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Characterisation of nonlinear 
receptive fields of visual neurons by 
convolutional neural network
Jumpei Ukita1, Takashi Yoshida1,2 & Kenichi Ohki1,2,3

A comprehensive understanding of the stimulus-response properties of individual neurons is necessary 
to crack the neural code of sensory cortices. However, a barrier to achieving this goal is the difficulty 
of analysing the nonlinearity of neuronal responses. Here, by incorporating convolutional neural 
network (CNN) for encoding models of neurons in the visual cortex, we developed a new method of 
nonlinear response characterisation, especially nonlinear estimation of receptive fields (RFs), without 
assumptions regarding the type of nonlinearity. Briefly, after training CNN to predict the visual 
responses to natural images, we synthesised the RF image such that the image would predictively 
evoke a maximum response. We first demonstrated the proof-of-principle using a dataset of simulated 
cells with various types of nonlinearity. We could visualise RFs with various types of nonlinearity, such as 
shift-invariant RFs or rotation-invariant RFs, suggesting that the method may be applicable to neurons 
with complex nonlinearities in higher visual areas. Next, we applied the method to a dataset of neurons 
in mouse V1. We could visualise simple-cell-like or complex-cell-like (shift-invariant) RFs and quantify 
the degree of shift-invariance. These results suggest that CNN encoding model is useful in nonlinear 
response analyses of visual neurons and potentially of any sensory neurons.

A goal of sensory neuroscience is to comprehensively understand the stimulus-response properties of neuronal 
populations. In the visual cortex, such properties were first characterised by Hubel and Wiesel, who discovered 
the orientation and direction selectivity of simple cells in the primary visual cortex (V1) using simple bar stimuli1. 
Later studies revealed that the responses of many visual neurons, including even simple cells2–5, display nonlin-
earity, such as shift-invariance in V1 complex cells6; size, position, and rotation-invariance in inferotemporal 
cortex7–9; and viewpoint-invariance in a face patch10. Nevertheless, nonlinear response analyses of visual neurons 
have been limited thus far, and existing analysis methods are often designed to address specific types of nonline-
arity underlying the neuronal responses. For example, the spike-triggered average11 assumes linearity; moreover, 
the second-order Wiener kernel12 and spike-triggered covariance13–15 address second-order nonlinearity at most. 
In this study, we aim to analyse visual neuronal responses using an encoding model that does not assume the type 
of nonlinearity.

An encoding model that is useful for nonlinear response analyses of visual neurons must capture the nonlin-
ear stimulus-response relationships of neurons. Thus, the model should be able to predict neuronal responses to 
stimulus images with high performance16 even if the responses are nonlinear. In addition, the features that the 
encoding model represents should be visualised at least in part so that we can understand the neural computa-
tions underlying the responses. Artificial neural networks are promising candidates that may meet these criteria. 
Neural networks are mathematically universal approximators in that even one-hidden-layer neural network with 
many hidden units can approximate any smooth function17. In computer vision, neural networks trained with 
large-scale datasets have yielded state-of-the-art and sometimes human-level performance in digit classification18, 
image classification19, and image generation20, demonstrating that neural networks, especially convolutional neu-
ral networks (CNNs)21,22, capture the higher-order statistics of natural images through hierarchical information 
processing. In addition, recent studies in computer vision have provided techniques to extract and visualise the 
features learned in neural networks23–26.
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Several previous studies have used artificial neural networks as encoding models of visual neurons. These 
studies showed that artificial neural networks are highly capable of predicting neuronal responses with respect 
to low-dimensional stimuli such as bars and textures27,28 or to complex stimuli such as natural stimuli29–36. 
Furthermore, receptive fields (RFs) were visualised by the principal components of the network weights between 
the input and hidden layer29, by linearization31, and by inversion of the network to evoke at most 80% of max-
imum responses32. However, these indirect RFs are not guaranteed to evoke the highest response of the target 
neuron.

In this study, we first investigated whether nonlinear RFs could be directly estimated by CNN encoding mod-
els (Fig. 1) using a dataset of simulated cells with various types of nonlinearities. We confirmed that CNN yielded 
the best prediction among several encoding models in predicting visual responses to natural images. Moreover, by 
synthesising the image such that it would predictively evoke a maximum response (“maximization-of-activation” 
method), nonlinear RFs could be accurately estimated. Specifically, by repeatedly estimating RFs for each cell, 
we could visualise various types of nonlinearity underlying the responses without any explicit assumptions, sug-
gesting that this method may be applicable to neurons with complex nonlinearities, such as rotation-invariant 
neurons in higher visual areas. Next, we applied the same procedures to a dataset of mouse V1 neurons, showing 
that CNN again yielded the best prediction among several encoding models and that shift-invariant RFs with 
Gabor-like shapes could be estimated for some cells from the CNNs. Furthermore, by quantifying the degree of 
shift-invariance of each cell using the estimated RFs, we classified V1 neurons as shift-variant (simple) cells and 
shift-invariant (complex-like) cells. Finally, these cells were not spatially clustered in cortical space. These results 
verify that nonlinear RFs of visual neurons can be characterised using CNN encoding models.

Results
Nonlinear RFs could be estimated by CNN encoding models for simulated cells with various 
types of nonlinearities.  We generated a dataset comprising the stimulus natural images (2200 images) 
and the corresponding responses of simulated cells. To investigate the ability of CNN to handle various types 
of nonlinearities, we incorporated various basic nonlinearities for the data generation, including rectification, 
shift-invariance, and in-plane rotation-invariance, which were found in V1 simple cells2, V1 complex cells6, and 
inferotemporal cortex9, respectively. We generated the responses of simple cells (N = 30), complex cells (N = 70), 
and rotation-invariant cells (N = 10) using the linear-nonlinear model2, energy model37,38, and rotation-invariant 
model, respectively (Figs 2a,b and 3a; see Methods for details). The responses were generated using one Gabor-
shaped filter for a simple cell, two phase-shifted Gabor-shaped filters for a complex cell, and 36 rotated Gabor-
shaped filters for a rotation-invariant cell. We also added some noise sampled from a Gaussian distribution such 
that the trial-to-trial variability of simulated data was similar to that of real data.

We first used a dataset of simulated simple cells and complex cells and trained the CNN for each cell to predict 
responses with respect to the natural images (Fig. 1). For comparison, we also constructed the following types 
of encoding models: an L1-regularised linear regression model (Lasso), L2-regularised linear regression model 
(Ridge), support vector regression model (SVR) with a radius basis function kernel39, and hierarchical structural 
model (HSM)31. The prediction similarity, defined as the Pearson correlation coefficient between the predicted 
responses and actual responses in a 5-fold cross-validation manner, of CNN was high and better than that of 
other models for both simple cells and complex cells (Fig. 2c), ensuring that the stimulus-response relationships 
of these cells were successfully captured by CNN.

Figure 1.  Scheme of CNN encoding model. The Ca2+ response to a natural image was predicted by 
convolutional neural network (CNN) consisting of 4 successive convolutional layers, one pooling layer, one fully 
connected layer, and the output layer (magenta circle). See Methods for details. Briefly, a convolutional layer 
calculates a 3 × 3 convolution of the previous layer followed by a rectified linear (ReLU) transformation. The 
pooling layer calculates max-pooling of 2 × 2 regions in the previous layer. The fully connected layer calculates 
the weighted sum of the previous layer followed by a ReLU transformation. The output layer calculates the 
weighted sum of the previous layer followed by a sigmoidal transformation. During training, parameters were 
updated by backpropagation to reduce the mean squared error between the predicted responses and actual 
responses.
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Figure 2.  Nonlinear RFs could be estimated by CNN encoding models for simulated simple cells and complex 
cells. (a,b) Scheme of response generation for simulated simple cells (a) and simulated complex cells (b) (See 
Methods for details). The Gabor-shaped filters of simulated simple cell A and complex cell B are displayed. 
(c) Left: comparison of the response predictions among the following encoding models: the L1-regularised 
linear regression model (Lasso), L2-regularised linear regression model (Ridge), support vector regression 
model (SVR), hierarchical structural model (HSM), and CNN. Data are presented as the mean ± s.e.m. (N = 30 
simulated simple cells and N = 70 simulated complex cells). Right: cumulative distribution of CNN prediction 
similarity. Simulated cells with a CNN prediction similarity ≤0.3 (indicated as the red arrow) were removed 
from the following receptive field (RF) analysis. (d,f) Results of iterative CNN RF estimations for simulated 
simple cell A (d) and complex cell B (f). Only 20 of the 100 generated RF images are shown in these panels. 
Grids are depicted in cyan. Although the simulated simple cell A had RFs in nearly identical positions, the 
simulate complex cell B had RFs in shifted positions. (e,g) Linearly estimated RFs (linear RFs) of simulated 
simple cell A (e) and complex cell B (g), using a regularised pseudoinverse method. (h) Gabor-fitting similarity 
of CNN RFs, defined as the Pearson correlation coefficient between the CNN RF and fitted Gabor kernel. (i) 
Maximum similarity between each generator filter and 100 CNN RFs. (j) Maximum similarity between linear 
RFs and CNN RFs. Similarity was defined as the normalised pixelwise dot product between the linear RF and 
CNN RF. (k) Relationship of the Gabor orientations between generator filters and CNN RFs. (l) Distribution of 
complexness. Only cells with a CNN prediction similarity >0.3 were analysed in (h–l) (N = 19 simple cells and 
N = 47 complex cells).
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Next, we visualised the RF of each cell using the maximization-of-activation approach (see Methods)23,24 
where the RF was regarded as the image that evoked the highest activation of the output layer of the trained 
CNN. We performed this RF estimation 100 times independently for each cell, utilising the empirical fact that 
an independent iteration of RF estimation processes creates different RF images by finding different maxima23. 
Figure 2d,f show 20 out of the 100 RF images estimated by the trained CNN (CNN RF images) for a representa-
tive simple cell and complex cell, respectively. The predicted responses with respect to these RF images were all 
>99% of the maximum response in the actual data of each cell, ensuring that the activations of the CNN output 
layers were indeed maximised. All visualised RF images had clearly segregated ON and OFF subregions, and the 
structure was close to the Gabor-shaped filters used in the response generations (Fig. 2d vs. Fig. 2a and Fig. 2f vs. 
Fig. 2b). Furthermore, when RF images were compared within a cell, RF images of cell A had ON and OFF sub-
regions in nearly identical positions, while some RF images of cell B were shifted in relation to one another. These 
observations are consistent with the assumption that cell A is a simple cell and cell B is a complex cell.

When the iteratively visualised RF images were comprehensively compared, we found that the RF images can 
be divided into several clusters (Supplementary Fig S1a left and Supplementary Fig S1d left). The properties of 
these clusters can be explained mostly by the parallel shifts, since the peak cross-correlations of these RF images 
were overall high (Supplementary Fig S1b,S1e). This is also evident when the representative RF image of each clus-
ter was visualised, which is shifted with respect to each other (Supplementary Fig S1a right and Supplementary 
Fig S1d right). Then we quantified the distance with which each pair of RF images within a cell were shifted, 
where we defined the shifted images as the cross-correlation >0.7, showing that while the RF images of the 
representative simple cell A were shifted mostly parallelly to the Gabor orientation (Supplementary Fig S1c), the 
RF images of the representative complex cell B were shifted both parallelly and orthogonally to the Gabor orien-
tation (Supplementary Fig S1f). When populations of cells were analysed, among all RF pairs within each cell, 
86.5% ± 15.9% (mean ± SD) of the pairs were shifted. Furthermore, the maximum shift distance orthogonal to 

Figure 3.  Nonlinear RFs could be estimated by CNN encoding models for simulated rotation-invariant cells. 
(a) Scheme of response generation for simulated rotation-invariant cells. The response to a stimulus was defined 
as the maximum of the output of 36 subunits followed by an additive Gaussian noise. Each subunit, which had 
a Gabor-shaped filter with different orientations, calculated the dot product between the stimulus image and 
the filter (See Methods for details). The filters of simulated cell C are displayed in this panel. (b) Cumulative 
distribution of CNN prediction similarity (N = 10 cells). Simulated cells with a CNN prediction similarity ≤0.3 
(indicated as the red arrow) were removed from the following RF analysis. (c) Results of iterative CNN RF 
estimations for simulated cell C. Only 20 of the 1,000 generated RF images are shown in this panel. RF images 
had Gabor-like shapes but their orientations were different in different iterations. (d) Maximum similarity 
between each generator filter and 1,000 CNN RFs. Only cells with a CNN prediction similarity >0.3 were 
analysed (N = 9 cells).
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the Gabor orientation was distinct between the simulated simple cells and complex cells (Supplementary Fig S1g). 
Taken together, these results indicate that the differences of these visualised RFs can be explained mostly by the 
shifts, and the shift axis is distinct between the simple cells and complex cells.

For complex cells, we expect that RF estimation using linear methods would fail to generate an image with 
clearly segregated ON and OFF subregions, whereas nonlinear RF estimation would not14. Thus, the similarity 
between a linearly estimated RF image (linear RF) and a nonlinearly estimated RF image is expected to be low for 
complex cells. We performed linear RF estimations following a previous study40. Although the linear RF image 
and CNN RF image were similar for cell A (Fig. 2e), the linear RF image for cell B was ambiguous, lacked clear 
subregions, and was in sharp contrast to the CNN RF image (Fig. 2g). These results are again consistent with the 
assumption that cell A is a simple cell and cell B is a complex cell.

In some studies, researchers have used white noise images, instead of natural images, as the stimuli to map RFs 
of visual neurons41,42. Here we also estimated RFs of these simulated cells using a dataset that consists of the white 
noise images sampled from normal distributions, and the corresponding responses that were simulated using 
the same filters as above (Supplementary Fig S2). The estimated RF images of these simulated cells were almost 
indistinguishable from the RF images estimated using natural images. Therefore, in the following analyses, we 
analysed the responses with respect to the natural images.

Next, we comprehensively analysed the RFs of populations of simulated simple cells and complex cells. Cells 
with a CNN prediction similarity ≤0.3 (the threshold was determined arbitrarily) were omitted from the anal-
yses (Fig. 2c). First, the maximum similarity between a linear RF image and CNN RF image, measured as the 
normalised pixelwise dot product between a linear RF image and 100 CNN RF images, was distinctly different 
between simple cells and complex cells (Fig. 2j), reflecting different degrees of nonlinearity. Second, the similarity 
of Gabor-kernel fitting of the CNN RF image, measured as the pixelwise Pearson correlation coefficient between 
a CNN RF image and the fitted Gabor kernel, was high among all analysed cells (Fig. 2h), confirming that the 
estimated RFs had a shape similar to a Gabor kernel. Third, the maximum similarity between each filter used 
in the response generation and 100 CNN RF images were high for both simple cells and complex cells (Fig. 2i). 
Fourth, the orientations of the CNN RF images, estimated by fitting them to Gabor kernels, were nearly identical 
to the orientations of the filters of the response generators (circular correlation coefficient43 = 0.92; Fig. 2k). These 
results suggest that the RFs estimated by the CNN encoding models had similar structure to the ground truth 
and that the shift-invariant property of complex cells was successfully visualised from iterative RF estimations.

We also performed similar analyses using a dataset of simulated rotation-invariant cells. When trained to 
predict the responses with respect to the natural images, CNNs again yielded good prediction (Fig. 3b). Next, 
we estimated RFs using the maximization-of-activation approach independently 1,000 times for each cell. The 
predicted responses with respect to these RF images were all >99% of the maximum response in the actual data 
of each cell, ensuring that the activations of CNN output layers were indeed maximised. As shown in Fig. 3c, the 
visualised RF images of cell C had Gabor shapes close to the filters used in the response generation (Fig. 3a). In 
addition, some RF images were rotated in relation to one another, consistent with the rotation-invariant response 
property of this cell. Finally, we quantitively compared the RFs (1,000 RF images for each cell) and the filters of the 
response generator (36 filters for each cell). For each filter, the maximum similarity with 1,000 CNN RF images 
was high (Fig. 3d), suggesting that the estimated RFs had various orientations and similar structure to the ground 
truth. Thus, using the proposed RF estimation approach, RFs were successfully estimated by the CNN encoding 
models, and various types of nonlinearity could be visualised from multiple RFs without assumptions, although 
the hyperparameters and layer structures of CNNs were unchanged across cells.

CNN yielded the best prediction of the visual response of V1 neurons.  Next, we used a data-
set comprising the stimulus natural images (200−2200 images) and corresponding real neuronal responses 
(N = 2465 neurons, 4 planes), which were recorded using two-photon Ca2+ imaging from mouse V1 neurons. To 
investigate whether CNN was able to capture the stimulus-response relationships of V1 neurons, we trained the 
CNN for each neuron to predict the neuronal responses to the natural images (Fig. 1). The prediction similarity 
was again measured by the Pearson correlation coefficient between the predicted responses and actual responses 
of the held-out test data in a 5-fold cross-validation manner (N = 2455 neurons that were not used for the hyper-
parameter optimisations; see Methods). Comparison of the prediction similarities among several types of encod-
ing models revealed that CNN outperformed other models (Fig. 4a), and the prediction of the CNNs was good 
(Fig. 4b,c). These results show that the stimulus-response relationships of V1 neurons were successfully captured 
by CNN, demonstrating the efficacy of using CNN for further RF analyses of V1 neurons.

Estimation of nonlinear RFs of V1 neurons from CNN encoding models.  Next, we visualised the 
RF of each neuron by the maximization-of-activation approach (see Methods)23,24. Neurons with a CNN pre-
diction similarity ≤0.3 were omitted from this analysis (Fig. 4b). The resultant RF images for two representa-
tive neurons are shown in Fig. 5b. Both RF images have clearly segregated ON and OFF subregions and were 
well fitted with two-dimensional Gabor kernels (Fig. 5c), consistent with known characteristics of simple cells 
and complex cells in V114,44. The similarity of Gabor-kernel fitting, measured as the pixelwise Pearson correla-
tion coefficient between the RF image and fitted Gabor kernel, was high among all analysed neurons (median 
r = 0.77; Fig. 5e), suggesting that the RF images generated from the trained CNNs (CNN RF images) success-
fully captured the Gabor-like structure of RFs observed in V1. We also performed linear RF estimations fol-
lowing a previous study40. Although the linear RF image and CNN RF image were similar for neuron D, the 
linear RF image for neuron E was ambiguous, lacked clear subregions, and was in sharp contrast to the CNN RF 
image (Fig. 5a,b), suggesting that neuron D would be linear and neuron E would be nonlinear. Supporting this 
idea, further analysis (see below) revealed that neuron D was a shift-variant (simple) cell, and neuron E was a 
shift-invariant (complex-like) cell. The similarity between a linear RF image and a CNN RF image, measured as 
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the normalised pixelwise dot product between these two images, varied among all analysed neurons (Fig. 5d), 
reflecting the distributed nonlinearity of V1 neurons. These distributions were minimally affected by the choice 
of the cell-selection threshold (Supplementary Fig. S3a,b).

One might wonder whether the distinction between the linear RF images and CNN RF images results from 
the failure of the linear RF estimation method, which was originally based on the electrophysiological data, to 
capture the nonlinearity in spike-to-calcium signal transformation. Therefore, we also estimated linear RFs using 
responses deconvolved from the calcium signal traces using the constrained nonnegative matrix factorisation 
method (Supplementary Fig S4a)45. The evoked event was defined as the z-scored difference of the mean activities 
during the stimulation period and the baseline period. We first confirmed that the evoked events obtained from 
the deconvolved data were similar to those directly obtained from the calcium signal trace (dF/F data), both for 
the representative neuron F (Supplementary Fig S4b) and for the populations of neurons on an imaging plane 
(Supplementary Fig S4d). We then confirmed that the prediction similarity of the L1-regularised linear regression 
model (Lasso) using the deconvolved data and the dF/F data were also similar, both for the representative neuron 
F (0.40 when the deconvolved data were used, and 0.41 when the dF/F data were used) and for the populations 
of neurons (Supplementary Fig S4e). Finally, we compared the linear RF estimated from the calcium dF/F data 
and that estimated from the deconvolved data, showing that these RFs were nearly identical, both for the repre-
sentative neuron F (Supplementary Fig S4c) and for the populations of neurons (Supplementary Fig S4f). These 
results support that little difference was observed on the linear prediction and linear RF between the dF/F data 
and their deconvolved data.

Estimated RFs of some V1 neurons were shift-invariant.  We then performed 100 independent 
CNN RF estimations for each V1 neuron to characterise the nonlinearity of RFs. We especially focused on the 
shift-invariance, the most well-studied nonlinearity in V1 complex cells6. Figure 5f,g show 20 of the 100 CNN RF 
images for two representative neurons. The predicted responses with respect to these RF images were all >99% of 

Figure 4.  Prediction of the CNN for V1 neurons. (a) Comparison of the response predictions among various 
encoding models: the L1-regularised linear regression model (Lasso), L2-regularised linear regression model 
(Ridge), SVR, HSM, and CNN. Data are presented as the mean ± s.e.m. (N = 2455 neurons). (b) Cumulative 
distribution of CNN prediction similarity. Neurons with a CNN prediction similarity ≤0.3 (indicated as the 
red arrow) were removed from the following RF analysis. (c) Distributions of actual responses and predicted 
responses of the neuron with the best prediction similarity in a plane (top) and the neuron with the median 
prediction similarity in a plane (bottom). Each dot in the right panel indicates data for each stimulus image. 
Solid lines in the right panels are the linear least-squares fit lines. Only data for 200 images are shown.
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the maximum response in the actual data of each neuron, ensuring that the activations of the CNN output layers 
were indeed maximised. Importantly, RF images of neuron D had ON and OFF subregions in nearly identical 
positions (Fig. 5f). In contrast, some RF images of neuron E were horizontally shifted in relation to one another 
(Fig. 5g), suggesting that neuron E is shift-invariant and could be a complex cell.

When the iteratively visualised RF images were comprehensively compared, we found that while the RF 
images of neuron D were nearly identical (Supplementary Fig S5a left and Supplementary Fig S5b), the RF images 
of neuron E can be divided into several clusters (Supplementary Fig S5d left). However, we also discovered that 
the properties of these clusters of neuron E can be explained mostly by the parallel shifts, considering the high 

Figure 5.  Estimating RFs of V1 neurons from trained CNNs. (a) Linearly estimated RFs (linear RFs) of two 
representative neurons (neurons D and E), using a regularised pseudoinverse method. (b) RFs estimated from 
the trained CNNs (CNN RFs) of the two representative neurons. (c) Gabor kernels fitted to CNN RFs of the 
two representative neurons. (d) Similarity between linear RFs and CNN RFs. Similarity was defined as the 
normalised pixelwise dot product between the linear RF and the CNN RF. (e) Gabor fitting similarity of CNN 
RFs, defined as the Pearson correlation coefficient between the CNN RF and the fitted Gabor kernel. Only 
neurons with a CNN prediction similarity >0.3 were analysed in (d,e) (N = 1160 neurons). (f,g) Results of 
iterative CNN RF estimations for neuron D (f) and neuron E (g). Only 20 out of the 100 generated RF images 
are shown in this figure. The number above each RF image indicates the shift pixel distance between the RF 
image and the top left RF image. The shift distance between the two images was calculated as the maximum 
distance of pixel shifts with which the zero-mean normalised cross correlation (ZNCC) > 0.95, projected 
orthogonally to the Gabor orientation. “NA” indicates that the ZNCC was not above 0.95 for any shift. While 
shift distances were zero or NA for RF images of neuron D, some RF images of neuron E were shifted to another 
by one pixel.
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peak cross-correlation of these RF images (Supplementary Fig S5e) and the representative RF image of each clus-
ter (Supplementary Fig S5d right). We then showed that while the RF images of neuron D were shifted mostly 
parallelly to the Gabor orientation (Supplementary Fig S5c), the RF images of neuron E were shifted both par-
allelly and orthogonally to the Gabor orientation (Supplementary Fig S5f). When populations of neurons were 
analysed, among all RF pairs within each neuron, 96.5% ± 10.4% (mean ± SD) of pairs were shifted, further 
indicating that the properties of these visualised RFs can be explained mostly by the shifts. The maximum shift 
distance orthogonal to the Gabor orientation varied among all neurons (Supplementary Fig S5g), reflecting the 
distributed shift-invariance of V1 neurons.

Characterisation of shift invariance from iteratively estimated RF images.  To quantitatively 
understand the shift-invariance, we then developed predictive models of visual responses for each simulated com-
plex cell and V1 neuron, termed simple model and complex model, inspired by the stimulus-response properties 
of simple and complex cells. In the simple model, the response to a stimulus was predicted as the normalised dot 
product between the stimulus image and an RF image. The RF image that yielded the best prediction similarity 
was chosen and used for all stimulus images (Fig. 6a). In contrast, in the complex model, the response to each 
stimulus was predicted as the maximum of the normalised dot products between the stimulus image and several 
RF images (Fig. 6b). Here, RF images used in these models were selected from 100 RF images as ones that were 
shifted to one another. If there was no shifted RF image, the complex model was identical to the simple model 
(see Methods). Figure 6 shows examples of predictions from the simple and complex models for V1 neuron 
E. Although the response to one image (Stim 1) was predicted moderately well by both the simple model and 
complex model, the prediction for another image (Stim 2) by the simple model was far poorer than the predic-
tion by the complex model. This difference is probably because the ON/OFF phase of the RF image used in the 
simple model (RF 4) did not match with that of Stim 2. On the other hand, the complex model had multiple RF 
images, and one RF image (RF 1) matched with Stim 2. These results suggest that the responses of this neuron are 
somewhat tolerant to phase shifts and that such complex cell-like properties were better captured by the complex 
model than by the simple model.

We then measured the prediction similarity of each model for all stimulus images by the Pearson correlation 
coefficient between the predicted responses and actual responses. As expected, the prediction of the complex 
model was better than that of the simple model for this neuron E (Fig. 7a), reflecting its shift-invariant property 
(Figs 5 and 6).

We compared the simple model and complex model for populations of V1 neurons (Fig. 7b), simulated simple 
cells, and simulated complex cells. We defined the complexness index for each cell by

= −Complexness
R

R
1

(1)

simple

complex

where Rsimple and Rcomplex are the response prediction similarity of the simple model and complex model, respec-
tively. Cells with a Gabor fitting similarity (Figs 2h and 5e) ≤0.6 were omitted from this analysis, since we have 

Figure 6.  Schemes of the simple model and complex model. Schemes of the simple model and complex model 
are illustrated using RFs and actual responses of neuron E. (a) The simple model is a linear predictive model, 
which predicts the neuronal response as the normalised dot product between the stimulus image and one RF 
image (RF 4). (b) The complex model predicts the neuronal response as the maximum of the normalised dot 
products of the stimulus image and several RF images (RF 1–4). Note that the complex model predicted the 
neuronal response to Stim 2 better than the simple model for this neuron.
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observed many non-Gabor-like RFs in this population. Cells with Rsimple < 0, or Rcomplex < 0 were also omitted from 
this analysis. Then, we defined simple cells as cells with complexness ≤0 and complex-like cells as cells with com-
plexness >0. The sensitivity (recall) of this classification for simulated data was 89% for simple cells and 85% for 
complex cells (Fig. 2l), ensuring the validity of this classification. In addition, the ratio of complex-like cells (26%, 
258/997 neurons; Fig. 7c,d) among classified V1 neurons was consistent with that in a previous study46. When 
different thresholds for the cell selection were used, this ratio was 22.1−36.2% (median: 28.7%) (Supplementary 
Fig S3c).

We also compared complexness with other indices of linearity and nonlinearity using a dataset of V1 neu-
rons. First, linear prediction similarity, measured as the prediction similarity of the L1-regularised linear regres-
sion model (Lasso), significantly anti-correlated with complexness for complex-like cells (Fig. 7e) (r = −0.35, 
N = 258, freedom = 256, t-value = −5.93, and p < 0.001; Student’s t-test), suggesting that the linear regression 
models could not accurately predict the responses of neurons with high complexness. Similarity between linear 
RF images and CNN RF images also anti-correlated significantly with complexness (Fig. 7f) (r = −0.35, N = 258, 

Figure 7.  Simple cells and complex-like cells. (a) Cumulative distributions of prediction errors of the simple 
model (green) and the complex model (magenta) for neuron E. Prediction error was defined as the difference 
between the predicted response and actual response. (b) Relationship of similarities between the simple model 
and complex model (N = 997 neurons). Neurons with the Gabor fitting similarity ≤0.6, similarity of the 
simple model <0, or similarity of the complex model <0 were omitted from this analysis. (c) Distribution of 
complexness. Simple cells (green) and complex-like cells (magenta) were classified with threshold = 0 (black 
arrow). (d) Proportion of classified cells, simple cells, and complex-like cells among neurons with the CNN 
response prediction similarity >0.3. Classified cells were neurons with the Gabor fitting similarity >0.6, the 
response prediction similarity of the simple model >0, and the response prediction similarity of the complex 
model >0. Simple cells were neurons with complexness ≤0. Complex-like cells were neurons with complexness 
>0. (e–g) Relationships between complexness and linear (Lasso) prediction similarity (e), similarity between 
linear RFs and CNN RFs (f), and the nonlinearity index (g). Data of simple cells are presented as the mean ± s.d. 
(N = 739 neurons, green). Solid lines are the robust fit lines74 for complex-like cells. Both linear prediction 
similarity and RF similarity of complex-like cells (magenta) negatively correlated with complexness (r = −0.35, 
p < 0.001, N = 258 neurons: e and r = −0.29, p < 0.001, N = 258 neurons: f), while the nonlinearity index of 
complex-like cells positively correlated with complexness (r = 0.34, p < 0.001, N = 258 neurons: g), suggesting 
that complexness defined here indeed reflected nonlinearity.

https://doi.org/10.1038/s41598-019-40535-4


1 0Scientific Reports |          (2019) 9:3791  | https://doi.org/10.1038/s41598-019-40535-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

freedom = 256, t-value = −5.90, and p < 0.001; Student’s t-test), suggesting that linear RFs could not accurately 
capture the RFs of neurons with high complexness. Furthermore, the nonlinearity index ((CNN prediction sim-
ilarity – Lasso prediction similarity)/CNN prediction similarity; see Methods) significantly correlated with com-
plexness (Fig. 7g) (r = 0.34, N = 258, freedom = 256, t-value = 5.83, and p < 0.001; Student’s t-test), suggesting 
that the nonlinearity of V1 neurons was at least in part introduced by the nonlinearity of complex-like cells.

Simple cells and complex-like cells were not spatially clustered in V1.  Finally, we tested whether 
simple cells and complex-like cells were spatially organised in the cortical space. We first investigated the spa-
tial structure of complexness by comparing the difference in complexness with the cortical distance between 
all neuron pairs, which were sampled at individual planes (N = 129451 neuron pairs). We found no correlation 
between complexness and cortical distance (r = −0.01, freedom = 129449, and t-value = −3.87), suggesting no 
distinct spatial organisation of complexness (Fig. 8a left and 8b). We also calculated the cortical distances of all 
simple cell-simple cell pairs and complex-like cell-complex-like cell pairs. The cumulative distributions of these 
distances, normalised by the area, were both within the first and 99th percentiles of the position-permuted simu-
lations (1,000 times for each plane; see Methods for the permutations), demonstrating no cluster organisation of 
simple cells or complex-like cells (Fig. 8a right and 8c).

Discussion
We first revealed that the CNN can well predict the responses to natural images for both simulated cells and V1 
neurons (Figs 2c, 3b, 4b). This finding is not surprising in light of the recent successes of artificial neural networks, 
especially CNN, in computer vision18–20. Such successes could be attributed to the ability of CNN to acquire 
sophisticated statistics of high-dimensional data47. Likewise, the good prediction of CNN shown in this study is 
possibly due to its ability to capture higher-order nonlinearity between stimulus images and responses. Notably, 
the prediction of CNN was good even though the hyperparameters and layer structures of CNNs were identical 
for all types of cells, suggesting that CNN might be used as a general-purpose encoding model of visual neurons.

Using simulated cells, we showed that nonlinear RFs could be accurately estimated by CNN encoding mod-
els by the maximization-of-activation approach. In particular, various types of response nonlinearity could be 
visualised, including RFs with different phases for complex cells (Fig. 2d,f) and RFs with different orientations 
for rotation-invariant cells (Fig. 3c). One advantage of this RF estimation method is that it does not require an 
explicit assumption regarding the nonlinearities of RFs, whereas most methods for nonlinear RF estimation in 
previous studies do. Second-order Wiener kernel12 and spike-triggered covariance13–15 are capable of estimating 
RFs with second-order nonlinearity at most, and Fourier-based methods48,49 estimate RFs that are linearised in 
the Fourier domain. The second advantage is that our method can directly visualise the image that is predicted to 
evoke the highest response of the target cell, in contrast to previously proposed RF estimations from artificial neu-
ral networks29,31,32. As suggested in50, the disadvantage of the maximization-of-activation approach is that it may 
produce unrealistic images even if the maximisation of activation was successful because the candidate image 
space is extremely vast. To avoid this issue, we constrained the candidate image space to natural images by using 
Lp-norm and total variance regularisations. Although the hyperparameters of regularisations were fixed across all 
analysed cells, these regularisations worked well when considering the quality of the resultant RF images.

Although artificial neural networks and cortical neural networks have much in common51, the former might 
not be an exact in silico implementation of the latter (e.g., the learning algorithms discussed in52). However, recent 
studies have suggested that the representations of CNNs and the activity of the visual cortex share hierarchical 
similarities53–57. These studies raise the possibility that the CNN encoding model could be applicable to neurons 
with complex nonlinearities, such as rotation-invariant neurons in the inferotemporal cortex9. Thus, the CNN 
encoding model and nonlinear RF characterisation proposed in this paper will contribute to future studies of 
neural computations not only in V1 but also in higher visual areas.

Methods
Acquisition of neural data.  All experimental procedures were performed using C57BL/6 male mice (N = 3; 
Japan SLC, Hamamatsu, Shizuoka, Japan), which were approved by the Animal Care and Use Committee of 
Kyushu University and the University of Tokyo. All experiments were performed in accordance with approved 
guidelines and regulations. Anaesthesia was induced and maintained with isoflurane (5% for induction, 1.5% 
during surgery, and ~0.5% during imaging with a sedation of ~0.5 mg/kg chlorprothixene; Sigma-Aldrich, St 
Louis, MO, USA). After the skin was removed from the head, a custom-made metal head plate was attached 
to the skull with dental cement (Super Bond; Sun Medical, Moriyama, Shiga, Japan), and a craniotomy was 
made over V1 (centre position: 0–1 mm anterior from lambda, +2.5–3 mm lateral from midline). Then, 0.8 mM 
Oregon green BAPTA-1 (OGB-1; Life Technologies, Grand Island, NY, USA), dissolved with 10% Pluronic (Life 
Technologies) and 25 µM sulforhodamine 101 (SR101; Sigma-Aldrich) was pressure-injected using Picospritzer 
III (Parker Hannifin, Cleveland, OH, USA) approximately 400 µm below the cortical surface. The craniotomy was 
sealed with a coverslip and dental cement.

Neuronal activity was recorded using two-photon microscopy (A1R MP; Nikon, Minato-ku, Tokyo, Japan) 
with a 25× objective lens (NA = 1.1; PlanApo, Nikon) and Ti:Sapphire mode-locked laser (Mai Tai DeepSee; 
Spectra-Physics, Santa Clara, CA, USA). OGB-1 and SR101 were both excited at a wavelength of 920 nm, and 
their emissions were filtered at 525/50 nm and 629/56 nm, respectively. 507 × 507 µm or 338 × 338 µm images 
were obtained at 30 Hz using a resonant scanner with a 512 × 512-pixel resolution. We recorded data of four 
planes from three mice. The recording depths were 320 and 365 µm from one mouse, and 360 µm from the other 
two mice.

Visual stimuli were presented using PsychoPy58 on a 32-inch LCD monitor (Samsung Electronics, Yeongtong, 
Suwon, South Korea) at a refresh rate of 60 Hz. Stimulus presentation was synchronised with imaging using 
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the transistor-transistor logic signal of image acquisition timing and its counter board (USB-6501, National 
Instruments, Austin, TX, USA).

First, the retinotopic position was determined using moving grating patches (contrast: 99.9%, spatial fre-
quency: 0.04 cycles/degree, temporal frequency: 2 Hz). We first determined the coarse retinotopic position by 
presenting a grating patch with a 50-degree diameter at each 5 × 3 position covering the entire monitor. Then, a 
grating patch with a 20-degree diameter was presented at each 4 × 4 position covering an 80 × 80-degree space to 
fine-tune the position. The retinotopic position was defined as the position with the highest response.

Natural images (200, 1200, or 2200 images, 512 × 512 pixels) were obtained from the van Hateren Database59 
and McGill Calibrated Colour Image Database60. After each image was grey-scaled, it was preprocessed such that 
its contrast was 99.9% and its mean intensity across pixels was at an intensity level of approximately 50%, and then 

Figure 8.  Spatial organisations of simple cells and complex-like cells. (a) Left: cortical distribution of 
complexness for the representative plane. The position of each neuron is represented as the circle annotated 
by the complexness (cyan to magenta for complex-like cells (complexness >0) and white for simple cells 
(complexness ≤0)). Right: cortical distribution of simple cells (N = 238 neurons, green) and complex-like 
cells (N = 70 neurons, magenta) for the representative plane. (b) Relationship between cortical distances 
and differences of complexness for all simple cells and complex-like cells. (c) Cumulative distributions of the 
number of simple cell-simple cell pairs (left) or complex-like cell-complex-like cell pairs (right) as a function of 
the cortical distance, normalised by the area. Dark shadows indicate the range from the first to 99th percentile of 
1,000 position-permuted simulations for each plane. The cumulative distributions were both within the first and 
99th percentiles of simulations, indicating no distinct spatial arrangements of simple cells or complex-like cells.
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masked with a circle with a 60-degree diameter. The stimulus presentation protocol consisted of 3−12 sessions. In 
one session, images were ordered pseudo-randomly, and each image was flashed three times in a row. Each flash 
was presented for 200 ms with 200-ms intervals between flashes in which a grey screen was presented.

Acquisition of simulated data.  The following types of artificial cells were simulated in this study: simple, 
complex, and rotation-invariant cells. A simple cell was modelled using a “linear-nonlinear” cascade formulated 
as shown below where the response to a stimulus was defined as the dot product between the stimulus image s and 
a Gabor-shaped filter f1, followed by a rectifying nonlinearity2 and a Gaussian noise (Fig. 2a).

= ∗ +R s f noisemax( , 0) (2)simple 1

A complex cell was modelled using an energy model with two subunits37,38. In this model, each subunit calcu-
lated the dot product between the stimulus image s and a Gabor-shaped filter f1, f2. Then, the outputs of these two 
subunits were squared, summed together, and the square root was taken. Finally, a Gaussian noise was added to 
define the response (Fig. 2b). Here, the Gabor-shaped filters used in this model had identical amplitude, position, 
size, spatial frequency, and orientation; the phase was shifted by 90 degrees. Note that this procedure, formulated 
as follows, can also be viewed as a “linear-nonlinear-linear-nonlinear” cascade30,61.

= ∗ + +⁎R s f s f noise( ) ( ) (3)complex 1
2

2
2

A rotation-invariant cell was modelled using 36 subunits. The i-th subunit (1 ≤ i ≤ 36) calculated the dot prod-
uct between the stimulus image s and a Gabor-shaped filter fi. After the maximum of the outputs of the subunits 
was taken, a Gaussian noise was added to define the response (Fig. 3a). Here, the Gabor-shaped filters used in this 
model fi had identical amplitude, position, size, spatial frequency, and phase; the orientation of the i-th subunit 
was 5 (i - 1) degree.

= ∗ +−R s f noisemax( ) (4)rotation invariant i

We simulated 30 simple cells, 70 complex cells, and 10 rotation-invariant cells. For each cell simulation, we 
performed 4 trials with a different random noise. The stimuli used in these three models were identical to the 
stimuli used in the acquisition of real neural data (2200 images), which were down-sampled to 10 × 10 pixels. The 
Gabor-shaped filter used in these models, a product of a two-dimensional Gaussian envelope and a sinusoidal 
wave, was formulated as follows:
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where A is the amplitude, σ1 and σ2 are the standard deviations of the envelopes, k0 is the frequency, τ is the phase, 
(x0, y0) is the centre coordinate, and θ is the orientation. The parameters for f1 of simple cells and complex cells 
were sampled from a uniform distribution over the following range: 0.1 ≤ x0/Lx ≤ 0.9, 0.1 ≤ y0/Ly ≤ 0.9, 0 ≤ A ≤ 1, 
0.1 ≤ σ1/Lx ≤ 0.2, 0.1 ≤ σ2/Ly ≤ 0.2, π/3 ≤ k0 ≤ π, 0 ≤ θ ≤ 2π, and 0 ≤ τ ≤ 2π, where Lx and Ly are the size of the 
stimulus image in the x and y dimension, respectively. The parameters for f1 of rotation-invariant cells were 
sampled from a uniform distribution over the following range: 0 ≤ A ≤ 1, 0.15 ≤ σ1/Lx ≤ 0.2, 0.15 ≤ σ2/Ly ≤ 0.2, 
π/3 ≤ k0 ≤ 2/3 π, and 0 ≤ τ ≤ 2π. x0, y0 and θ were set as Lx/2, Ly/2, and 0, respectively.

The noise was randomly sampled from a Gaussian distribution with a mean of zero and standard deviation of 
one, which resulted in trial-to-trial variability similar to that of real data.

Data preprocessing.  Data analyses were performed using Matlab (Mathworks, Natick, MA, USA) and 
Python (2.7.13, 3.5.2, and 3.6.1). For real neural data, images were phase-corrected and aligned between frames62. 
To determine regions of interest (ROIs) for individual cells, images were averaged across frames, and slow spatial 
frequency components were removed from the frame-averaged image with a two-dimensional Gaussian filter 
whose standard deviation was approximately five times the diameter of the soma. ROIs were first automatically 
identified by template matching using a two-dimensional difference-of-Gaussian template and then corrected 
manually. SR101-positive cells, which were considered putative astrocytes63, were removed from further analyses. 
The time course of the fluorescent signal of each cell was calculated by averaging the pixel intensities within an 
ROI. Out-of-focus fluorescence contamination was removed using a method described previously64,65. The neu-
ronal response to each natural image was computed as the difference between averaged signals during the last 
200 ms of presentation and averaged signals during the interval preceding the image presentation.

For both real data and simulated data, responses were averaged across all trials and scaled such that the values 
were between zero and one. Natural images used in further analyses were down-sampled to 10 × 10 pixels. We 
finally standardised the distribution of each pixel by subtracting the mean and then dividing it by the standard 
deviation.

Encoding models.  Encoding models were developed for each cell. An L1-regularised linear regression 
model (Lasso), L2-regularised linear regression model (Ridge), and SVR with radius basis function kernel were 
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implemented using the Scikit-learn (0.18.1) framework66. The hyperparameters of these encoding models were 
optimised by exhaustive grid search with 5-fold cross-validation for data of 10 real V1 neurons. The optimised 
hyperparameters were as follows: the regularisation coefficients of Lasso and Ridge were 0.01 and 104, respec-
tively, and the kernel coefficient and penalty parameter of SVR were both 0.01. The HSM was implemented as 
previously proposed31 with hyperparameters identical to the ones used in the study.

CNNs were implemented using the Keras (2.0.3 and 2.0.6) and Tensorflow (1.1.0 and 1.2.1) framework67. A 
CNN consisted of the input layer, several hidden layers (convolutional layer, pooling layer, or fully connected 
layer), and the output layer. The activation of a convolutional layer was defined as the rectified linear (ReLU)68 
transformation of a two-dimensional convolution of the previous layer activation. Here, the number of convolu-
tional filters in one layer was 32, the size of each filter was (3, 3), the stride size was (1, 1), and valid padding was 
used. The activation of a pooling layer was 2 × 2 max-pooling of the previous layer activation, and valid padding 
was also used. The activation of a fully connected layer was defined as the ReLU transformation of the weighted 
sum of the previous layer activation. If the previous layer had a two-dimensional shape, the activation was flat-
tened to one dimension. The activation of the output layer was the sigmoidal transformation of the weighted sum 
of the previous layer. The size of the mini batch, dropout69 rate, type of optimizer (stochastic gradient descent 
(SGD) or Adam70), learning rate decay coefficient of SGD, and number and types of hidden layers (convolutional, 
max-pooling, or fully connected) were optimised with 5-fold cross-validation for the data of 10 real V1 neurons 
that were sampled randomly. The optimised hyperparameters of CNN were as follows: the size of the mini batch 
was 5 or 30 (depending on the size of the dataset), the dropout rate of fully connected layers was 0.5, the optimizer 
was SGD, the learning rate decay coefficient was 5 × 10−5, and the hidden layer structure was 4 successive convo-
lutional layers and one pooling layer, followed by one fully connected layer (Fig. 1). Other hyperparameters were 
fixed. To investigate the robustness of the hyperparameter optimisation, we additionally performed a post hoc 
search of the best hyperparameter set using different ten neurons sampled randomly. The optimal hyperparam-
eters were identical to the original ones, except for the learning rate decay coefficient, which was 5 × 10−9 in this 
case. However, since we observed that the difference of the learning rate decay coefficient had minimal influence, 
we concluded that the hyperparameter optimisation we incorporated in this study was robust.

The training was formulated as follows:

∑=⁎W E f I W targmin ( ( ; ), )
(7)W I t,

where I is an image, t is the response, W is the parameters, and f is the model. E is the loss function defined as 
the mean squared error between the predicted responses and actual responses in the training dataset. The pre-
diction similarity was defined as the Pearson correlation coefficient between the predicted responses and actual 
responses. The training procedures of CNNs were as follows. First, the training data were subdivided into data 
used to update the parameters (90% of training data) and data used to monitor generalisation performances (10% 
of training data: validation set). After the parameters were initialised by sampling from Glorot uniform distribu-
tions71, they were updated iteratively by backpropagation72, which was performed to minimise the loss function 
in either an SGD or Adam manner. SGD was formulated as follows:
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where w is the parameter we want to update, m is the momentum coefficient (0.9), v is the momentum variable, 
ε is the learning rate (initial learning rate was 0.1), and E(w) is the loss with respect to the batched data. Adam 
was formulated as previously suggested70. The training iterations were stopped upon saturation of the prediction 
similarity for the validation set.

The response prediction of each encoding model was evaluated in a 5-fold cross-validation manner for each 
cell not used for hyperparameter optimisations. To quantify the nonlinearity of each cell, we defined a nonline-
arity index for each cell by comparing the response prediction similarity of Lasso and CNN in the following way:

= −nonlinearity index R
R
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where RCNN and RLasso are the response prediction similarity of CNN and Lasso, respectively.

RF estimation.  Nonlinear RFs were estimated from trained CNNs using a regularised version of a 
maximization-of-activation approach23,24. Cells with a CNN prediction similarity ≤0.3 were omitted from this 
analysis. First, CNN was trained using all data for each cell. Then, starting with a randomly initialised image, an 
image I was updated iteratively by gradient ascent to maximise the following objective function E(I):
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where f is the trained CNN model; W* is the trained parameters, which is fixed in this procedure; λ1, λ2, α, and β 
are the regularisation parameters; and M is the size of the image. Here, α and β are fixed at 6 and 1, respectively, 
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following a previous research26, and λ1 and λ2 are fixed at 10 and 2 after searching for the best combination of the 
parameters beforehand. The second and third terms are regularisation terms to minimise the α-norm and total var-
iation26 of the image, respectively. The RMSprop algorithm73 was used as the gradient ascent formulated as follows:
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where γ is the decay coefficient (0.95) and α is the learning rate (1.0). The image I was updated ten times, which 
was enough for the convergence of the gradient ascent. The generated image was finally processed such that its 
mean was zero and standard deviation was one (RF image). To confirm that the generated RF image maximally 
activates the output layer, the whole process was repeated independently until we generated an image to which 
the predicted response was high (for most cells, >95% of the maximum response of the actual data of each cell). 
Note that for representative cells (Figs 2d,f, 3c and 5b), the predicted responses to the generated RF images were 
>99% of the maximum response of the actual data.

To quantitatively assess the generated RF images, we fitted each RF image with a Gabor kernel G(x, y) 
using sequential least-squares programming implemented in Scipy (0.19.0). A Gabor kernel, a product of a 
two-dimensional Gaussian envelope and a sinusoidal wave, was formulated as follows:
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where A is the amplitude, σ1 and σ2 are the standard deviations of the envelopes, k0 is the frequency, τ is the 
phase, (x0, y0) is the centre coordinate, and θ is the orientation. The goal of fitting was to minimise the pixelwise 
absolute error between the RF image and a Gabor kernel. This optimisation was started with seven different initial 
x0 and seven different initial y0 to ensure that the optimisation fell in the global minima. In addition, to create a 
reasonable Gabor kernel, we set bounds for some of the parameters: 0 ≤ x0/Lx ≤ 1, 0 ≤ y0/Ly ≤ 1, 0 ≤ σ1/Lx ≤ 0.2, 
0 ≤ σ2/Ly ≤ 0.2, and π/3 ≤ k0 ≤ π, where Lx and Ly are the size of the RF image in the x and y dimension, respec-
tively. The quality of Gabor fitting was evaluated by the pixelwise Pearson correlation coefficient between the 
original RF image and the fitted Gabor kernel.

Linear RF images were created by a regularised pseudoinverse method described previously40. The regu-
larisation parameter was optimised for each cell by exhaustive grid search in a 10-fold cross-validation man-
ner. For each value in the grid, responses to the held-out test data were predicted using the created RF image. 
Prediction similarity was calculated as the Pearson correlation coefficient between the predicted responses and 
actual responses. The linear RF image was created using the value with the highest prediction similarity as the 
regularisation parameter.

Quantification of shift-invariance (complexness).  To distinguish between simple cells and 
complex-like cells, we then created a “shifted image set”, which contained CNN RF images that were shifted with 
respect to one another, selected from the 100 CNN RF images. For this purpose, a zero-mean normalised cross 
correlation (ZNCC) was calculated for every pair of RF images (I1, I2):

=
∑ ∑ + + − −

∑ ∑ + + − ∑ ∑ −
ZNCC u v

I x u y v I I x y I

I x u y v I I x y I
( , )

( ( , ) )( ( , ) )

( ( , ) ) ( ( , ) ) (16)

y x

y x y x

1 1 2 2

1 1
2

2 2
2

where (u, v) is a pixel shift and I1 is the mean of I1. If the ZNCC was above 0.95 for a (u, v) pair ((u, v) ≠ (0, 0)), these 
two RF images were defined as shifted to each other by (u, v) pixels. Then, for each pair of shifted RF images, we 
calculated the shift distance as the maximum length of (u, v) vectors projected orthogonally to the Gabor orienta-
tion. Finally, starting with the two RF images with the largest shift distance, we iteratively collected RF images that 
were shifted from the already collected RF images to create the “shifted image set”. If none of the 100 RF images 
were shifted to another, the “shifted image set” consisted of the RF image with the highest predicted response.

A simple model and complex model were created for each cell as follows (Fig. 6). In the simple model, the 
response to a stimulus image was predicted as the normalised dot product between the stimulus image and one 
RF image selected from the “shifted image set”. The RF image that yielded the best prediction similarity was 
chosen and used for all stimulus images. In the complex model, the response to a single stimulus image was pre-
dicted as the maximum of the normalised dot products between the stimulus image and RF images in the “shifted 
image set”. The RF image with the maximal dot product was selected for each stimulus image separately. The 
prediction similarity for each model was quantified as the Pearson correlation coefficient between the predicted 
responses and actual responses among all stimulus-response datasets. Finally, the complexness index for each cell 
was defined by
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= −Complexness
R

R
1

(17)

simple

complex

where Rsimple and Rcomplex are the response prediction similarity of the simple model and complex model, respec-
tively. Cells with the Gabor fitting similarity ≤0.6, Rsimple < 0, or Rcomplex < 0 were omitted from this analysis.

Spatial organisations of simple cells and complex-like cells.  The spatial organisations of simple cells 
and complex-like cells were evaluated in two ways. First, for each pair of neurons, we calculated the in-between 
cortical distance and the difference in complexness. A relationship between the cortical distances and the com-
plexness differences is indicative of a spatial organisation62. Second, we calculated the cumulative distributions of 
the in-between cortical distances for all pairs of simple cells and for all pairs of complex-like cells. To statistically 
evaluate the cumulative distributions, we permuted the cell positions 1,000 times independently for each plane. 
For each permutation, cell positions of simple cells were randomly sampled from original cell positions of simple 
and complex-like cells. Other positions were allocated for complex-like cells. After the cell positions were deter-
mined, the cumulative distributions of the in-between cortical distances were calculated. After repeating this 
procedure independently 1,000 times for each plane, the first and 99th percentiles of the permuted cumulative 
distributions were calculated for the significance levels.

Data Availability
The datasets and codes are available from the corresponding authors on reasonable request.
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