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ABSTRACT Many cells experience hypoxia, or low oxygen, and respond by dramatically altering gene
expression. In the yeast Saccharomyces cerevisiae, genes that respond are required for many oxygen-dependent
cellular processes, such as respiration, biosynthesis, and redox regulation. To more fully characterize the global
response to hypoxia, we exposed yeast to hypoxic conditions, extracted RNA at different times, and performed
RNA sequencing (RNA-seq) analysis. Time-course statistical analysis revealed hundreds of genes that changed
expression by up to 550-fold. The genes responded with varying kinetics suggesting that multiple regulatory
pathways are involved. We identified most known oxygen-regulated genes and also uncovered new regulated
genes. Reverse transcription-quantitative PCR (RT-gPCR) analysis confirmed that the lysine methyltransferase
EFM6 and the recombinase DMC1, both conserved in humans, are indeed oxygen-responsive. Looking more
broadly, oxygen-regulated genes participate in expected processes like respiration and lipid metabolism, but
also in unexpected processes like amino acid and vitamin metabolism. Using principle component analysis, we
discovered that the hypoxic response largely occurs during the first 2 hr and then a new steady-state expression
state is achieved. Moreover, we show that the oxygen-dependent genes are not part of the previously described
environmental stress response (ESR) consisting of genes that respond to diverse types of stress. While hypoxia
appears to cause a transient stress, the hypoxic response is mostly characterized by a transition to a new state of
gene expression. In summary, our results reveal that hypoxia causes widespread and complex changes in gene
expression to prepare the cell to function with little or no oxygen.
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Molecular oxygen (O,) plays a major role in the metabolism of many
eukaryotic cells. Oxygen is not only required for aerobic respiration and
for several biosynthetic reactions, but also influences the redox state
and causes oxidative damage (Rosenfeld and Beauvoit 2003). The levels
of oxygen vary in the environment. Hypoxia, or low oxygen, is experi-
enced in certain tissues, diseases (e.g., cancer), and specific environments
(e.g., deep water or soil). One way that cells cope with changing oxygen
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levels is by dramatically altering gene expression (Semenza 2011; Butler
2013; Ratcliffe 2013). In the yeast Saccharomyces cerevisiae, several mi-
croarray studies have found that the mRNA levels of hundreds of genes
change in response to hypoxia (ter Linde et al. 1999; Becerra et al. 2002;
Ter Linde and Steensma 2002; Kwast et al. 2002; Lai et al. 2005, 2006;
Hickman and Winston 2007; Hickman et al. 2011). As might be ex-
pected, some responsive genes participate in oxygen-dependent cellular
processes, such as aerobic respiration and the biosynthesis of unsatu-
rated fatty acids (UFAs), heme, and ergosterol (the yeast functional
equivalent of cholesterol). Other responsive genes do not directly par-
ticipate in oxygen-dependent processes but may compensate for the lack
of oxygen. For example, cell wall genes are induced during hypoxia,
likely to compensate for the inability during hypoxia to synthesize mem-
brane lipids that are important for membrane fluidity and permeability
(Abramova et al. 2001a).

Many genes have been found to consistently respond to hypoxia. For
example, several studies have found that CYC1I, encoding cytochrome c,
is downregulated, while HEM 13, encoding a heme biosynthetic
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enzyme, is upregulated (Zhang and Hach 1999; Lombardia et al. 2000;
Ter Linde and Steensma 2002; Hickman and Winston 2007; Butler
2013). However, other genes exhibit conflicting responses between
studies. The ERG5 ergosterol biosynthetic gene responds to hypoxia
in only a subset of studies while COX5B, encoding a cytochrome ¢
oxidase subunit, has been found to be either up- or downregulated
(see Supplemental Material, Table S3). The conflicting results between
studies indicate that the hypoxic response has not been clearly defined.
Having an accurate picture of how gene expression changes during the
hypoxic response is critical for understanding the metabolic changes
and signaling events that occur during the transition from high to low
oxygen levels.

In studying a gene expression response, it is informative to observe a
time course (Storey et al. 2005), as opposed to two conditions such as
aerobic and hypoxic. First, a time course captures the diverse kinetics of
each gene’s expression, which is useful in characterizing complex re-
sponses that employ several signaling pathways and transcription fac-
tors. Second, transient expression changes, which may be important in
the response, will be identified in a time course. Third, following ex-
pression level over the course of the response will allow one to de-
termine whether the response is transient or a transition to a new
steady-state. At the end of a transient response, gene expression should
return to preresponse levels. In contrast, if a new steady-state is reached,
then expression levels different from preresponse levels will be reached
and maintained.

A time course is especially useful in characterizing the multifaceted
hypoxic response in which the initial lack of oxygen immediately causes
secondary effects such as depletion of metabolites (e.g., heme, ergosterol,
and UFAs) (Chellappa et al. 2001; Hickman et al. 2011), reduced flux
through the electron transport chain (Guzy et al. 2007), and a change in
growth rate (Burke 1997; Brauer et al. 2008). Each of these secondary
effects acts as a stimulus, activating a unique signaling pathway that
regulates gene expression; heme depletion signals to the Hap1 pathway
(Hickman and Winston 2007) while sterol depletion activates the
Upc2/Ecm?22 pathway (Hickman et al. 2011). Furthermore, it has been
suggested that some of the gene expression changes during hypoxia are
due to a transient stress response (Lai et al. 2008). Approximately
900 genes in the yeast genome respond to diverse types of stress and
have been deemed part of the ESR (Gasch et al. 2000). It is important to
determine whether hypoxia activates the ESR genes and is thus con-
sidered a stress.

Growth of S. cerevisiae without oxygen requires exogenous ergos-
terol and UFAs, because these essential metabolites require oxygen for
their biosynthesis (Rosenfeld and Beauvoit 2003). Thus, previous stud-
ies have included these metabolites when growing yeast without oxygen
(ter Linde et al. 1999; Abramova et al. 2001b; Lai et al. 2006). However,
we and others have found that some genes respond to hypoxia due to
depletion of ergosterol and UFAs. Replenishing the metabolites reduces
the effects of hypoxia (Hughes et al. 2005; Hickman et al. 2011). There-
fore, in order to measure how yeast gene expression responds to natural
hypoxia, it is important to measure the change in gene expression that
occurs in the absence of oxygen without adding ergosterol and UFAs.

To measure global gene expression during the hypoxic response, we
employed a recently developed technique known as RNA-seq (Wang
et al. 2009; Anders and Huber 2010). This method uses next-generation
sequencing to determine the relative abundance of each gene’s tran-
script. Compared to DNA microarray analysis, RNA-seq exhibits
higher sensitivity (to detect less abundant transcripts), a greater
dynamic range (to measure greater fold changes), and superior repro-
ducibility (to accurately follow gene expression over time). Thus, RNA-
seq will allow a more detailed characterization of the hypoxic response.
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In this work, we have tracked the global gene expression response to
hypoxia over 4 hr. Using principal component analysis (PCA), we
discovered that the hypoxic response largely occurs during the first
2 hrand then a new steady-state expression state is achieved. Subsequent
time-course statistical analyses identified 816 genes that change signif-
icantly over time in response to hypoxia, identifying most of the expected
oxygen-regulated genes as well as genes that were not discovered pre-
viously. Three genes were verified by RT-qPCR to be oxygen-regulated.
Our analysis identified genes that changed dramatically (2-550-fold)
during the hypoxic response. The regulated genes were involved in
expected (e.g., respiration, lipid metabolism, and cell wall) and unex-
pected (e.g., DNA and amino acid metabolism) cellular processes. Fi-
nally, we found that hypoxia causes a modest and transient stress
response that is overshadowed by a more significant response that is
unique to hypoxia.

MATERIALS AND METHODS

Strain and growth conditions

The S. cerevisiae strain used is a GAL2* derivative of S288C containing
a repaired HAPI allele (Hickman and Winston 2007), and is available
upon request. Cells were grown at 30° in YPD (1% yeast extract, 2%
peptone, and 2% glucose). For the hypoxia time course, cells were
grown aerobically for at least four generations to midlog phase (1-
2 x 107 cells/ml). At time 0, a sample was taken, and then the cells
were diluted in flasks so that they would reach midlog by the indicated
time point. Hypoxia was achieved by continuously sparging flasks with
ultrahigh-purity nitrogen gas at 3 L/min. Ergosterol and Tween
80 (source of UFAs) were not added to the media (Hickman et al.
2011). For each time point, 20 ml of cell culture was filtered using a
0.45 pm filter and microanalysis filter holder (Millipore), and the cells
were snap frozen in liquid nitrogen. Removal from hypoxia and freez-
ing took <30 sec, minimizing cell exposure to oxygen.

RNA-seq and quality control filtering

Note that only one replicate of the hypoxia time course was used for
RNA-seq analysis. RNA was prepared from frozen cells using mechan-
ical disruption and the QTAGEN RNeasy kit. RNA quality was tested
using the Bioanalyzer 2100 (Agilent). RNA concentration was deter-
mined using the Life Technologies Qubit, and RNA was diluted to
100 ng/ul for cDNA library preparation. The mRNA was enriched
using oligo-dT capture and the cDNA library was prepared using the
TruSeq RNA Sample Preparation Kit (Illumina) according to the man-
ufacturer’s instructions. Eight RNA samples were barcoded, pooled,
and sequenced in one lane using an Illumina HiSequation 2500 se-
quencer. For each sample, there were > 6.8 million reads, each at a
length of 65 nucleotides. The reads were quality trimmed and then
mapped to the S. cerevisiae S288C reference genome (SGD R64-1-
1_20110203) using Tophat2 with default settings (Kim et al. 2013).
At least 90% of reads in each sample successfully mapped. The number
of reads mapping to each annotated feature was determined using
HTSeq (Anders and Huber 2010), resulting in at least 4.98 million total
reads per sample and an average of 697 reads per feature. The resulting
FASTQ files and raw HTSeq data were deposited in NCBI's Gene
Expression Omnibus (Edgar et al. 2002) and are accessible through
GEO Series accession number GSE85595. Genes with zero reads in
all samples were removed (419 genes). To account for between-sample
differences in sequencing depth, we used total-count normalization so
that, for each sample, the total number of reads that maps to annotated
features is equal, similar to calculating RPKM (Trapnell et al. 2012).
Finally, the 24 PAU genes were removed because they are similar, and
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in some cases identical, in sequence, making them difficult to differen-
tiate (Hickman et al. 2011). The normalized read count data and other
information about each gene are included in Table S1.

Experimental validation using RT-qPCR

Multiple biological replicates of the hypoxia time course were performed
for RT-qPCR analysis. Total RNA was converted to cDNA using the
BioRad iScript kit and poly-dT primers. The cDNA was subject to
qPCR amplification using the BioRad iTaq-SYBR kit and the BioRad
CFX96 Real Time System. Primer sequences are included in Table S2.
Control qPCR reactions were performed on an equal amount of
RNA that was not reverse transcribed, showing that there was no
gDNA contamination.

Time-course analyses

To identify genes that respond to hypoxia over time, we used two
methods: DESeq2 and “AutoCor,” an algorithm developed here.
DESeq2 was used to perform a likelihood ratio test (LRT in the DESeq2
package) (Love et al. 2014) that compares how well a gene’s count data
fit a “full model” (with independent variables, like time) compared to a
“reduced model” (without those variables). Our full model was a qua-
dratic equation: E, = 3,2 + B,f + By where E, is normalized counts at
time ¢, ¢ is time, and each {3 is a coefficient. Our reduced model excluded
time: E; = . In DESeq2, the full model was written ~ time + I(time/2)
and the reduced model was written ~1. The rationale for this design
was to test whether a gene’s expression fits a pattern of increase or
decrease over the time points. In analyzing count data, DESeq2 esti-
mates dispersion of each gene’s expression by taking into account
the dispersion of genes expressed at similar levels. Since there were
not biological replicates for each time point, all time points were com-
bined as replicates to calculate dispersion. The dispersions of hypoxic-
responsive genes will be overestimated but partially corrected by the
lower dispersion of nonresponsive genes. The second method, AutoCor,
is permutation-based and tests the importance of time point order. For
each gene, the normalized count values in their original order were
compared to all possible permutations (40,320). By using the actual
normalized read count values, we did not make any assumptions about
the distribution of the data. In the first step, the autocorrelation (lag=1)
(Box et al. 2008) for each gene is calculated. Autocorrelation is high
when the values in a time series “persist” (i.e., form a “smooth” curve).
Then, for each gene, the autocorrelation was computed for each per-
muted time course. Finally, a one-sided p-value was calculated as the
proportion of random autocorrelations that are greater than or equal to
the original autocorrelation.

For the 2868 genes that each had a maximum fold-change over the
entire hypoxic time course of =2, the p-values generated by DESeq2 or
AutoCor were adjusted for multiple testing using the BH procedure
(Benjamini and Hochberg 1995), and adjusted p < 0.05 indicates sig-
nificance. All statistical analyses, unless otherwise stated, were per-
formed using R Studio (R Core Team 2015).

PCA, Euclidian distance, clustering, and gene ontology
(GO) analyses

All analyses in this section were performed on normalized read counts
that were log2 transformed. PCA, a dimensionality reduction technique,
was carried out in R by using the prcomp function (Q-mode, or singular
value decomposition) on the matrix containing genes in columns and
time points in rows (Hothorn and Everitt 2014). R outputs the PCA
results into one variable (e.g., PC) and resulting loadings are found in
the matrix designated by PC$rotation. The Euclidian distance between
samples was calculated in R using the dist function on the matrix
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containing genes in columns and time points in rows. A heatmap
was generated using the resulting distance matrix with the heatmap
function in R. Hierarchical clustering was performed using Cluster 3.0
(Eisen et al. 1998), with uncentered correlation and average linkage. A
heatmap was generated from the resulting cluster using TreeView
(Saldanha 2004). GO enrichment analysis was performed using GO
Slim Mapper at SGD (Cherry et al. 2012).

ESR data

All of the ESR gene expression data were obtained from the Gasch study
(Gasch et al. 2000). The data presented in this paper are displayed in the
following order: 37° heat shock (5, 15, 30, and 60 min); 20 min 37° heat
shock (from 17, 21, 25, 29, 33, and 37°), 0.32 mM hydrogen peroxide
(10, 20, 30, 40, 50, 60, 80, 100, 120, and 160 min); 1 mM menadione
(10, 20, 30, 40, 50, 80, 105, 120, and 160 min); 2.5 mM DTT (15, 30,
60, 120, 240, and 480 min); 1.5 mM diamine (5, 10, 20, 30, 40, 50, 60,
and 90 min); 1 M sorbitol (5, 15, 30, 45, 60, 90, and 120 min); amino
acid starvation (0.5, 1, 2, 4, and 6 hr); nitrogen depletion (0.5, 1, 2,4, 8,
12, 24, 48, 72, and 120 hr); diauxic shift (seven consecutive time
points); YPD (2, 4, 6, 8, 10, 12, 24, 48, 72, and 120 hr); carbon source
(ethanol, galactose, raffinose, sucrose, and fructose); and temperature
(15,17, 21, 25, 29, and 36°). A gene was considered to be part of the
ESR if the gene was either originally called by the Gasch study
or changed more than twofold in 10 or more of the 13 different
treatments.

Data availability
The GEO series accession number is GSE85595 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE85595).

RESULTS

Quantifying mRNA levels during the switch to hypoxia

To study gene expression during the switch from aerobic to hypoxic
growth, cells were quickly frozen after 0, 5, 10, 30, 60, 120, 180, and
240 min of hypoxia. The mRNA was isolated and subjected to RNA-seq
analysis, as described in the Materials and Methods, generating the
number of sequencing reads per gene. This analysis was highly repro-
ducible, as shown by comparing gene read counts between 0 and 5 min
(Figure S1). Low read counts are not reliable so, for each gene, we
compared the median to the coefficient of variation of counts across
time points (Figure S2). Indeed, genes with < 20 read counts
showed high variability and thus all read counts <20 were set, or
“floored,” to 20.

Next, we examined the global change in gene expression during
hypoxia by performing a PCA on all genes (Figure 1A). This analysis
shows that there are large expression changes from 0 to 120 min.
However, from 120 to 240 min, the changes are not as pronounced
as shown by the closer proximity of the points. Thus, we conclude that
most of the change occurs within the first 120 min of hypoxia and then
a new steady-state of gene expression (i.e., a hypoxic state) is reached. In
addition, by observing expression at multiple times within 240 min, we
were able to capture a large portion of the change that occurs during the
switch from aerobic to hypoxic growth. One caveat to this analysis is
that the first two components displayed in Figure 1A only comprise
73% of the variance and thus don’t represent the true distances between
time points. Therefore, we calculated the Euclidian distances between
each pair of time points and displayed the distance matrix as a heatmap
(Figure S3A). This graph supports our conclusion that the last three
time points (120-240 min) are highly similar to each other and less
similar to earlier time points.
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Figure 1 The gene expression response to
hypoxia. (A) Principal component analysis to
monitor global gene expression change dur-
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Identifying time-dependent genes
To identify genes that change expression as a function of time during
hypoxia, we employed DESeq2 (Love et al. 2014) as described in the
Materials and Methods. This method found 703 genes with a maximum
fold-change of =2 during the time course. However, DESeq2 did not
appear to identify all genes that respond to hypoxia, including three
genes (NCEI03, FRT2, and PRMI0) that exhibited time-dependent
changes here (Figure 1B) and were previously shown to be oxygen-
regulated (Hickman and Winston 2007; Hickman et al. 2011). Thus, in
order to capture these and other time-dependent genes not detected by
DESeq2, we developed a permutation-based method, AutoCor, to test
the importance of time (see Materials and Methods). AutoCor identifies
genes with significantly high autocorrelation, signifying that expression
changed smoothly over time. The AutoCor method identified
580 genes, including the NCE103, FRT2, and PRM 10 genes. We com-
pared the AutoCor and DESeq2 methods using a Venn diagram (Fig-
ure 2A) and found that 467 genes were picked up by both methods
(greater than the 61 expected if each method identified a random set of
genes). In addition, the DESeq2 and AutoCor methods identified
236 and 113 unique genes, respectively, so that 816 genes showed
significant time-dependence and thus were deemed oxygen-regulated.

Several microarray studies have been performed to find oxygen-
regulated genes in S. cerevisiae (ter Linde et al. 1999; Ter Linde and
Steensma 2002; Kwast et al. 2002; Becerra et al. 2002; Lai et al. 2005,
2006; Hickman and Winston 2007; Hickman et al. 2011) and we ex-
amined how well the current RNA-seq experiment detected the same
genes (Figure 2B). First, we determined how many previous studies (0-
7) found a gene to be oxygen-regulated (Table S3). Second, we calcu-
lated the percentage of these genes that were identified in the current
RNA-seq experiment. Confirming that our methods were more likely
to detect known oxygen-regulated genes, as the number of studies
increases, the percentage identified also increases (Figure 2B, solid
lines). In other words, we were more likely to identify a gene as
oxygen-regulated the more times it had been observed previously.
This relationship would not be expected if our analysis picked up a
set of random genes (dotted lines). Moreover, genes that were not
observed as oxygen-regulated previously (0 studies) were found here
at a lower percentage than expected.

Our analysis so far has shown that we identified many of the known
oxygen-regulated genes, but we wanted to know if our analysis missed
any true oxygen-regulated genes. First, of the 11 genes found to be
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oxygen-regulated in six or seven previous microarray studies, we
identified 10 here. Examination of the RNA-seq data shows that the
one missed gene, HMXI, does indeed exhibit a rapid time-dependent
response (Figure 1B). In fact, the AutoCor p-value was low (adjusted
p=0.052), suggesting mild time-dependence. Second, we examined
RNA-seq expression of the 11 genes identified as oxygen-regulated in
five previous microarray studies but not here (Figure S4). This revealed
two categories of genes. First, in agreement with our time-dependence
analysis, six genes (SFMI, FMP23, CYB2, FET4, HSP60, and PRYI)
showed little response. These genes do not respond to hypoxia in the
strain or conditions used here. Second, five genes (GSY1, HSP12, EMI2,
MSCI, and SDS24) changed by more than fourfold but were not de-
tected as oxygen-regulated. These genes all exhibit rapid induction that
may be difficult to detect with methods that test for time-dependence,
because only one time point varies substantially from the others. For
example, the GSY1 gene showed a ~16-fold induction within 5 min of
hypoxia and remained highly expressed throughout the time course.
We confirmed that this induction is reproducible using RT-qPCR (Fig-
ure 3). Thus, our statistical methods were not able to identify a subset of
genes, but detected the vast majority of well-known oxygen-regulated
genes (Figure 2B).

In addition, we discovered many new oxygen-regulated genes (sta-
tistics for all genes are shown in Table S1). Of the 4387 genes that were not
observed as oxygen-regulated in any microarray study, we found
266 genes as oxygen-regulated here. To show that we were able to identify
new oxygen-regulated genes, we used RT-qPCR to confirm that two of
these genes, DMCI and EFM6, were indeed induced by hypoxia (Figure
3). Interestingly, EFMG6 (a putative S-adenosylmethionine-dependent ly-
sine methyltransferase) and DMCI (a meiosis-specific recombinase re-
quired for double-strand break repair) both have orthologs in humans
(METTL21A and DMCI, respectively).

We were surprised to identify such a large number of genes as
oxygen-regulated, even though these genes had never or rarely been
observed before. Of the 816 genes identified here, only 192 genes were
detected as significantly oxygen-regulated in at least three previous
microarray studies (Figure S5). This means that 624 genes were not
consistently detected by microarrays. One hypothesis for why we iden-
tified these genes is that RNA-seq and our time-course analysis were
able to identify genes with lower mRNA levels. Supporting this hypoth-
esis, genes identified as regulated in this study were on average
expressed lower than genes identified in microarray studies (Figure
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Figure 2 Identifying genes that respond to
hypoxia in a time-dependent manner. (A) A
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Venn diagram showing that the two statistical
methods used in this study detected largely
overlapping sets of genes. The total number
of genes detected by each method is shown
in parentheses. (B) Our RNA-seq and statis-
tical methods were more likely to identify
well-known oxygen-regulated genes. The
x-axis represents the number of indepen-
dent microarray studies in which a gene
was shown to be oxygen-regulated (as cal-
culated in Table S3). The y-axis represents
the percentage of those genes that were
identified by the indicated method (both =
AutoCor and DESeq?2; either = AutoCor or

Number of microarray studies

S6A). Further, the genes only identified in our study were on average
expressed lower than genes identified both here and in microarray
studies (Figure S6B). Thus, the sensitivity of RNA-seq and time-course
analysis allowed us to uncover many additional oxygen-regulated
genes.

Description of the 816 time-dependent genes

In order to explore how the set of oxygen-regulated genes changes
during the hypoxic response, we performed PCA (Figure 4A). Strik-
ingly, the PCA pattern of this set is very similar to the pattern for all
genes (Figure 1A), suggesting that the oxygen-regulated genes ex-
hibit large changes in the first 2 hr followed by small changes. This is
supported by a heatmap showing that the Euclidian distances be-
tween the last three time points is very small compared to their
distances to earlier time points (Figure S3B). Thus, the oxygen-
regulated genes appear to achieve a new “hypoxic” steady-state level
of expression.

Next, we wanted to examine the kinetics of mRNA levels for the
oxygen-regulated genes and thus displayed fold changes in a heatmap
(Figure 4B). The 293 aerobic genes (repressed during hypoxia) and
523 hypoxic genes (induced during hypoxia) are indicated in the heat-
map. The responsive genes exhibit varying kinetics, with changes oc-
curring early or late during the response. For example, the well-known
hypoxic gene DANI (delayed anaerobic 1) does not change expression
until 60 min, while the well-known aerobic gene CYCI (cytochrome ¢
1) responds within 10 min. Consistent with the PCA analyses, most
expression changes occur from 0 to 120 min. For most genes, a new
steady-state expression level is established by 120 min, as shown
by minor expression changes between 120 and 240 min.

Gene expression levels changed dramatically during hypoxia, as
determined by calculating the maximum fold change for each gene
(Figure S7). The greatest increase in expression was almost 550-fold,
while the greatest decrease was almost 52-fold. The top induced and top
repressed genes are all well-known oxygen-regulated genes (Figure S7).
These fold changes are greater than observed previously; for example,
DANI, which changed 550-fold here, was previously shown with
microarray analysis to change 40-fold (Hickman et al. 2011). Not only
does RNA-seq allow a more accurate quantitation of fold changes, but
time-course analysis increases the chances of identifying the time when
expression change is greatest.
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DESeq2). The four curves overlap at x =
6 and x = 7. Each dotted line shows the
percentage of genes in the genome that
are detected by the indicated method. RNA-
seq, RNA sequencing.

Cellular processes affected by hypoxia

The change from aerobic to hypoxic growth is expected to cause large
changes in metabolism as well as alter expression of many genes involved
in oxygen-dependent processes (Butler 2013). Previously, many studies
have found that the expression of several cell wall, lipid, and respiration
genes is changed during hypoxia (Burke 1997; ter Linde et al. 1999;
Abramova et al. 2001a; Ter Linde and Steensma 2002; Lai et al. 2005).
We used GO enrichment analysis (Cherry et al. 2012) to determine
which processes were more than twofold enriched in the hypoxic or
aerobic sets of genes (Table S4). As expected, the set of hypoxic genes
was enriched for “lipid metabolic process” and the set of aerobic
genes was enriched for “cellular respiration.” Even when examining
the most highly-regulated genes (detected by both DESeq2 and
AutoCor, as well as > fourfold change), many of the same processes
were enriched (Table S4). Our analysis also revealed unexpected
processes; for example “vitamin metabolic process” was enriched
in the hypoxic set and “response to oxidative stress” was enriched
in the aerobic set.

Next, we manually assigned a process to each gene that changed more
than fourfold (Table S1), to obtain a more complete picture of the
processes that may be affected by oxygen levels (Figure 5). Many gen-
eral aspects of this figure stand out. First, most of the processes contain
both hypoxic and aerobic genes, indicating that the genes in a process
are subject to both positive and negative regulation and thus that the
process may be fine-tuned to perform better under hypoxia. One ex-
ample is the set of genes implicated in oxidative stress. In response to
hypoxia, seven such genes are downregulated while two genes are
upregulated. One may predict that the production of reactive oxygen
species decreases under hypoxia, but a different set of reactive species
may be produced without oxygen (Guzy et al. 2007; Murphy 2009).
Second, the most-populated process is “unknown,” which includes
many widely conserved genes that have yet to be characterized. The
fact that these are oxygen-regulated may give a clue to their func-
tions. Third, genes in some of the processes (e.g., respiration, lipid
metabolism, heme, and cell wall) have been observed previously to
be oxygen-regulated (Abramova et al. 2001b; Lai et al. 2005), fur-
ther supporting a role for these processes in adapting to low
oxygen.

Finally, our analysis identified many new processes containing
oxygen-regulated genes; three such processes (transcription, DNA
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Minutes of hypoxia

metabolism, and vitamin biosynthesis) will be discussed. First, we
found that five transcription factor genes (HAPI, HAP4, UPC2,
MOT3, and ROXI) not only regulate transcription of other genes
in response to hypoxia (Butler 2013), but themselves change expres-
sion. This suggests that part of their regulation by oxygen levels in-
volves regulation of their mRNA levels, perhaps by auto-regulation.
Additionally, the fact that there are nine other transcription genes
that respond to hypoxia illustrates the complexity in regulating gene
expression during the hypoxic response. In the process “DNA me-
tabolism,” most of the genes have been shown to be induced by DNA
stress (Tkach et al. 2012), suggesting that hypoxia induces such stress.
Three DNA metabolism genes specifically participate in nucleotide
biosynthesis. The ADE12 gene, encoding adenylosuccinate synthase,
decreases expression during the switch to hypoxia, presumably caus-
ing cells to synthesize less AMP from IMP and thus decreasing the
nucleotide pool for DNA and RNA synthesis. In contrast, the RNR3
and HUGI genes are induced by hypoxia. Interestingly, RNR3 en-
codes a nonessential subunit of the oxygen-dependent ribonucleo-
tide reductase (RNR), responsible for creating dNTPs from NTPs.
On the other hand, HUG! inhibits RNR activity by binding to a
different subunit, Rnr2 (Meurisse et al. 2014). These results show
that the multi-subunit RNR undergoes positive and negative reg-
ulation, which may fine-tune activity when oxygen levels change.
In the process “vitamin biosynthesis,” hypoxia caused induction
of four genes, all of which are directly or indirectly involved in
the biosynthesis of B vitamins, cofactors in cell metabolism. BIO2
encodes biotin (vitamin B;) synthase, SNOI and SNZ1 are required
for vitamin B production (Rodriguez-Navarro et al. 2002), and
THI22 is highly similar to thiamine (vitamin B,) biosynthetic en-
zymes (Llorente et al. 1999). The genes may be oxygen-regulated
because many steps in vitamin biosynthesis are oxygen-sensitive
or oxygen-dependent, and because these vitamins are known to
be important for anaerobic respiration (Bartnicki-Garcia and
Nickerson 1961; di Salvo et al. 2003; Lotierzo et al. 2005;
Koenigsknecht and Downs 2010).

The hypoxic response differs from the ESR
The ESR consists of hundreds of genes that respond to most types of
stress, including DNA damage and oxidative stress (Gasch et al. 2000).
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We wanted to test whether hypoxia, which may be considered
stressful, evokes the ESR. When comparing the 987 ESR genes
and 816 oxygen-regulated genes, we found that only 97 of the
oxygen-regulated genes were also ESR genes (Figure 6A), less than
the 124 genes expected by chance. To compare the hypoxic and ESR
responses in more detail, we examined the expression of four groups
of genes: ESR only (Figure 6B), oxygen-regulated only (Figure S8),
both oxygen-regulated and ESR (Figure S9), and regulated by nei-
ther oxygen nor ESR (Figure S10). First, as shown in Figure 6B, the
ESR-only genes responded strongly to an array of stressors, as pre-
viously shown (Gasch et al. 2000), but responded modestly and
transiently (with a peak of 30 min) to hypoxia before returning to
prestress levels of expression. Interestingly, this modest response to
hypoxia partially matched the response to stressors in that genes up-
or downregulated by hypoxia were also up- or downregulated, re-
spectively, by stressors. These results suggest that hypoxia causes a
weak and transient stress response.

Second, the genes only regulated by oxygen exhibited a qualitatively
and quantitatively distinct response to hypoxia compared to their
response to stressors (Figure S8). For example, genes upregulated by
hypoxia were not necessarily upregulated by stressors, but were either
unchanged, upregulated, or downregulated. The genes that we have
identified as oxygen-regulated clearly do not respond universally to
stress, indicating that these genes comprise a unique set that is impor-
tant for coping with low oxygen levels.

Third, only some genes that respond to both hypoxia and stressors
exhibit a similar response to the two types of inducers (Figure S9).
Many genes show opposing responses. As one notable example,
ANBI (denoted by the arrow) is strongly upregulated by hypoxia
but is slightly downregulated by stress. These results further support
the idea that the gene expression response to hypoxia is distinct
from the ESR.

Fourth, to confirm that we did not miss any responses to stress or
hypoxia, we examined the expression of genes not found to be regulated
by stress or by hypoxia (Figure S10). It is clear that these genes are not
part of the ESR because they do not respond consistently to the differ-
ent stressors. Also, they do not appear to respond significantly to hyp-
oxia. Thus, the previous three groups of genes captured the majority of
the response to stress or to hypoxia.
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Figure 4 The hypoxic response of 816 genes that we identified as time-dependent. (A) Principal component analysis of the oxygen-regulated
genes. This was performed and presented as in Figure 1A. PC1 and PC2 captured 75 and 14%, respectively, of the variability in gene expression.
(B) Heatmap showing expression of the oxygen-regulated genes. Gene expression was normalized to time O (aerobic conditions) on a log2 scale.
The matrix was subject to hierarchical clustering of the genes. The most intense red bar represents an increase by ~550-fold while the most

intense green bar represents a decrease by ~52-fold. min., minutes.

PCA analysis of the entire hypoxic response

We identified two sets of genes (ESR and oxygen-regulated) as respond-
ing to hypoxia. To assess how these genes contribute to the overall
change during the hypoxic response, we further analyzed the results
from the PCA of all genes (shown in Figure 1A). Specifically, we ob-
served the PCI and PC2 loadings, which represent each gene’s contri-
bution to the variance captured in each principal component (Figure
S11A and Figure S11B). The genes with the greatest contribution to
PC1 and PC2 are oxygen-regulated (blue and red points), showing that
these genes contribute substantially to the hypoxic response. Interest-
ingly, the oxygen-regulated genes contribute mainly to PC1 whereas
ESR genes contribute mainly to PC2 (Figure S11A). A closer examina-
tion in Figure S11B shows that the border between these two sets of
genes is not clearly defined, likely because some oxygen-regulated genes
behave like ESR genes (e.g., induced early with a peak at 30 min) and
vice versa.

With the understanding of which genes contribute to PC1 and PC2
for all genes, we next focused on how each component changed during
hypoxia. PC1 increased dramatically from 0 to 30 min, but then
remained relatively constant at a new level for the remainder of the
time course (Figure 1A), consistent with the idea that these genes
(mainly oxygen-regulated) reach a new steady-state. PC2 decreased
dramatically from 0 to 30 min, but then returned back to the starting
level (Figure 1A), consistent with genes (mainly ESR) responding
transiently and returning to their initial state. In contrast, when PCA
was performed on the set of oxygen-regulated genes (Figure 4A), the
resulting PC1 continued to increase until 180 min before stabilizing,
much later than when considering all genes. PC2 followed a decrease—
increase pattern similar to all-gene PCA (Figure 4A).
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To understand this difference between all-gene PCA (Figure 1A)
and oxygen-regulated PCA (Figure 4A), we compared which genes
contributed to the variance in both analyses (Figure S12). Strik-
ingly, the contributions of genes to PC1 were highly correlated
between the two types of analyses (Figure S12A), showing that
all-gene PC1 (describing 45% of variance) is highly similar to ox-
ygen-regulated PC1 (describing 75% of variance). However, many
genes were not included in this graph because they were not iden-
tified as oxygen-regulated (black and green data points in Figure
S11A and Figure S11B), including the six genes described earlier
(HMX1, GSY1, HSP12, EMI2, MSCI, and SDS24; triangles in Figure
S11A and Figure S11B). The six genes all had high PC2 loadings,
indicating that they may be ESR genes; indeed, three of them are.
We reasoned that oxygen-regulated PC1 may exhibit a different
pattern because these six genes are missing and thus adding them
to the oxygen-regulated set would restore all-gene PC1 as in Figure
1A. Adding these six genes did not recreate all-gene PC1 (data not
shown), but two other gene sets did: (1) the 1705 genes that are
either oxygen-regulated or ESR (Figure S13A), or (2) the 885 genes
that had all-gene PC1 and PC2 loadings > 0.01 (Figure S13B).
Using the 168 genes with a PC threshold of =0.02 did not have
nearly the same effect (Figure S13C). Taken together, the PCA
analyses indicate that the entire gene expression response to hyp-
oxia is comprised of a large, complex, and overlapping set of oxygen-
regulated and ESR genes.

DISCUSSION
In this study, we have examined the global gene expression response to
hypoxia. By observing changes in the cellular transcriptome at several
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time points spanning 4 hr, we were able to gain several insights into this
response. First, a majority of the response occurs within the first 2 hr,
leading to a new steady-state of expression. In this hypoxic state, the cell
can presumably carry out essential processes without oxygen, provided
that certain nutrients are available in the environment (Thomas et al.
1998). In addition, hypoxia causes the ESR genes to respond transiently
with a peak at 30 min, suggesting that the transition from the aerobic to
hypoxic state is stressful, due to several possible factors (e.g., nitric
oxide, metabolite depletion, membrane disruption, or low energy)
(Lai et al. 2005; Poyton et al. 2009; Hickman et al. 2011). However,
the ESR is a minor component of the hypoxic response, which is
mainly comprised of a unique set of genes. Furthermore, genes
respond to hypoxia with varying kinetics, reflecting the complexity
of the response. One reason for this complexity is that hypoxia
causes multiple secondary events (e.g., decreased energy produc-
tion, depletion of multiple metabolites, and change in redox state)
(Poyton et al. 2009; Hickman et al. 2011; Butler 2013). These
events likely occur at different rates following oxygen withdrawal
and each serve as a stimulus for a different signaling pathway.
Indeed, several signaling pathways are known to mediate the re-
sponse to hypoxia, including Hapl/Rox1/Mot3 (Sertil 2003),
Hogl/Upc2/Ecm22 (Hickman et al. 2011), Hap2/Hap3/Hap4/
Hap5 (Ramil et al. 2000), Mga2 (Jiang et al. 2002), and the mito-
chondrion (Poyton et al. 2009). Now that we have described the
genes and kinetics of the hypoxic response, it will be important to
establish the role of each signaling pathway in regulating expres-
sion changes.

In this study, we measured transcript levels using RNA-seq, a
method that is becoming the standard for measuring global gene
expression (Wang et al. 2009; Ellahi et al. 2015). RNA-seq has
three features that aided our ability to detect time-dependent
changes. First, RNA-seq is extremely sensitive and thus, with suf-
ficient sequencing depth, is able to detect low abundance tran-
scripts. Indeed, genes that we identified to be oxygen-regulated
exhibited lower expression on average than those detected by
microarray experiments. Second, RNA-seq has a wide dynamic
range; this feature contributed to our ability to detect up to
550-fold changes. Third, RNA-seq analysis is highly reproducible.
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We found that there was a high correlation between all of the
samples, especially between the two samples predicted to be the
most related (0 and 5 min).

To identify genes that respond to hypoxia, we used two statistical
methods to examine the time-dependence of each gene’s read counts
over the time course. This analysis revealed that 816 genes showed
significant time-dependence by either the AutoCor or DESeq2 method.
We compared our results to previous hypoxia microarray studies and
found that we identified most of the well-known oxygen-regulated
genes (Figure 2B). In addition, we discovered many new oxygen-
regulated genes. For example, two genes, DMCI and EFM6, were
identified here but not in previous studies, and also showed oxygen-
regulation in follow-up RT-qPCR analysis (Figure 3). However, our
analysis of time-dependence did not detect all oxygen-regulated
genes, especially those with rapid kinetics (Figure S4). For example,
GSY1 was seen in five previous microarray studies but was not
identified by our statistical methods. The RNA-seq data shows that
GSY1 is rapidly induced by hypoxia, and this is confirmed by
RT-qPCR (Figure 3). To more accurately detect early expression
changes, it will be necessary to collect additional RNA samples
immediately before and after oxygen withdrawal.

The set of genes identified here as oxygen-regulated differed from
what was found in other microarray studies (ter Linde et al. 1999; Ter
Linde and Steensma 2002; Kwast et al. 2002; Becerra et al. 2002; Lai
et al. 2005, 2006; Hickman and Winston 2007; Hickman et al. 2011).
Some genes, like DM CI and EFMG6, were only found here to be oxygen-
regulated, while other genes, like CYB2 and HSP60, were only found
in other studies. One explanation is that the details of our experi-
ments differed from previous studies in many important ways. First,
to make sure that we captured the complete hypoxic response, we
used an S288C-derived strain which contains a repaired HAP] allele
(Hickman and Winston 2007) and is wild-type for other known
oxygen-dependent regulatory factors (ROX1, MOT3, UPC2, ECM22,
MGA2, HAP2/HAP3/HAP4/HAPS5, and HOGI). Second, hypoxia was
established by continuously sparging flasks with ultrahigh-purity N,,
which lowers the dissolved [O,] immediately with reproducible kinetics
(Lai et al. 2006). Third, ergosterol and UFAs were not added to the
hypoxic cultures. Many studies add these metabolites because they are
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Figure 6 The hypoxic response is distinct from the ESR. (A) A Venn diagram shows that there is little overlap of the ESR and oxygen-regulated
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required for long-term anaerobic growth (Shianna et al. 2001). How-
ever, part of the hypoxic gene expression response is caused by de-
pletion of metabolites (including heme, ergosterol, and UFAs)
(Chellappa et al. 2001; Davies and Rine 2006; Hickman and Winston
2007; Hickman et al. 2011); thus, adding them may dampen or elim-
inate the response.

GO enrichment analysis revealed that many expected pathways
(e.g., respiration and lipid metabolism) respond to hypoxia. In order
to obtain a more complete picture of the cellular processes affected,
we grouped the most responsive genes into several manually-
constructed categories (Figure 5 and Table S1). The results verified
that the processes “respiration” and “lipid metabolism” contained a
high number of responsive genes. In addition, our results revealed
processes (e.g., vitamin biosynthesis and metabolism of amino acids,
DNA, and proteins) that have not been observed previously. Inter-
estingly, many processes contained both up- and downregulated
genes, suggesting that these processes are not simply activated or
repressed, but are rewired to function optimally in hypoxia. Many
regulated processes clearly require oxygen or are affected by oxygen
levels, as discussed throughout this study. However, it is not clear
how some of the processes are linked to oxygen levels. For example,
there is not an obvious link between amino acids and oxygen;
molecular oxygen does not appear to be required for amino acid
biosynthesis. Despite this, exogenous amino acids can stimulate
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anaerobic growth of S. cerevisiae (Thomas et al. 1998), indicating
that amino acid levels are limiting. Further studies are needed to
determine the role of oxygen in each of the oxygen-regulated
processes.

In conclusion, time-course analysis has shown that hypoxia causes
widespread and complex changes in gene expression. Such analysis
allowed us to observe not only a transient stress response, but also larger
hypoxia-specific changes as the cell transitions from aerobic to hypoxic
growth. The next challenge will be to delineate all of the regulatory
pathways that mediate these changes.
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