymes examined,
most ALDH family members were identified including ALDH1a1,
ALDH2, ALDH3a1, ALDH3a2, ALDH9a1, ALDH18a1, and
ALDH1L1. Fewer AKR enzymes were apparent, although
AKR1b1, AKR1c19, and AKR7a2 could be detected. Interestingly,
of the various ALDH and AKR enzymes that we have studied in the
retina to date, most appear to be predominantly localized to the
Müller glia, including ALDH1a1, ALDH2 and AKR1b1 (95). These
findings are consistent with the notion that a key, previously
unrecognized, function of these cells, is to protect the retina
through the detoxification of lipid peroxidation products. During
diabetes, we observed a general trend towards downregulation of
ALDH and AKR gene expression in the retina, including ALDH1a1,
which was also markedly reduced at the protein level in Müller cells.
ALDH enzymatic activity was also substantially lower in whole
retinal lysates (95). Thus, our data suggest that lipid aldehyde
defence mechanisms are impaired in the diabetic retina and that
this may represent a major mechanism through which toxic
aldehydes and ALEs accumulate in this tissue during DR.

In addition to those enzymes described above, GSH-
dependent aldehyde-metabolizing enzymes have been shown to
play an important role in the detoxification of lipid aldehydes.
Glutathione S-transferases (GSTs) act as a major cellular defense
against 4-hydroxyalkenals and lipid hydroperoxides formed
during lipid peroxidation reactions (192). The glyoxalase
system also belongs to the group of GSH-dependent aldehyde
metabolizing enzymes. This system, which is composed of two
distinct metalloenzymes, glyoxalase I and glyoxalase II,
specifically catalyzes the detoxification of oxoaldehydes such as
GO and methylglyoxal (MGO) (179). Importantly, transgenic
rats overexpressing glyoxalase I were shown to be protected
against Müller cell dysfunction, pro-inflammatory signaling and
capillary dropout in the retina during diabetes (193). These
findings further reinforce the view that lipid peroxidation
products and ALEs play a crucial role in development of DR.
Frontiers in Endocrinology | www.frontiersin.org 14
THERAPEUTIC APPROACHES TO INHIBIT
LIPOXIDATION REACTIONS IN DR

The study of interventional strategies to prevent lipoxidation
reactions and ALE accumulation during DR remains in its
infancy. Several approaches are currently available to prevent
the damaging effects of lipid aldehydes and ALEs in biological
systems, including the use of antioxidants, direct aldehyde
scavenging agents and the augmentation of endogenous
aldehyde detoxification systems. Each of these approaches is
described below, with particular emphasis placed on their
potential for preventing lipid peroxidation and lipoxidation
reactions during DR.

Antioxidants
Antioxidants are enzymatic or non-enzymatic agents that can
prevent undesired oxidation through their reaction with ROS or
oxidation intermediates (98). As highlighted earlier, enzymatic
antioxidants include SOD, catalase, glutathione peroxidase and
glutathione reductase (59). Non-enzymatic antioxidants include
vitamins E and C, b-carotene, GSH and flavonoids (60, 194).

Although GSH is one of the main cellular scavengers of ROS,
to our knowledge there have been no studies directly assessing
the efficacy of GSH supplementation for the treatment of DR.
This is perhaps not surprising, given that oral GSH is rapidly
hydrolyzed in the intestines into its constituent amino acids by
the enzyme g-glutamyl transpeptidase (195). Moreover, most
cells are unable to absorb intact GSH (196). Nonetheless, GSH
levels can be augmented by administration of GSH precursors
such as cysteine and glycine (197). N-acetylcysteine (NAC) is a
cysteine precursor for GSH synthesis that can also act as a thiol
scavenger of ROS and lipid peroxidation products (198, 199). In
diabetic rats, NAC treatment has been shown to protect against
the development of retinal vasodegenerative pathology by
ameliorating oxidative stress, the formation of 4-HNE protein
adducts, VEGF production and inflammation (142, 200, 201).
Similarly, glycine supplementation attenuates retinal vascular
damage in STZ−diabetic rats and maintains retinal neuronal
morphology and survival (202, 203). Lipoic acid is another
endogenous thiol antioxidant that has been studied widely for
its ability to inhibit the development of experimental DR.
Treatment with lipoic acid suppresses the early upregulation of
vasopermeability and angiogenic factors in the diabetic retina
and prevents retinal leukostasis, an inflammatory feature of DR
that contributes to vascular endothelial cell damage and capillary
dropout (204–206). Administration of lipoic acid has also been
reported to inhibit neurophysiological dysfunction and preserve
retinal vascular and neuronal health during experimental DR
(207–211). Despite these promising findings, however, in
randomized control trials, daily administration of lipoic acid
failed to prevent the occurrence of clinically significant DME in
patients with T2D (212).

In addition to those discussed above, several other
antioxidant agents have been tested in experimental animal
models for their ability to prevent the vascular and neuronal
abnormalities associated with DR (63). Trolox, a water soluble
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analog of vitamin E, was shown to partially prevent retinal
capillary pericyte loss in diabetic rats by reducing membrane
lipid peroxidation (213). It has also been reported that a
combination of vitamin E and C suppressed O·−

2 production
and led to a reduction in the formation of pericyte ghosts and
acellular capillaries in the diabetic rat retina (74). Edaravone (3-
methyl-1-phenyl-2-pyrazolin-5-one), an antioxidant that is used
clinically to treat patients with ischemic brain injury and
amyotrophic lateral sclerosis (ALS), was found to exert a
neuroprotective role in retinas of diabetic mice, specifically
preventing the upregulation of ROS and retinal ganglion cell
loss (214). Given the large number of reports indicating that
antioxidants may be effective in preventing the development of
experimental DR, there remains a clear rationale for further
studies evaluating their potential within a clinical setting.

Scavenging Agents
Another approach for preventing the excessive accumulation of
reactive aldehydes and ALEs is through the administration of
direct lipid aldehyde scavenging agents. Several compounds have
been identified that possess aldehyde sequestering properties,
resulting in the formation of stable, non-toxic products (111).
The relative reactivities of scavenging agents and thus their
efficacies depend on the nucleophilic chemical functional
group of the scavenger molecule along with the structure of
the target aldehyde (215). In general, thiol and imidazole groups
are superior to react with a, b-unsaturated aldehydes (e.g. ACR,
4-HNE, 4-HHE, etc.) (215, 216), whereas primary amines are
more reactive with g-ketoaldehydes (e.g. LGD2 and LGE2) (177).
For further information on relative reactivities of scavenging
agents in vivo, we direct readers to the following review (217).
This section discusses the aldehyde-sequestering molecules that
have been postulated or tested as potential therapeutics for the
treatment of DR. A list of these agents and their chemical
structures is contained in Table 4.

Aminoguanidine
Aminoguanidine (AG) is a polyreactive molecule, possessing
both guanidine and hydrazine groups which endows it with
strong nucleophilicity, making the molecule an effective
scavenger of a,b-unsaturated aldehydes (218). AG has been
shown to sequester both 4-HNE and MDA in vitro (98). Its
ability to prevent AGE and ALE formation was associated with
the inhibition of various diabetes-associated vascular
complications such as nephropathy and diabetes-accelerated
atherosclerosis (218). The treatment of diabetic rats with AG
led to the prevention of retinal pericyte dropout and acellular
capillary formation (219). In the same in vivo model, AG was
found to decrease serum lipid peroxidation reactions, suggesting
that its effects on DR development could, at least in part, be due
to its ability to directly sequester lipid aldehydes (220). However,
it is worth noting that AG also has a number of other
mechanisms of action that could contribute to its ability to
prevent the accumulation of lipid aldehydes and ALEs. For
instance, AG has been shown to inhibit inducible nitric oxide
synthase (iNOS), a molecule implicated in ROS production and
Frontiers in Endocrinology | www.frontiersin.org 15
the progression of vascular pathology in experimental diabetes
(221). It is also capable of inhibiting SMOX, and as such, would
be expected to reduce ACR production through blockade of the
polyamine pathway (130). Clinical trials investigating the use AG
in diabetic nephropathy were terminated early due to various
side-effects, some stemming from the depletion of endogenous
vitamin B6 derivatives (222). Interestingly, the first-line
treatment for T2D metformin, another guanidine-like
compound, has also been shown to have aldehyde sequestering
abilities (223). Whether these effects, in addition to its glucose-
lowering actions, contribute towards its ability to slow the
development of DR and other diabetic complications remains
to be established.

Pyridoxamine
Pyridoxamine (PM) is a naturally occurring isomer of vitamin B6
and is best known for its ability to block the Maillard reaction,
and thus the formation of AGEs (224). However, PM is also
known to directly scavenge lipid peroxidation-derived aldehydes
(225). In diabetic rats, we have previously shown that
administration of PM prevents the accumulation of GO- and
ACR-derived ALEs, which was concomitant with a reduction in
retinal vascular and neuroglial pathology (147, 172). Although
PM appears promising as an early-stage therapeutic for DR, it
has yet to be tested clinically within this setting. Clinical trials
evaluating PM administration for the treatment of diabetic
nephropathy, however, have been conducted, but these
concluded that it lacked significant benefit (226). Safety
concerns have also been raised regarding the use of this drug.
Studies have shown that it may interfere with the activity and
function of vitamin B6-dependent enzymes and metalloproteins
due to its ion chelating activity (227). Aligning with these
concerns, in diabetic rats, we found that PM appeared to
negatively affect the neurophysiological function of retina, as
determined by electroretinographic recording (47).

Carnosine
Carnosine (b-alanyl-L-histidine) is an endogenous, His-
containing dipeptide, which is capable of sequestering
aldehydes, such as 4-HNE, ACR and MDA (228, 229). Oral
administration of carnosine has been tested pre-clinically in
diabetic rats where it was found to reduce retinal vascular
damage and capillary degeneration (230). This effect, however,
was attributed to the induction of heat shock protein 27 (Hsp27)
in retinal glial cells and the normalization of angiopoietin 2
(Ang2) signaling rather than being linked to its ability to
scavenge aldehydes. Furthermore, significant increases in
photoreceptor neurodegeneration were observed, raising
concerns about the safety of this molecule in the treatment of
DR. Another study in diabetic rats has suggested that carnosine
may protect against microvascular changes in DR by suppressing
mitogen-activated protein kinase (MAPK)/extracellular-signal-
regulated kinase (ERK) signaling pathway (231). Recent
investigations have demonstrated that a novel carnosine
derivative, carnosinol, mitigates metabolic disorders of obesity
by reducing carbonyl stress (232). This drug exhibited a good
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oral bioavailability and safety profile and would therefore be of
interest to test within the context of DR.

2-Mercaptoethanesulphonate
2-mercaptoethanesulphonate (MESNA) is a thiol-based
scavenger, which sequesters aldehydes at rates faster than
Frontiers in Endocrinology | www.frontiersin.org 16
those of endogenous thiols such as glutathione (233).
MESNA has been approved clinically as an adjunctive
therapy for use with alkylating chemotherapy agents for
nearly three decades (135). Although effective as a treatment
for acute aldehyde toxicity associated with the use of these
agents, the hydrophilicity of MESNA prevents it from readily
TABLE 4 | Lipid aldehyde scavengers.

Name
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Chemicalize was used for prediction of microspecies abundance at pH 7, Dec, 2020, https://chemicalize.com/ developed by ChemAxon (http://www.chemaxon.com).
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entering cells, limiting its usefulness for the treatment of
DR (47).

Hydrazino Compounds
Hydralazine (HDZ) and its analogous hydrazinophtalazines have
been studied extensively for their ability to scavenge reactive
aldehydes (111, 234). HDZ has been approved clinically
as an anti-hypertensive agent for many years, although its use
nowadays is mainly restricted to the treatment of uncontrollable
hypertension in pregnancy (235). HDZ is a particularly potent ACR
scavenger, being considerably more efficacious than AG, CAR and
PM (229). Moreover, not only can this compound sequester free
ACR, but it is also capable of binding to and neutralizing FDP-Lys
adducts (236). The ACR sequestering ability of HDZ has been
studied in a diabetic rat model of painful diabetic neuropathy. Daily
intraperitoneal injections of HDZ reduced ACR-adduct formation
in the spinal cord and alleviated diabetes-induced allodynia,
hyperalgesia, and microglial activation (237).

The potential clinical application of HDZ as a therapeutic for
DR is complicated by its cardiovascular actions. However, since
the hydrazine groups on HDZ are known to be responsible for its
aldehyde-scavenging abilities (234), but not its anti-hypertensive
effects (238), it is apparent that other compounds containing
hydrazino groups could have therapeutic value for DR.
With this in mind, our group recently screened a variety of
hydrazino compounds using an ELISA based method,
identifying 2-hydrazino-4,6-dimethylpyrimidine (2-HDP) as a
highly effective scavenger of ACR with no obvious cardiovascular
effects (102). Oral administration of this compound in
the drinking water of diabetic rats prevented retinal FDP-Lys
accumulation, Müller cell gliosis, oxidative stress, pro-
inflammatory signaling and microglial activation. Furthermore,
this drug improved the neurophysiological function of the
retina. Ongoing studies in our laboratory are examining
whether this drug is also capable of preventing the neuro- and
vasodegenerative complications associated with DR.

Induction or Augmentation of Endogenous
Aldehyde Detoxification Systems
In addition to the use of scavenging agents, another approach to
prevent retinal accumulation of lipid peroxidation and lipoxidation
products is through the augmentation of endogenous defense
mechanisms. Presently, there are few drugs that are clinically
useful for increasing the activity and expression of aldehyde
metabolizing enzymes. Perhaps the most promising to date,
however, is ALDA-1, which was originally developed as a small
molecule activator of ALDH2, but more recently has been shown to
also activate ALDH1a1 with similar potency (239, 240). This drug
has generated some encouraging results in early-stage pre-clinical
DR studies. Specifically, ALDA-1 was shown to be effective in
enhancing SOD activity and decreasing the expression of pro-
inflammatory and angiogenic mediators in the retinas of diabetic
rats of 1-mo disease duration (241). Nonetheless, it seems likely that
the efficacy of this drug may be reduced as diabetes progresses due
to the observed downregulation of ALDH enzymes (see Endogenous
Detoxification of Lipid Aldehydes and DR above).
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Many of the aldehyde metabolizing enzymes known to be
present in retina are inducible by their substrates and
pharmacological agents (240, 242). Various studies have shown
that constitutive androstane receptor (CAR) activators and
pregnane X receptor (PXR) ligands induce strong upregulation of
ALDH and AKR gene expression in tissues of experimental rodent
models (240, 242). These receptor systems could represent new and
attractive targets to inhibit lipoxidation reactions in the context of
DR and other diabetic complications.

Recent developments in the use of AAV vectors for the efficient
delivery of genes of interest to retinal neurons andmacroglial cells in
vivo (243), suggests that the use of gene therapy approaches may
also provide an effective means of enhancing ALDH and AKR
expression and activity in the diabetic retina. An advantage of gene
therapy is that it would facilitate sustained local expression of
aldehyde detoxifying enzymes, reducing the likelihood of systemic
side effects and the need for regular intravitreal injections. To our
knowledge there have been no studies to date specifically testing
gene therapy approaches to target lipoxidation reactions in DR, but
this constitutes a promising strategy that is worthy of
future investigation.
CONCLUSIONS

Given a combination of high PUFA content, high oxygen
consumption, and a high level of metabolic activity, the retina is
a site of high ROS, LOOH, and lipid aldehyde production. The
accumulation of damaging levels of lipid aldehydes and ALEs in
DR is a consequence of a shift in the balance between the rate of
production and clearance. As an increasing body of evidence
suggests this accumulation is tied to the pathogenesis of DR,
lipid peroxidation and lipoxidation have emerged as important
therapeutic targets for the treatment of this condition. Two of the
most promising approaches are the use of aldehyde scavenging
molecules or gene therapeutic enhancement of clearance and
detoxification pathways. These approaches, however, require
further developments. We need new, potent, and safe scavengers
that target lipid aldehydes in the eye. Gene therapy will require
identification of the cell types and clearance pathways that could
be best exploited to enable an efficacious approach. While total
lipid composition, reactive aldehyde generation, and ALE
accumulation change in DR, we do not yet understand if these
changes correlate with the focal pathology that typically develops
during this disease (14). Powerful lipidomic mapping methods,
like high resolution MALDI mass spectrometry (244, 245) could
reveal such correlations. There is also currently a limited
understanding of whether and how different reactive aldehydes
interact with one another and their relative contributions to the
development of DR pathology. Additionally, an important
consideration in the development of therapeutic strategies will
be to confirm that they do not cause detrimental effects by
inhibiting physiological cell signaling by low levels of
endogenous aldehydes. Also, revealing scavenger molecule
pharmacokinetics (246–249) and their precise biochemical
interactions with diverse aldehyde species (119, 215, 250) whilst
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minimizing off-target effects (111) will be crucial in the
advancement of these therapeutics. Future progress in these
areas offers the exciting opportunity to prevent and potentially
reverse lipid aldehyde and ALE accumulation in DR.
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