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Abstract

Artificial intelligence-based methods such as chemometrics, machine learning, and

deep learning are promising tools that lead to a clearer and better understanding of

data. Only with these tools, data can be used to its full extent, and the gained knowl-

edge on processes, interactions, and characteristics of the sample ismaximized. There-

fore, scientists aredevelopingdata science toolsmentionedabove toautomatically and

accurately extract information from data and increase the application possibilities of

the respective data in various fields. Accordingly, AI-based techniques were utilized

for chemical data since the 1970s and this review paper focuses on the recent trends

of chemometrics, machine learning, and deep learning for chemical and spectroscopic

data in 2020. In this regard, inverse modeling, preprocessing methods, and data mod-

eling applied to spectra and image data for various measurement techniques are dis-

cussed.
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1 INTRODUCTION

A variety of measurement techniques to explore hidden aspects of

a sample and to measure specific characteristics of a sample exists.

Each of these measurement techniques exhibits its properties and

is employed to measure a particular attribute of the sample, for

example, themolecule structure at the atomic levels, themass of parti-

cles or molecules, the isotopic signature of a sample, the absorbance,

or the vibrational modes of molecules. However, the generated data

from thesemeasurements is oftennot directly utilized. Instead, chemo-

metrics, machine learning, and deep learning tools are employed to

extract underlying information from the data and link the data to

specific applications. This review summarizes recent trends in the

development of chemometrics, machine learning, and deep learn-
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ing methods for a set of chemical important measurement meth-

ods like nuclear magnetic resonance (NMR), mass spectroscopy (MS),

vibrational spectroscopy, X-ray spectroscopy, atomic force micro-

scope (AFM), electron microscope (EM), and two-dimensional (2D)

chromatography. Generally, the analysis of the respective data can

be divided into two steps: data enhancement, for example, inverse

modeling and preprocessing, and data modeling. A workflow show-

ing the different steps involved in the analysis of chemical data

is illustrated in Figure 1 and these steps are further discussed

below.

The first step, data enhancement, is necessary because artifacts

distort the generated data from all discussed measurement tech-

niques. However, the enhancement can be achieved through either

an inverse problem or a forward problem. A variety of methods to
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F IGURE 1 General workflow of spectroscopic data analysis from data enhancement to datamodeling. Inversemodeling, preprocessing, and
datamodeling represent key steps in this workflow.

solve or use both problems have been investigated. The preprocessing

methods belong to the forward model type methods and are applied

to remove different artifacts, for example, denoising,1,2 baseline

correction.3–5 Moreover, the inverse problem is implemented using

the observed data to estimate the original parameters of the chem-

ical or physical system.6,7 Learning from data via data modeling is

the next step after the improvement of data is completed. In this

regard, a wide range of mathematical and statistical techniques have

been developed to extract important and relevant insights. Feature

extraction8,9 or selection,10,11 classification,12,13 and regression14,15

are considered the essential categories of data modeling. Beside

these classical techniques, deep learning gained popularity to solve

spectroscopic and chemical applications.16,17 Furthermore, the im-

portance of chemometric methods increases to deal with the

increasing size of spectroscopic datasets. Additionally, chemometric

methods are needed to correct artifacts and shortcomings of specific

spectroscopic technique. Therefore, the trends in 2020 and the limita-

tions of applying chemometrics, machine learning, and deep learning

methods on the aforementioned spectroscopic measurements are

reviewed.

This review paper is divided into three main sections. The recent

trends in applying chemometrics, machine learning, and deep learn-

ing methods to enhance spectroscopic data, including preprocessing

methods and inverse modeling, are mentioned in section 1. Data mod-

eling techniques for spectral data, includingNMR,MS, vibrational spec-

troscopy, and X-ray, are covered in section 2. Finally, the advancements

of chemometrics and artificial intelligence-based methods applied to

imaging data involving AFM, EM, and 2D chromatography are dis-

cussed in section 3.

2 CHEMOMETRICS, MACHINE LEARNING, AND
DEEP LEARNING METHODS FOR ENHANCEMENT
OF CHEMICAL DATA

In the last years, a growing interest in data analysis methods such as

artificial intelligence-based methods can be recognized. For chemical

applications, data generation is more beneficial if it is coupled with

optimal techniques for the analysis of the generated data. The data

analysis methods for the acquired chemical data are sample and task

dependent. However, pre-analysis techniques are vital in evaluating

chemical data regardless of the task to be solved. While chemical data

are retrieved using various measurement techniques, the distortion

of these data is very common. These distortions are called artifacts

and result from the measurement devices, from the measurement or

corrupting processes, and from the nature of the samples itself. The

artifact removal or suppression leads to a data enhancement and is cru-

cial for the data analysis to produce meaningful results. This enhance-

ment of the chemical data can be categorized into two main types: the

forward and the inverse problems. In the forward problem, the objec-

tive is to remove measurement artifacts and errors to determine the

composition of the samples and the underlying structures of the chem-

ical information. Concerning this problem, preprocessing techniques

are being developed to remove the unwanted variations that limit the

extraction of the underlying chemical-relevant structures. Instead, the

inverse problem aims to reconstruct the missing information of

the chemical/physical system, which was introduced through the mea-

surement process. Recent trends in the application of the forward

problems are referred to as preprocessing problems and the inverse

problems are shown in the two following subsections.
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2.1 Preprocessing

A detailed examination of preprocessing methods for a given data set

is critical as these methods can also remove relevant chemical infor-

mation. Therefore, the search for the best preprocessing method is

vital, considering its impact on the subsequently performeddata analy-

sis and its outcome. These preprocessing methods can be employed to

either remove noise contributions, replace missing values, interpret or

remove baselines, or even a combination of these targets.18 Depending

on the studied problem, either a single preprocessingmethod or a com-

bination of methods is applied to remove the underlying measurement

errors and artifacts.

Nevertheless, retrieving the best preprocessing method or the best

combination of techniques to remove all artifacts in the data at hand

is challenging. Moreover, the preprocessing choice is the result of an

exhaustive and long trial and error process. Consequently, a scien-

tific effort is made to select appropriate preprocessing techniques.

Recent papers concentrated on solving the trial and error problem by

implementing automated software solutions that compare different

preprocessing methods. An open-source python module “nippy” was

developed by Torniainen et al19 for semi-automatic comparisons of

preprocessing techniques for near-infrared spectroscopy (NIRS). The

presence of noise in the NIRS measurements significantly affects the

multivariate methods needed for further analysis. Therefore, prepro-

cessing categories are presented, including clipping, scatter correction,

smoothing, derivatives, trimming, and resampling. This python-module

was tested using two examples, and it resulted in a fast selection of

different preprocessing combinations. The authors recommended fol-

lowing a specific order to apply these methods, which is crucial in NIR

spectral data analysis. Further work to search for the best preprocess-

ing strategies was presented inMartyna et al.20 The authors proposed

a novel concept to assess the preprocessing strategy using the ratio of

between-groups to within-groups variance. This ratio was calculated

on the first latent variable derived from the regularized multivariate

analysis of variance (MANOVA). It is used to select the best prepro-

cessing strategy that optimally highlights the differences between

groups for highly multidimensional data. In addition, the search for the

best preprocessing strategy was carried out using a genetic algorithm.

Furthermore, the performance of this novel concept was verified by

utilizing two forensic Raman spectral data sets. By assessing both

problems in terms of discrimination, the authors successfully point out

the sequence in which the preprocessing steps should be performed

and extracted their most appropriate parameters. Since applying a

preprocessing method might not entirely remove all artifacts, combin-

ing multiple methods is promising, and some of the recent publications

deal with this combination. Roger et al.21 developed a new approach

to combine several pre-treatment techniques using sequential and

orthogonalized partial least squares (SPORT). In their method, the

authors applied different pre-treatment techniques to the same NIR

transmission spectra including raw data, first and second derivatives,

standard normal variate, and variable sorting for normalization. The

sequential and orthogonalized partial least squares (SO-PLS) approach

is used afterward to combine the resulting blocks of data. The appli-

cation of SPORT showed good calibration performance in comparison

with the existing stacking approach. With the booming of artificial

intelligence, researchers utilized deep learning networks for various

preprocessing tasks, for example, denoising. Zhang et al22 tested two

deep learning networks via the denoising autoencoder (DAE-1) and

the stacked autoencoder (DAE-2) on NIR spectra. The results were

compared to other denoising methods, including moving average

smoothing, Savitzky-Golay smoothing (SGS), wavelet transform (WT),

and empirical mode decomposition (EMD). In this regard, artificial and

real NIR spectra were used for the model evaluation. The DAE-1 and

DAE-2 applied on both simulated and real NIR spectra showed a better

performance than the other methods. An additional study by Raulf

et al23 investigated the removal of disturbing scattering components

from an infrared spectrum. The authors proposed deep learning via a

convolutional neural network (CNN) as a preprocessing tool to remove

the (resonant) Mie scattering. Their results showed that the deep

learning approach is faster and can be used for a strong generalization

across different tissue types. Their approach also overcame the trade-

off between computation time and the bias of the corrected spectrum

towards a reference spectrum. Moreover, Wahl et al24 used a CNN

as one single-step preprocessing for Raman spectra. In this paper, the

CNN was trained using simulated data to handle three preprocessing

steps, for example, cosmic ray removal, smoothing, and baseline

subtraction. The preprocessing results were generally of higher quality

than what was achieved using reference methods including second-

difference, asymmetric least squares, and cross-validation. Addition-

ally, the authors showed reliable results on measured Raman spectra

from polyethylene, paraffin, and ethanol with background contamina-

tion from polystyrene. In conclusion, the authors proved deep learning

as a promising tool for the automated preprocessing of Raman spectra.

A drawback of the study was that the tested data basis was limited.

2.2 Inverse modeling

Inverse modeling is the process of reconstructing missing information

from observedmeasurements to identify its source or the correspond-

ing model parameters. Inverse modeling tries to infer knowledge from

given measurement data in the observation space Y to the underlying

unknown state X of the sample or to a parameter function in the state

space of X. General solutions for this problem do not exist or depends

in an unstable way on the measurements, which is related to the ill-

posed problem characteristics of inverse modeling.25,26 A diversity of

algorithms exists, and recent developments on this subject are listed

below.

Yuan et al.27 developed a new inversemodeling algorithmof a series

of X-ray intensity measurements. Their objective was to recover the

structure and composition of two-dimensional (2D) heterogeneous

materials measured using X-ray spectroscopy by varying the beam’s

energy and position. Their method involves an iterative process of

forward modeling, based on Monte-Carlo simulation, to determine

the optimal structure to minimize the relative differences between

the simulated and experimental characteristic X-ray intensities. In
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conclusion, the authors proved the feasibility of their approach in

analyzing 2D heterogeneous materials for quantitative electron-

induced X-ray. However, the input parameters such as beam positions,

beam energies, and voxel size must be chosen appropriately. Another

study by Hong et al28 suggested using inverse modeling by combining

X-ray computed tomography (XCT) testing and the finite element

method to acquire the rust volume reduction coefficient. Conventional

numerical models for corrosion expansion ignore the penetration of

rust into the concrete matrix along the longitudinal direction. Their

approach showed that the obtained reduction coefficient in the rust

volume is linked to the rust expansion coefficient. The corrosion level

obtained by XCT testing was significantly higher than what they found

using the conventional corrosion model. Takeda et al29 introduced

a fundamental methodology of an automated system for material

design. The authors built at the modeling stage a regression and a

classification model to predict material properties and attributes. At

the design stage, the trained predictive model is inverted to change

and tune material structures. As a result, the two stages can achieve

material design with user-demanded requirements. Also, the authors

were able to inverse-design new molecular structures that satisfy

the targeted LUMO energies. An inverse model was applied via long

short-term memory (LSTM), a recurrent neural network-based, to

retrieve the Raman-like shape from broadband coherent anti-Stokes

Raman scattering (CARS)29 by Houhou et al. The authors compared

deep learning to other phase retrieval methods (maximum entropy

method and Kramers – Kronig relation). The LSTM network outper-

formed these methods using artificial and experimental broadband

CARS data. Additionally, the authors proved the stability of the deep

learning method regarding the non-resonant background within CARS

spectra. Guo et al31 implemented a deep learningmethod in an inverse

problem manner to remove artifacts from infrared spectra, which

are caused by optical effects. Subsequently, the model could extract

the pure absorption of the sample from the infrared measurements.

The authors proposed an artifact removal approach based on a 1-

dimensional U-Net shaped CNN using Poly (methyl methacrylate)

as materials. The pure absorbance was successfully retrieved even

when the absorbance is entirely overwhelmed by extensive artifacts.

For the same objective, a different deep learning network was imple-

mented by Magnussen et al32 to recover the pure absorbance from

infrared spectra. Initially, the Mie extinction extended multiplicative

signal correction (ME-EMSC) algorithm extracts the pure absorbance

from highly distorted spectra. Thereafter, the authors trained a deep

learning network via the deep convolutional descattering autoencoder

(DSAE) on a set of corrected infrared spectra. These corrected spectra

were obtained using the ME-EMSC algorithm. Additionally, different

reference spectrawere used in this study to reflect the large variability

in chemical features. In conclusion, the DSAE approach reduced the

highly demanding computational time needed in the ME-EMSC algo-

rithm for scatter correction. The DSAE outperformed the ME-EMSC

correction in speed, robustness, and noise levels, while preserving the

same chemical information in the corrected spectra.

After enhancing the data, the next step is to extract relevant infor-

mation, which is achieved by applying chemometrics and machine

learning techniques to the data, either spectra or images. An overview

of chemometrics, machine learning, and deep learning methods is

shown in Figure 2. Recent trends in applying chemometrics, machine

learning, and deep learning techniques on spectral and image data are

shown separately below.

3 CHEMOMETRICS, MACHINE LEARNING, AND
DEEP LEARNING METHODS FOR THE ANALYSIS OF
SPECTRAL DATA

Spectroscopic measurements produce high-dimensional profiles con-

taining a high amount of information, which can be optimally exploited

using chemometrics, machine learning, and deep learning methods.

These methods aim to discover the underlying chemical properties of

the samplemore precisely and accurately. Recent advances in applying

chemometrics, machine learning, and deep learning methods used on

spectral data generated by nuclear magnetic resonance (NMR), mass

spectroscopy (MS), vibrational spectroscopy, and X-ray spectroscopy

are discussed in the following subsections.

3.1 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) describes a measurement princi-

ple where the nuclei of specific atoms are irradiated by a static mag-

netic field and then exposed to a second oscillating magnetic field.35

The analysis of NMR spectra is challenging, and it is not straightfor-

ward to draw a conclusion directly from the spectra or even interpret

the spectra without the use of chemometric methods. Therefore, com-

bining NMR spectra with chemometrics, machine learning, and deep

learning methods is beneficial, and some of the recent applications are

discussed below.

The analysis of the 1D 1H NMR spectra of metabolomics sam-

ples is challenging since resonances overlap in specific chemical

shift regions. However, Pérez et al36 suggested using a chemomet-

ric approach through multivariate curve resolution-alternating least

squares (MCR-ALS) to facilitate the steps of metabolites profiling and

resonance integration. The authors proved the ability of thismethod to

extract the concentrations and resonances from untargeted metabo-

lites. Their approach was validated using 1D 1H NMR spectra from

metabolomic profiling of zebrafish upon acrylamide exposure. Con-

sequently, the authors recommended using their approach to iden-

tify spectral features and as biomarker discovery. Another issue for

metabolomics NMR-based was presented by Miros et al.37 in which

the growth ofHypericum perforatum, or St. John’s wort, plants aremon-

itored under different light conditions. The authors developed a toolkit

combining 1D 1H NMR spectra with multivariate analysis to extract

differences in chemical profiles. As a result, specific metabolites were

identified as markers for the difference between the plant growths

under different light conditions and glutamine, sucrose, and fructose

were found to be chemical markers of light conditions. Another area

of interest was related to herbal medicines in which Zhao et al38
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F IGURE 2 An overview of chemometrics, machine learning, and deep learningmethods applied to spectroscopic measurements. The AI-based
methods like chemometrics, machine learning, and deep learning visualized on the right are utilized to the chemical/spectroscopic data. The data
on the left is not representative for all data sources, but we focused in this review on these data types. [LSTM network, AFM, and TEM images are
retrieved from references,30,33,34 respectively]

analyzed the effects of the multistep processing on the chemical

changes. The authors applied a chemometricmethod on 1HNMR spec-

tra to provide comprehensive information on the chemical changes

during the processing steps of the Danshen extract. For instance, the

hierarchical classification analysis (HCA) clustered the samples accord-

ing to the processing steps, which indicates that 1H NMR enables the

identification of the critical control points based on information of

the organic compounds present in the sample. Additionally, a princi-

pal component analysis (PCA) and an orthogonal partial least squares

discriminant analysis (OPLS-DA) were applied to distinguish the major

metabolite differences between the intermediates before and after

the critical control point. The combination of 1H NMR and chemo-

metrics proved to be an effective process quality control tool. There-

fore, the authors proposed to apply their approach to other herbal

medicines to identify critical control points and potential chemical

markers. Marion et al39 developed a new method, adaptive cluster-

ing around latent variables (AdaCLV), for simultaneous dimensional-

ity reduction and variable clustering. This method was applied to NMR

spectra and can be used for the identification of potential biomark-

ers. Briefly, AdaCLV filters out variables that do not vary significantly

between samples and approximates cluster membership degrees on

the remaining variables. The potential overlapping clusters are identi-

fied, and the rankingof variable importancewithin a cluster is achieved.

Compared with other clustering methods, AdaCLV estimated latent

variables and cluster membership with higher or equivalent preci-

sion, and it showed less sensitivity regarding the used hyperparam-

eters. Further analysis was performed by Coimbra et al40 through

merging a time-domain nuclear magnetic resonance (TD-NMR) spec-

trawith chemometricmethods to determine the presence of formalde-

hyde in raw milk samples. PCA, partial least squares (PLS), and soft

independent modeling of class analogy (SIMCA) were used to dis-

criminate the samples regarding the level of milk adulteration. SIMCA

overcame PCA and PLS with a good discrimination and a high pre-

dictive index. Consequently, TD-NMR combined with chemometrics

proved its effectiveness for the dairy industry to check the formalde-

hyde levels in raw milk. Zhang et al41 combined 1H NMR with chemo-

metric methods to classify the monofloral Chinese honey based on

botanical and geographical origins. 1H NMR spectra on samples of

8 classes were collected across China. A PCA could be used to suc-

cessfully classify their botanic origins while the classification at differ-

ent geographical levels was effectively distinguished using orthogonal

partial least square discriminant analysis (OPLS-DA). This study

reported several benefits, including a small sample amount, a simple

preparation, a short testing time, and a non-targeted multi-species

detection. Recent trends for chemical analysis also include research on

the application of deep learning techniques. For instance, Kong et al.42

proposed a combination of deep learning via a convolutional neural

network (CNN) and the sparse matrix completion method to speed up

2D nanoscale NMR spectroscopy, which is vital for molecular struc-

ture determination. The use of a CNN successfully suppressed the
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observationnoise and improved the sensitivity. An additional challenge

was presented by Hou et al,43 where the authors aim to assess the use

of deep learning as a tool for rapid and accurate identification of edible

oils. Therefore, two-dimensional CNN (2D-CNN) and one-dimensional

CNN (1D-CNN)wereused to classify different types of edible oils using

different low-field nuclear magnetic resonance (LFNMR) spectra. The

results showed that transverse relaxation decay signals analyzed by

the 1D-CNN presented the best classification ability.

3.2 Mass spectroscopy

Mass spectroscopy (MS) measures the mass of charge ratio of

molecules. It is used to quantify known materials, identify unknown

compounds within a sample, and elucidate the structure and chemical

properties of different molecules. The fundamental principle involves

the fragmentation of a compound or molecule into charged species,

which are accelerated, deflected, and finally focused on a detector

according to their mass and charge ratio. Ion deflection is based on

charge, mass, and velocity, ions separation is based on mass to charge

(m/z) ratio, and detection is proportional to the abundance of these

ions.44

With rapidly growing chemometrics, machine learning, and deep

learning methods, MS took its share of the pie. For instance, Duan

et al45 developed a new software, QPMASS, to analyze large-scale

gas chromatography-mass spectrometry (GC-MS) data. GC-MS analy-

sis generates many fragment ions for each analytic compound, making

the tasks of sample deconvolution and peak alignment very challeng-

ing. To deal with this issue, the authors implemented parallel comput-

ing with an advanced dynamic programming approach. This approach

aligns peaks frommultiple samples based on the similarity of each pair

calculated using retention time andmass spectra. The diagram of using

dynamic programming and the parallel peak alignment in QPMASS is

illustrated in Figure 3. As a result, QPMASS enabled fast processing

of large-scale datasets and reduced false positive and false negative

errors to be less than 5%.

A further challenge for GC-MS was tackled by Alkhalifah et al,46 in

which the search for automated algorithmic clustering methods was

discussed. The authors developed VOCCluster, a python-based algo-

rithm that quickly and efficiently analyzes features of deconvolved

GC-MS breath data. Compared to a manual volatile organic com-

pound (VOC) panel, the results showed a superior and faster per-

formance with an accurate clustering of 96% of VOCs. Additional

trends were introduced by Papagiannopoulou et al.47 to identify

pathogenic bacteria cells in urine samples. First, the authors imple-

mentedmatrix-assisted laser desorption/ionization-time of flightmass

spectrometry (MALDI-TOFMS) on individual bacterial cells and identi-

fied species rapidly andwith acceptable accuracy. In this regard, a deep

learning technique via CNN was applied. The results showed similar

performance compared to traditional supervised machine learning

algorithms, including logistic regression, random forests, and k-nearest

neighbor classification. Further issues were tackled by Li et al,48 who

worked to decrease the false positive rate and to improve the low

sensitivity arising from a database search engine. This engine is used

to identify significant histocompatibility complex (MHC)-binding pep-

tides in mass spectroscopy. The authors developed DeepRescore, a

post-processing tool, to improve the sensitivity and reliability in pep-

tide identification. Their approach combines peptide features derived

from deep learning predictions with previously used features to

rescore peptide-spectrummatches. The results showed that rescoring

byDeepRescore on two public immunopeptidomics datasets increases

both the sensitivity and reliability of the prediction of MHC-binding

peptides. As well, it showed that the deep learning-derived features

improved the performance.

3.3 Vibrational spectroscopy

Vibrational spectroscopy is a non-destructive identification method

that measures the vibrational energies of molecular vibrations in the

sample. Each chemical bond has a unique vibrational energy, which

will be different from one compound to another. This unique energy

provides each compound with a unique fingerprint, which is vital

in determining compound structures, identifying, and characterizing

compounds, and identifying impurities. There are two types of vibra-

tional spectroscopy discussed herein: infrared absorption and Raman

spectroscopy. The main difference between these measurement tech-

niques is that in infrared spectroscopy, the absolute frequencies at

which a sample absorbs radiation are measured, while Raman spec-

troscopymeasures inelastic scattering in a relativemanner. These both

are complementary as the vibrations feature different selection rules

and both methods are essential to extract the full picture of the vibra-

tional modes in a molecule.49 Similar to other spectroscopic tech-

niques, vibrational spectroscopy requires advanced data processing to

extract meaningful information from spectra. Recent trends about the

use of chemometrics, machine learning, and deep learning methods in

Raman and infrared spectra are presented below.

Akpolat et al50 discussed the use of a handheld Raman spectro-

scopic device with pattern recognition techniques for classification

and quantification of different types of tomato carotenoids, which

is of great interest for health issues. In this regard, samples with

varying carotenoids profiles were non-destructively measured via a

handheld Raman spectrometer. The derived spectra were analyzed

for classification and quantification purposes using soft independent

modeling of class analogy (SIMCA), artificial neural network (ANN),

and partial least squares regression (PLSR). A good classification of

tomatoes based on their carotenoid profile of 93% and 100% is shown

using SIMCA and ANN, respectively. Besides this result, PLSR and

ANN were able to achieve a good quantification of all-trans-lycopene.

Consequently, the authors suggested using their approach as a tool

for breeders to provide real-time information on carotenoid profiles.

Another study aimed at the quantification of complex mixtures is

discussed in Han et al51 The authors developed a two-stage algorithm

based on Bayesian modeling and implemented it on Raman spectra.

First, a hierarchical Bayesian model was constructed to learn the

peak representation for a target analyte spectrum. A reversible-jump
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F IGURE 3 Dynamic programming and parallel peak alignment in QPMASS. The diagram in panel (A) describes the dynamic programming for
peak alignment. The left panel shows thematched peaks after alignment, and the right panel shows the scorematrix for the peak alignment of two
samples. In panel (B), the diagram illustrates the parallel peak alignment. The subset references are the consensus sample derived from the average
mass spectra and retention time. The final alignment result describes the origin of the detected peaks. [Retrieved and adapted from reference45]
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Markov chain Monte Carlo (RJMCMC) is then used to estimate the

target analyte concentration in a mixture using the peak variables

learned in the first step. Their approach was implemented on both

simulated and experimental spontaneous Raman spectral datasets

and showed good quantification of glucose concentration. As a result,

the authors suggested using this algorithm as a complementary tool

for Raman spectroscopy-based mixture quantification studies. Since

Arcobacter is an emerging foodborne pathogen that has become more

important in recent years, Wang et al52 were interested in fast iden-

tification of Arcobacter. The authors combined Raman spectroscopy

with deep learning via a CNN to identify various species of Arcobacter.

Their method achieved a high identification accuracy (97.2%) at the

species level. Furthermore, a fully connected artificial neural network

(ANN) was constructed on Raman spectra to determine the actual

ratio of a specific Arcobacter species in a bacterial mixture. In their

approach, the accuracy of Raman spectroscopy for bacterial species

determination was improved and enabled rapid identification of

Arcobacter. A further challenge in assessing endoscopic disease sever-

ity in Ulcerative colitis (UC) patients using Raman spectroscopy was

explored by Kirchberger-Tolstik et al.53 In this study, the endoscopic

disease severity evaluation was performed according to the fourMayo

subscores. The authors coupledRaman spectrawith a one-dimensional

CNN (1D-CNN) to identify the level of colonic inflammation and then

applied first-order Taylor expansion to extract the important Raman

bands for this classification. Their approach indicated a good classi-

fication performance and can be used further as a complementary

method forUC characterization and diagnosis. Zafar et al54 introduced

a novel method that monitors the oxyhemoglobin changes produced

by neuronal activations using functional near-infrared spectroscopy

(fNIRS). The authors suggested using a kernel-based recursive least

squares (KRLS) algorithm to reduce the detection time in fNIRS signals

from the neuronal activation. In this manner, the KRLS algorithm

with a Gaussian kernel was used. It showed the best performance for

estimating both changes in oxyhemoglobin and deoxyhemoglobin.

Therefore, a neuronal activation can be determined in about 0.1 s

with fNIRS using KRLS prediction, enabling almost real-time detection

if combined with electroencephalography. A different matter that

involves the detection of petroleum presence in soil mixtures was

covered by J. Galán-Freyle et al55 A remote-sensed tool that combines

artificial intelligence and a portable mid-infrared quantum cascade

laser spectroscopy (QCL) systemwas developed. First, remote sensing

combined with support vector machine (SVM) was used to detect the

presence or absence of traces of petroleum in soil. Then, PCA, PLS-DA,

and SVM were implemented to discriminate between the different

soil types. Additionally, a statistical analysis method was developed to

calculate limits of detection (LOD) and limits of decision (LD) from fits

of the detection probability. As a result, a SVM provided better iden-

tification probabilities of soils that contains traces of petroleum. Le56

proposed the use of deep learning with NIR for rapid analysis of cereal

characteristics. First, the author applied the deep learning-stacked

sparse autoencoder (SSAE) method on the corn and the rice datasets.

This deep learning tool reduces the NIR data dimension, eliminates

the interference information, and obtains advanced data features. A

combination of the affine transformation (AT) and the extreme learn-

ing machine (ELM) was then established to predict the different types

of cereals. Their approach provides a fast, efficient, and cost-effective

method for cereal characteristics analysis. Xu et al57 used functional

near-infrared spectroscopy (fNIRS) to investigate hemodynamic

fluctuations in the bilateral temporal cortices for typically developing

(TD) children and children with autism spectrum disorder (ASD). The

authors proposed the use of fNIRS time series to estimate the global

time-varying behavior of brain activity and then combined two deep

learning networks, LSTM and CNN, to explore the potential patterns

of temporal variation for ASD identification. This global time-varying

behavior is measured through the Augmented Dickey-Fuller (ADF)

test. The ADF test showed that ASD children performed weaker

stationarity in hemodynamic fluctuation variation than controls, as

illustrated in Figure 4. Also, the proposed deep learning approach was

able to differentiate between ASD and TD children accurately.

Accordingly, the characterization of the time-varying behavior of

brain activity holds promising potential for a better understanding of

the underlying causes of ASD. Furthermore, the deep learning frame-

work has the potential for diagnosing children with the risk of ASD.

3.4 X-ray

X-ray spectroscopy andX-ray intensitymeasurements enable the char-

acterization of materials. This is done by X-ray excitation, for example,

high energetic electromagnetic radiation, which results in the emission

of characteristicwavelengths for the elements of the specimen/sample.

These specific wavelengths can be used to generate insights in the ele-

mental composition of the sample. X-ray spectroscopy can be used

to address a range of scientific questions, from interactions of sim-

ples molecules to the structure of the human brain.58 Chemometrics,

machine learning, and deep learning methods proved to be great tools

to solve practical problems, especially in chemistry and spectroscopy.

However, their application in the X-ray field is not as broad as in other

spectroscopic areas. Therefore, recent trends concerning the applica-

tion of chemometrics, machine learning, and deep learningmethods on

X-ray spectra arementioned below.

Otsuka et al.59 investigated the effect of humidity-controlled stor-

age of amorphous rebamipide (RB), RB form I, and RB solid disper-

sion with different surfactant and polymers. Their method is based

on applying PCA on the dataset generated from power X-ray diffrac-

tograms (PXRD) and NIR spectra. The authors showed that the fusion

of data from different sources resulted in correlations between NIR

spectra and diffraction patterns in both neat RB and solid dispersion

samples. As a result, the presented methods can be a useful model

for evaluating amorphous active pharmaceutical ingredients without

a standard sample. An additional study was motivated by the recent

improvements of portable X-ray devices to detect meteorites from

hot and cold deserts. In this study, chemometrics was used for the

analysis of the X-ray data, which Allegreta et al.60 measured using

a portable energy dispersive X-ray fluorescence spectroscopy (pED-

XPF) instrument. Moreover, the meteorite classification was achieved
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F IGURE 4 ADF color map values for ASD and TD children. The x-axis indicates the number of optical channels, while the y-axis shows the
numbering of subjects. A clear distinction in the response between ASD and TD children is concluded. [Retrieved and adapted from reference57].

by applying various chemometrics methods on standardized X-ray

fluorescence (XRF) spectra. In this regard, PCA, cubic support vec-

tor machine (CSVM), fine kernel nearest neighbor (FKNN), subspace

discriminant-ensemble classifiers (SD-EC), and subspace discriminant

KNN-EC (SKNN-EC)methodswere tested. Their approach allowed the

rapid and trustable classification and discrimination of meteorites in

macro-groups. 100% accuracy in sample classification was obtained

using each of these machine learning methods. Consequently, their

approach proved effective and promising for the differentiation and

classificationof real or supposedmeteorites.Carboneet al.61 proposed

a graph-based deep learning architecture to predict the X-ray absorp-

tion near-edge structure (XANES) spectra ofmolecules. Briefly, XANES

encodes vital information about the local chemical environment, but

significant challenges arise from the material’s complexity associated

with chemical composition and structure. The author provedwith their

approach that the predicted spectra reproduce all prominent peaks,

with 90% of the predicted peak locations within 1 eV of the ground

truth. Thismethod can also be used to provide a general-purpose, high-

throughput capability for predicting spectral information of a broad

range of materials, including molecules, crystals, and interfaces. Other

issues were researched by Mullaliu et al,62 who investigated the elec-

trochemical activity inmanganese hexacyanoferrate (MnHCF) by vary-

ing the interstitial ion content. The authors combined X-ray absorp-

tion spectroscopy and a MCR-ALS. Their approach intent to assess

the structural and electronic modifications during Na release and Li

insertion. As a result, MCR-ALS showed that water absorption affects

the reaction dynamics only at the Fe site. Besides, the Mn local envi-

ronment encountered a substantial yet reversible Jahn-Teller effect

upon interstitial ion removal due to the formation of trivalentMn. Fur-

thermore, this is associated with decreased of equatorial Mn—N bond

lengths by 10%.

4 CHEMOMETRICS, MACHINE LEARNING, AND
DEEP LEARNING METHODS FOR THE ANALYSIS OF
IMAGE DATA

AI-based techniques like chemometrics, machine learning, and deep

learning are used to analyze chemical image data for decades. These

tools were adapted to different structures and types of images, from

the simplest grayscale image to hyperspectral images, and provided

new insights on their spatial and spectroscopic information. Recent

trends in applying chemometrics, machine learning, and deep learn-

ing methods on image data from atomic force microscopy (AFM),

electron microscopy (EM), and 2D chromatography are presented

below.
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4.1 Atomic force microscopy (AFM) and electron
microscopy (EM)

Initially, atomic force microscopy (AFM) is a high-resolution imaging

technique where a small probe with a sharp tip is scanned back and

forth in a controlled manner across a sample to measure its surface.

This procedure results in a topography of the sample at atomic resolu-

tion.AFMmicroscopy techniques canbeperformed in various scanning

modes that enable nanoscale characterization of different material

properties such as electrical, magnetic, andmechanical properties.63

On the other hand, Electronmicroscopy (EM) uses an electron beam

to create an image of a sample. Because of the higher energy of the

electrons compared with visible light, an electron microscope has a

much higher resolution than a light microscope. EM can be used to

investigate the microstructure of a wide range of biological and inor-

ganic specimens. Moreover, it provides morphologic and crystallo-

graphic information.64

The incorporation of chemometrics, machine learning, and deep

learning methods for AFM imaging techniques is limited, and recent

applications are mentioned below. For instance, Yablon et al65 investi-

gated three different applications of machine learning in AFM imaging.

In their first application, the authors applied twoAI-basedmethods like

neural networks and CNNs. These networks are trained to differenti-

ate two different multicomponent polymer blends based on their AFM

phase images. The results showed that CNN performs perfectly with

100% accuracy on the test data. A feature extraction approach was

investigated in their second application to detect particles in an image

with a complex background and many aggregates. In this manner, an

initial logistic regressionmodel was trained. The corresponding output

was fed to aHessian blob detection algorithm to isolate particleswith a

circular shape. Their proposed method significantly improves the par-

ticle identification compared with a commercial particle analysis pack-

age. Finally, the authors discussed the current status of autonomous

instrumentation in AFM and its limitation, which needs a large amount

of optimization. The additional issue concerned with the time required

by the oscillating tip to reach the steady-state motion in AFM imag-

ing was discussed in Javazm et al.66 Due to AFM restricted scanning

speed, the authors proposed an innovative imaging technique based

on an artificial intelligence-based algorithm. Thereby, multiple arti-

ficial intelligence-based methods were investigated, including multi-

layer perceptron, radial basis function neural networks, and adaptive

neural fuzzy inference system networks. Their approach aims to show

the capability of artificial intelligence methods to estimate the sur-

face topography directly. Therefore, the results showed that the mul-

tilayer perceptron overcame the other techniques in terms of surface

characteristics estimation. In conclusion, the authors suggested using

their approach to reach an accurate and fast estimation of the sur-

face topography in AFM imaging. Further advantages of their method

are that no closed-loop controller is needed, and the capability of esti-

mating simultaneous the topography, the Hamaker parameter, and the

tip-sample interaction force. Regarding the AFM limitation mentioned

above, a further investigation was performed by Payam et al67 The

authors intended to explore the probe-sample interactions in dynamic

AFM. Therefore, a novel approach for dynamic AFM data acquisition

and imaging based on wavelet transform was applied in the photode-

tector data stream. By use of simulations, their approach was able to

produce data including information about the transient response of

amplitude and phase with the variation of material and sample topog-

raphy properties. The method reliability was tested by comparing it

with a standard lock-in amplifier (LIA) analysis. It showed the ability

to reconstruct amplitude and phase images of standard samples, start-

ing from time-domain data of actual measurements. The authors indi-

cated that using their method would improve the measurement speed,

reduce the loss of information and give access to a wealth of informa-

tion about the transient response, which leads to the possibility of ana-

lyzingmaterial properties in dynamic AFM.

Some of the challenges in electron microscopy (EM) imaging that

are resolved using chemometrics, machine learning, and deep learning

methods are presented below. For instance, Yu et al68 addressed

the limitations of traditional image recognition methods, such as the

inability to obtain the complete pore space characteristics in scanning

electron microscopy (SEM) images. Additionally, traditional image

recognition methods for SEM images lead to poor segmentation

results and a low accuracy. The authors implemented a semantic image

segmentation technique based on artificial intelligence to analyze

the pore characteristics and explore the relationship between the

microscopic pore characteristics and the macroscopic permeability

parameters of the sandstone in the SEM images. The results showed

that the application of deep learning via CNNs accurately recognize

images and allowed the automatic processing of microscopic images.

Furthermore, this significantly improved the accuracy of the pore

identification in rock samples. Li et al.34 investigated a reaction-

convection-diffusion model to track spatial-temporal patterns in

scanning transmission electron microscopy (STEM) videos of Pt

nanoparticle formation and graphene contamination. The authors

developed a data-driven approach utilizing pixel-level information to

infer the underlying partial differential equation (PDE) that governs

the spatial-temporal patterns in STEMvideos. The PDEmodel resulted

in a redundant basismatrix, leading to non-unique numerical solutions.

Therefore, the least angle regression algorithm (LARS) was utilized

to reduce the ambiguity and to improve its interpretation. Addition-

ally, the optimal parameter λ, used to balance model parsimony and

descriptive capability, is determined by Mallow’s Cp criteria (Cp). The

Pearson correlation coefficient (PCC) is used to track discrepancies

between experimental and estimated frames. The analysis applied to

STEMmultiple Pt particles video is illustrated in Figure 5.

Both the simulatedandexperimental datasets proved that theuseof

the PDE models has the potential to capture the characteristic behav-

ior of spatial-temporal patterns at a mesoscopic scale in STEM videos

and canbeof great help for the investigations of complex time-evolving

processes.

4.2 Two-dimensional chromatography

Two-dimensional chromatography is a chromatographic technique

that yields information on the chemical composition of a sample, by
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F IGURE 5 Estimation based onmultiple Pt particles STEM video.
Snapshots of experimental data are illustrated in (A). The optimal
parameter calculated using Cp criteria is shown in red in (B). The
estimated frame is shown in (C). PCC in (D) proved the convergence to
the experimental data between frame 11 and 35. [Retrieved from
reference 34]

combining two separation systems. Typically, two different chromato-

graphic columns are connected in sequence, and an aliquot from the

first column is injected in the second column. As the separation sys-

tems are oftenworking differently in the columns, peaks that could not

be separated using the first column can be separated using the sec-

ond column in 2D chromatography.69 A large amount of information

is contained in high-resolution chromatography, and it is complicated

to extract all relevant information and deduce correct and straight-

forward solutions. However, recent research for efficient chemometric

data-processing strategies is presented below.

Huygens et al.70 reported three evolutionary algorithms to

enhance searches in the method development spaces of 1D- and

2D-chromatography, including genetic algorithms (GA), evolution

strategies (ES), and covariance matrix adaptation-evolution strategy

(CMA-ES). The authors compared these algorithms to a plain grid

search. The results showed significant outperformance, especially

in terms of the number of search runs needed to achieve a given

separation quality. Additionally, the ES and GA performance followed

a hyperbolic law in the large search run number limit. Subsequently,

the convergence rate in the hyperbolic function can quantify the

difference in the required number of search runs in these algorithms. A

further problem on two-dimensional liquid chromatography was tack-

led by Pérez-Cova et al.71 The authors employed a two-dimensional

liquid chromatography method hyphenated simultaneously to two

different detectors on a mixture of 31 pharmaceutical compounds.

MCR-ALS was then used to evaluate the obtained two-dimensional

chromatograms. The authors perform two evaluations. First they

assessed the multilinear behavior of the high-dimensional data for

each of the two detection modes. Second, they check the model

performance for the multiset data obtained by fusion of the data

coming from both detectors. Additionally, their approach proved that

data fusion from the two detectors increased the ability for compound

identification. Nagai et al.72 identified a novel biomarker of hepatocel-

lular carcinoma (HCC) in the human liver using multivariate analysis

methods such as PCA and OPLS-DA. The data was extracted using

an ultrahigh-performance liquid chromatography/quadrupole time-

of-flight mass spectroscopy (UHPLC/QTOFMS) instrument equipped

with a mixed-mode column. The results showed that novel biomarkers

for HCC were identified with the global metabolomics/metabolic

profiling (G-Met) method. Besides this, the difference in fatty acid

species of triglyceride in tumor regions was demonstrated by high def-

inition mass spectroscopy (HDMS) combined with UHPLC/QTOFMS.

It showed localization in cryosections using desorption electrospray

ionization-mass spectroscopy imaging (DESI-MSI). In conclusion,

G-Met combined with UHPLC/QTOFMS and HDMS and distribution

analysis byDESI-MSI is useful for characterizing tumor cell progression

and discovering prospective biomarkers.

5 SUMMARY AND OUTLOOK

Developments of artificial intelligence-based techniques like chemo-

metrics, machine learning and deep learning have occupied the

interest of researchers for decades. These data analysis techniques

combined with spectroscopic measurements in chemistry and chem-

ical data have gained popularity and yielded promising application

possibilities in various fields from the food industry to biomedical

applications. This review paper discussed the recent investigations

on AI-based techniques for specific spectroscopic measurements and

imaging approaches including NMR, MS, vibrational spectroscopy,

X-ray, AFM, EM, and 2D chromatography. Each of these measurement

techniques and the application tasks requires specific properties of

the analysis methods. In that sense, the analysis methods are task

and data-dependent and are discussed separately. However, the

enhancement of the data quality is a common procedure in most of

the reviewed studies. This enhancement is achieved by either applying

inverse problems or preprocessing techniques. In this regard, deep

learning techniques via CNN and LSTM became popular as solutions

for the inverse problem for spectroscopic data. On the other hand, the

modification of existing preprocessing techniques or their applications

in new areas is a very common trend. Following the enhancement

of data quality, data modeling for a variety of tasks was reviewed.

For instance, the discrimination between different groups and the
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quantification of a specific variable require either classification or

regression methods. In the reviewed studies, PCA, PLS, SVM, SIMCA,

ANN,PLSR, anddeep learningwere implemented for the spectroscopic

measurements and the chemical data discussed herein (NMR, MS,

vibrational spectroscopy, X-ray, AFM, EM, and 2D chromatography).

However, attempts to improve thepredictivequality and robustness

of artificial intelligence-basedmethods suchas chemometrics,machine

learning, and deep learning are performed in many application fields.

Also, investigations to develop new AI-based techniques are increas-

ing as well. Furthermore, strategies to overcome the lack of available

data, especially in biomedical applications, and the advancement of

data fusionmethods are still subjects in further research.
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