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Abstract: Background: Hepatocellular carcinoma (HCC) pathogenesis involves the alteration of
multiple liver-specific metabolic pathways. We systematically profiled cancer- and liver-related
classes of metabolites in HCC and adjacent liver tissues and applied supervised machine learning
to compare their potential yield for HCC biomarkers. Methods: Tumor and corresponding liver
tissue samples were profiled as follows: Bile acids by ultra-performance liquid chromatography (LC)
coupled to tandem mass spectrometry (MS), phospholipids by LC-MS/MS, and other small molecules
including free fatty acids by gas chromatography—time of flight MS. The overall classification
performance of metabolomic signatures derived by support vector machine (SVM) and random
forests machine learning algorithms was then compared across classes of metabolite. Results:
For each metabolite class, there was a plateau in classification performance with signatures of
10 metabolites. Phospholipid signatures consistently showed the highest discrimination for HCC
followed by signatures derived from small molecules, free fatty acids, and bile acids with area under
the receiver operating characteristic curve (AUC) values of 0.963, 0.934, 0.895, 0.695, respectively, for
SVM-generated signatures comprised of 10 metabolites. Similar classification performance patterns
were observed with signatures derived by random forests. Conclusion: Membrane phospholipids are
a promising source of tissue biomarkers for discriminating between HCC tumor and liver tissue.

Keywords: hepatocellular carcinoma; metabolomics; diagnosis; phospholipids; machine learning;
molecular imaging; positron emission tomography

1. Introduction

Liver cancer is the fifth-most common cancer, and third-leading cause of cancer-related deaths
worldwide, with over 90% of primary liver cancers being hepatocellular carcinoma (HCC) [1].
Guidelines by the National Comprehensive Cancer Network (NCCN) and American Association for
the Study of Liver Disease (AASLD) allow for the diagnosis of HCC to be secured radiographically
using contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI) [1]. Clinical
acceptance of a non-histopathologic diagnosis of HCC has pre-empted liver biopsy in many cases,
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saving patients from an invasive diagnostic procedure. However, a liver biopsy may still be required if
imaging is inconclusive. Presently, the radiographic diagnosis of HCC relies heavily on the assessment
of tumor contrast enhancement. Since metabolic reprogramming is considered one of the hallmarks
of cancer [2], molecular imaging techniques, such as positron emission tomography (PET)/CT and
chemical-shift encoded MRI might provide complementary diagnostic information related to tumor
metabolism or biochemical composition. This orthogonal information could have incremental value
for diagnosis in the event that conventional imaging is inconclusive, thus, preserving the non-invasive
nature of the diagnostic work-up of HCC.

The study of tissue metabolomics could facilitate the search for additional imaging approaches.
For example, targeted metabolomics can quantitatively profile a large variety of biologically active
molecules in tissues to identify new and novel molecular imaging targets. However, targeted
metabolomics typically requires that the metabolites of interest be identified a priori, which historically
has limited its usefulness for biomarker discovery. Nonetheless, one important advantage of
targeted metabolomics over untargeted approaches is that its results are more amenable to biological
interpretation and functional profiling, potentially streamlining molecular imaging development.
On contemporary platforms, targeted metabolomic analyses are currently capable of quantitatively
assaying hundreds of related compounds comprising entire classes of metabolites with relatively high
throughput. By comparing these targeted profiles between tumor and non-tumor tissue samples, it is
possible to comprehensively evaluate class-specific biomarker signatures for HCC.

The liver is a multi-functional organ whose major biological roles include carbohydrate metabolism,
bile production, protein and lipid synthesis, chemical detoxification, and vitamin and mineral storage.
Because a number of these hepatic functions are known to be altered in HCC tumors, metabolites
corresponding to these liver functions may be potential biomarkers of HCC. For HCC, liver-related
metabolites worth pursuing biomarkers include bile acids, fatty acids, lipids, and the small-molecules
associated with organelle functions and energy metabolism.

Machine learning (ML) can be applied to distinguish patterns in high-dimensional data, which
can potentially lead to more accurate diagnostic predictions or classifications than traditional statistical
models. Support vector machine (SVM), partial least squares discriminant analysis (PLSDA), and
random forests (RF) models are well-understood ML classification approaches that have been used
successfully to develop clinical diagnostics [3]. Classification signatures developed by ML can also be
utilized to screen and comparatively evaluate metabolomics data as sources of biomarkers. The purpose
of this study was to apply ML to comparatively evaluate four distinct liver-related metabolite classes
(bile acids, free fatty acids, lipids, and small molecules) as potential sources of biomarkers to distinguish
HCC from non-tumor liver tissue.

2. Materials and Methods

2.1. Patients

Between February 2012 and March 2017, 53 patients gave written informed consent as participants
in an Institutional Review Board-approved clinical research study (The Queen’s Medical Center
Research and Institutional Review Committee ID RA-2011-025, approved 11 May 2011) that examined
tumor and corresponding liver tissue samples obtained following treatment of HCC by partial
hepatectomy. Briefly, patients were eligible if they had HCC diagnosed histologically, or suspected
radiographically, or had a liver mass with imaging features of primary malignancy, and were surgical
candidates (i.e., diagnosed early stage HCC) with Child-Pugh score < 10. Patients were excluded
if they had received prior chemotherapeutic, molecularly targeted, biological, or radiotherapeutic
treatment for HCC. All tumor and non-tumor liver tissue samples were obtained intra-operatively,
divided and placed separately in labeled cryovials for storage in liquid nitrogen until retrieved for
analysis. Tumor status was confirmed by histopathologic review of each specimen. Retrieved samples
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were temporarily stored at −80 ◦C (Forma 8600 series ultra-low temperature freezer, Thermo-Fisher
Scientific, Nashville, NC, USA) in preparation for metabolomic analysis.

2.2. Chemical Reagents

Methanol, acetonitrile, and formic acid were purchased from Thermo-Fisher Scientific (Optima
LC-MS, Fair Lawn, NJ, USA). Ultrapure water was produced by a Mill-Q Reference system
equipped with LC-MS Pak filter (Millipore, Billerica, MA, USA). The derivatization reagents,
methoxyamine hydrochloride and N-methyl-trimethylsilyltrifluoroacetamide (MSTFA)were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Analytical grade sodium hydroxide, sodium bicarbonate,
and anhydrous sodium sulfate were obtained from JT Baker Co. (Phillipsburg, NJ, USA). All of the
57 bile acid standards were obtained from Steraloids Inc. (Newport, RI, USA) and TRC Chemicals
(Toronto, ON, Canada) and nine stable isotope-labeled standards were obtained from C/D/N Isotopes
Inc. (Pointe-Claire, Quebec, Canada) and Steraloids Inc. (Newport, RI, USA). All other standards
were commercially purchased from Sigma-Aldrich and Nu-Chek Prep (Elysian, MN, USA). A total of
145 representative compounds of different chemical classes was used for metabolomic analysis.

2.3. Sample Preparation and Analysis

The standards and stable isotope-labeled standards were accurately weighed and prepared in
methanol at a concentration of 5.0 mM (stock solution). Further dilution was performed with a
methanol/water mixture (50/50, v/v) to obtain calibration concentrations of 2000, 400, 160, 32, 12.8, 2.5,
or 1 nM.

2.4. Bile Acid Profiling (UPLC-MS)

The preparation of samples for bile acid profiling was based on modification of our published
methods [4–6]. Briefly, liver tissue samples were accurately weighed (~20 mg) and then homogenized
with 50 µL of water using a Bullet Blender Tissue Homogenizer (Next Advance, Inc., Averill Park,
NY, USA). An aliquot of 150 µL of acetonitrile containing nine internal standards was added, and the
extraction was performed using the homogenizer. After centrifugation, each 50 µL of the supernatant
was transferred to a 96-well plate.

Bile acids were quantitated using ultra-performance liquid chromatography coupled to tandem
mass spectrometry (UPLC-MS/MS, ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA, USA)
using an ACQUITY UPLC BEH C18 1.7 µM Vanguard pre-column (2.1 × 5 mm) and ACQUITY UPLC
BEH C18 1.7 µM analytical column (2.1 × 100 mm) with the following optimized settings: Column
temperature 45 ◦C, sample manager temperature 10 ◦C, mobile phases: A = water with formic acid
(pH = 3.25), B = acetonitrile /methanol (95:5); gradient 0–1 min (5% B), 1–5 min (5–25% B), 5–15.5 min
(25–40% B), 15.5–17.5 min (40–95% B), 17.5–19 min (95% B), 19–19.5 min (95.5% B), 19.6–21 min
(5% B); flow rate 0.45 mL/min; capillary kv 1.2 (ESI negative), source temperature 150 ◦C; desolvation
temperature 550 ◦C; desolvation gas flow 1200 L/h.

The data were collected with multiple reaction monitor (MRM) (Supplementary Information 1)
using optimized settings from QuanOptimize application manager (Waters, Milford, MA, USA).
The calibration curve and the corresponding regression coefficients were obtained by internal
standard adjustment (Supplementary Information 1). All bile acids were found to be linear over the
measured range.

2.5. Fatty Acid and Small Molecule Profiling (GC-TOFMS)

Sample preparation for gas chromatography-time of flight mass spectrometry (GC-TOFMS)
analysis of free fatty acids and other small molecules was performed according to our published
methods [7]. GC analysis was carried out on a GC-TOFMS system (LECO Corp., St. Joseph, MI,
USA) using a Rxi-5 MS (Crossbond × 5% diphenyl/95% dimethyl polysiloxane) column with the
following GC instrument settings: Oven program 80 ◦C (2 min), 80–140 ◦C (10 ◦C/min), 140–210 ◦C
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(4 ◦C/min), 210–240 ◦C (10 ◦C/min), 240–290 ◦C (25 ◦C/min), 290 ◦C (4.5 min); injection volume 1 µL;
inlet temperature 270 ◦C; inlet mode: Splitless; carrier gas: Helium (99.9999%), flow rate 1.0 mL/min
constant; transfer interface temperature 270 ◦C. TOFMS was performed using the following optimized
settings: Electron impact ionization mode; electron energy −70 V; detector voltage −1450 V; source
temperature 220 ◦C; solvent delay 4.1 min; acquisition rate 25 spectra/second; mass range 50–500 Da.

2.6. Lipid Profiling (UPLC-MS)

For lipid profiling, 20 µL aliquots of the supernatant were added to a 96-well plate. After drying
under nitrogen, 300 µL of a 5 mM solution of ammonium acetate in methanol was added, and the
plate was gently shaken at room temperature for 30 min. Sample extracts were filtered through
0.45 µm membrane of the kit plate and each 20 µL aliquot was further diluted with 380 µL of methanol
with 5 mM ammonium acetate based on our published methods [8]. Targeted metabolite analysis of
140 lipids was then performed using an ACQUITY UPLC-Xevo TQ-S (Waters Corp., Milford, MA,
USA). Each 10 µL volume of sample was directly injected into the mass spectrometer. A 5 mM solution
of ammonium acetate in methanol was used as eluant at an increasing flow rate (30 to 200 µL/minute
within 3 min).

2.7. Data Processing/Analysis

Raw data from UPLC—MS/MS was processed using the TargetLynx application manager (Waters
Corp., Milford, MA, USA) to obtain calibration equations and quantitative concentrations of each
metabolite in the samples. Raw data from GC-TOFMS analysis were exported to the ChromaTOF
software (v4.50, Leco Co., CA, USA) for baseline correction, smoothing, noise reduction, deconvolution,
library searching, and area calculation. For the GC−TOFMS generated data, identification was
processed by comparing the mass fragments and the retention time with our in-house library or
the mass fragments with NIST 05 Standard mass spectral databases in NIST MS search 2.0 (NIST,
Gaithersburg, MD, USA) software using a similarity of more than 70%. The detected metabolites
from GC-TOFMS were annotated and combined using automated mass spectral data processing
software [9]. Samples or compounds with significant loss of data (10% of data was missing) were
excluded from further analysis. These quantification protocols using authentic standards resulted
in quantitative profiles for the following four classes of metabolites: Bile acids (BA, 42 metabolites),
phospholipids (lipids, 109 metabolites), and other small molecules including free fatty acids (FFA)
(128 metabolites total).

2.8. Biomarker and Statistical Analysis

Biomarker discovery and evaluation were carried out using MetaboAnalyst (McGill University,
Montreal, CA, USA), accessed via the metaboanalyst.ca web-portal v4.0 or implemented locally in
R using the MetaboAnalystR 2.0 package [10–12]. Missing value imputation was performed by the
K-nearest neighbor (KNN) algorithm. The dataset was normalized, transformed, and scaled by
row-wise quantile normalization, log transformation, and mean centering (Supplementary Figure S1).

Multivariate receiver operating characteristic (ROC) and area under the ROC curve (AUC)
values were calculated to test the hypothesis that specific metabolite classes differed in classification
performance for distinguishing between the tumor and non-tumor samples. For this pilot study, a
sample size of 41 test and 41 control samples provided 0.80 power with 2-sided type 1 error rate of
0.05 for detecting a 0.2 AUC difference in the expected range of AUC values. The 95% confidence
intervals (CI) for AUC were calculated. The ML classification methods used for automated feature
identification were SVM and random forests. For the SVM classification method, features were ranked
by their relative contribution to correct classification based on cross-validation error rates [13]. For the
random forests classification method, features were ranked based on their mean decreases in accuracy
across permutations [14]. Corresponding ROC curves were generated by Monte-Carlo cross-validation
using balanced subsampling as implemented by MetaboAnalyst.
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3. Results

Five patients did not contribute any adjacent liver tissue samples, due to sample scarcity, and
five patients did not contribute tumor tissue samples, due to tumoral necrosis. The patient clinical
characteristics are summarized in Table 1. One sample (i.e., row) was excluded from further analysis,
due to > 10% missing data. The following compounds (i.e., columns) were also excluded, due to missing
values (% missing shown): Alpha-hydroxyisobutyric acid (17.7%), pimelic acid (32.3%), 3-methyladipic
acid (21.9%), isovaleric acid (31.3%), PC aa C36:0 (40.6%), SM C20:2 (26.0%). Thus, the final data set
comprised 96 tissue samples (48 tumor and 48 adjacent liver, unpaired) with concentration values
corresponding to 76 small molecules, 42 bile acids, 47 free fatty acids, and 107 lipid compounds.

Table 1. Patient clinical characteristics.

Females (n = 12) Males (n = 36) p-Value

Age, years, mean (SD) 61.58 (13.14) 62.78 (10.32) 0.747
HBV Infected, number (%) 3 (25.0) 10 (27.8) 1.00
HCV Infected, number (%) 3 (25.0) 18 (50.0) 0.240
Tumor Grade, number (%) 0.259

G1 2 (16.7) 2 (5.6)
G2 3 (25.0) 20 (55.6)
G3 5 (41.7) 11 (30.6)
G4 2 (16.7) 3 (8.3)

AFP level, ng/dL, mean (SD) 2409.2 (3897.3) 886.8 (3281.8) 0.191
Child-Pugh Score, mean (SD) 5.50 (0.67) 5.53 (1.08) 0.934

MELD Score, mean (SD) 8.00 (1.41) 8.82 (2.52) 0.296

AUC values for SVM-derived metabolomic signatures comprised of 3 to 50 signature variables
(i.e., metabolites) from each class are shown in Table 2. The ROC curves corresponding to metabolite
class-based signatures derived by SVM are displayed in Figure 1. A plateau in overall classification
performance of the SVM-based signatures was observed at approximately 10 metabolites for each of the
metabolite classes (Figure 2). Taking into account the number of signature variables, the lipid signatures
were associated with the highest AUC values, followed by signatures derived from small molecules,
FFA, and BA metabolites. Differences in AUC were not significant in most cases, with the exception
of significant differences in AUC values between lipid signatures and bile acid signatures (Figure 3).
Metabolite signatures derived by random forests performed similarly (Supplementary Figures S2–S4).
Lipid signatures were associated with the highest AUC values followed by signatures derived from SM,
FFA, and BA metabolites (Supplementary Table S1). The compounds that comprised the 10-metabolite
signatures derived by SVM and random forests are listed in Table 3 and Supplementary Table S2,
respectively. Individual metabolite fold changes and their associated false discovery rates are provided
in Supplementary Information 2.

Table 2. Differences in area under the receiver operating characteristic curve (AUC) values for support
vector machine (SVM)-derived metabolomic signatures of a varying number of metabolite variables in
the signature.

Metabolite Class
Number of

Metabolites in
Signature

Area Under Curve
(AUC) Lower Bound 95% CI Upper Bound 95% CI

Small molecules 3 0.807 0.669 0.922
5 0.89 0.752 0.989

10 0.934 0.843 0.991
20 0.947 0.838 1
38 0.943 0.839 1
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Table 2. Cont.

Metabolite Class
Number of

Metabolites in
Signature

Area Under Curve
(AUC) Lower Bound 95% CI Upper Bound 95% CI

Bile acids 2 0.681 0.44 0.869
3 0.678 0.448 0.855
5 0.688 0.446 0.854

10 0.695 0.51 0.83
20 0.678 0.498 0.838
42 0.682 0.514 0.8

Free fatty acids 2 0.839 0.63 0.975
3 0.861 0.593 0.979
5 0.892 0.676 0.977

10 0.895 0.779 0.969
20 0.858 0.731 0.953
47 0.829 0.712 0.927

Lipids 5 0.924 0.818 0.979
10 0.963 0.891 0.999
15 0.978 0.896 1
25 0.986 0.94 1
50 0.991 0.969 1
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Table 3. The compounds comprising the SVM-derived 10-metabolite signatures for four different
metabolic classes (small molecules, free fatty acids, bile acids, and phospholipids). Fold change, false
discovery rate (FDR), along with univariate p-value and area under the receiver operating characteristic
curve (AUC) are shown for each metabolite univariate.

Small Molecules

Rank Metabolite Fold Change AUC p-Value FDR
1 Dimethylglycine 0.63 0.74 1.59 × 10−05 2.41 × 10−04

2 6-Phosphogluconic acid 0.518 0.689 1.51 × 10−03 8.18 × 10−03

3 Pyruvic acid 2.131 0.755 3.75 × 10−06 7.13 × 10−05

4 D-2-Hydroxyglutaric acid 2.273 0.721 1.30 × 10−03 7.58 × 10−03

5 L-alpha-aminobutyric acid 0.652 0.692 2.22 × 10−03 9.92 × 10−03

6 Glycerophosphocholine 0.764 0.696 1.03 × 10−03 7.11 × 10−03

7 Glyceric acid 1.291 0.144 4.66 × 10−01 6.65 × 10−01

8 N-Acetylornithine 1.223 0.22 9.46 × 10−02 2.24 × 10−01

9 Creatine 0.644 0.771 9.07 × 10−07 2.30 × 10−05

10 Malic acid 0.478 0.834 3.27 × 10−08 2.49 × 10−06

Free Fatty Acids
Rank Metabolite Fold Change AUC p-Value FDR

1 Alpha-Linolenic acid 0.364 0.783 2.83 × 10−07 1.33 × 10−05

2 Palmitelaidic acid 1.749 0.738 1.84 × 10−05 3.61 × 10−04

3 Butyric acid 1.79 0.72 3.07 × 10−05 3.61 × 10−04

4 3-Hydroxybutyric acid 0.626 0.571 1.08 × 10−01 2.55 × 10−01

5 10Z-Heptadecenoic acid 1.395 0.689 1.02 × 10−03 9.56 × 10−03

6 Gamma-Linolenic acid 0.989 0.552 5.25 × 10−01 7.47 × 10−01

7 8,11,14-Eicosatrienoic acid 1.853 0.736 2.47 × 10−05 3.61 × 10−04

8 Valeric acid 1.478 0.609 7.48 × 10−02 1.95 × 10−01

9 Undecanoic acid 0.837 0.6 5.93 × 10−02 1.86 × 10−01

10 Docosahexaenoic acid 1.105 0.527 8.73 × 10−01 9.33 × 10−01

Bile Acids
Rank Metabolite Fold Change AUC p-Value FDR

1 Chenodeoxycholic acid 4.57 0.752 2.93 × 10−05 6.16 × 10−04

2 Glycholic acid 0.627 0.735 1.67 × 10−05 6.16 × 10−04

3 Dihydroxycholestanoic acid 1.339 0.544 5.90 × 10−01 8.54 × 10−01

4 7-ketolithocholic acid 1.603 0.608 3.12 × 10−02 1.09 × 10−01

5 Cholestenoic acid 1.057 0.631 3.98 × 10−01 7.36 × 10−01

6 6,7-diketolithocholic acid 0.91 0.577 1.49 × 10−01 4.48 × 10−01

7 Deoxycholic acid 5.751 0.578 3.12 × 10−02 1.09 × 10−01

8 Tauroursodeoxycholic acid 1.552 0.681 8.26 × 10−01 9.84 × 10−01

9 Chenodeoxycholic acid 24-glucuronide 1.388 0.553 7.96 × 10−01 9.84 × 10−01

10 Lithocholic acid 3-sulfate 1.177 0.614 2.02 × 10−02 1.03 × 10−01

Phospholipids
Rank Metabolite Fold Change AUC p-Value FDR

1 PC aa C26:0 0.603 0.782 6.62 × 10−07 6.44 × 10−06

2 PC ae C34:0 3.037 0.873 5.43 × 10−12 2.90 × 10−10

3 PC ae C34:2 0.836 0.658 3.93 × 10−04 1.31 × 10−03

4 PC aa C32:0 1.312 0.653 1.46 × 10−02 2.95 × 10−02

5 PC aa C38:6 0.473 0.918 1.37 × 10−13 1.46 × 10−11

6 PC aa C42:2 1.386 0.818 4.78 × 10−06 2.56 × 10−05

7 PC aa C40:5 0.808 0.722 1.80 × 10−04 6.41 × 10−04

8 PC aa C34:3 0.687 0.741 8.23 × 10−06 4.19 × 10−05

9 PC ae C32:2 1.673 0.703 1.72 × 10−04 6.33 × 10−04

10 PC ae C44:3 1.49 0.803 3.13 × 10−08 5.58 × 10−07

4. Discussion

Currently, HCC is one of the few cancers in which tumor biopsy is not clinically required
to establish the diagnosis. In appropriately selected patients, contrast-enhanced imaging studies
have proven sufficient for confidently diagnosing HCC [1]. However, the existing radiographic
approaches do not work for all patients [15]. Metabolic alterations constitute an alternative and
orthogonal set of diagnostic targets for which novel imaging methods are being developed or have been
developed. In this study, ML was applied in the manner used for metabolomics signature discovery,
but with the primary objective to compare different classes of metabolites as potential sources of HCC
biomarkers. We believe results from this comparison between classes of metabolites may be useful for
prioritizing which metabolic pathways to pursue further for molecular imaging of HCC. Together with
other information obtained from histopathologic, genomic, and transcriptomic analyses [16,17], this
metabolomic data may help to inform the development of new imaging strategies for HCC. It is hoped
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that the success rate and utilization of non-histopathologic diagnostic algorithms will increase through
the development of new tumor imaging modalities.

To limit bias in our metabolomic comparisons, we applied SVM and random forests, two
well-developed machine learning algorithms, in systematic fashion [18]. Classification performance
was examined over a range of signature size, and a comparison of AUC values was used to determine
which metabolite class comprised the most promising source of HCC biomarkers. While differences in
AUC values were not significant in most cases, lipid-based signatures were consistently associated with
the highest AUC values across a range of signature size. A comparison of signatures derived using
random forests closely mirrored the results produced by SVM-based signatures. These findings
serve as encouragement to further pursue the development of HCC biomarkers derived from
phospholipid pathways.

Metabolic reprogramming is considered one of the hallmarks of cancer [2]. Multiple alterations
in BA, lipid, FFA, and energy molecule metabolism have been observed in HCC [19–23]. Because
of these myriad metabolic derangements in HCC, there was no a priori hypothesis as to which
class of metabolites would perform the best. Alterations in the cellular profiles of small molecular
metabolites, such as glucose, glycerol 3- and 2-phosphate, malate, alanine, and myo-inositol have
been observed in other metabolomic studies of HCC [19]. Significant alterations in nutrient uptake by
cancer cells have also been noted, and may contribute to the changes in the cellular concentrations of
energy metabolites, amino acids, and other small molecules [22]. These alterations may also affect
the intracellular synthesis of specific nutrients relevant to cancer metabolism, such as glutamine [22].
In our study, these metabolites were represented in the signatures derived from small molecules.

Several of the metabolites which comprised our small molecule signatures, including malate,
pyruvate, and creatine, can already be measured in vivo by molecular imaging techniques, such as
magnetic resonance spectroscopy or hyperpolarized MRI [24,25]. In our study, malic acid alone was
associated with an AUC of 0.83 (Table 3). Malate synthesis can be imaged in vivo by MRI using the
hyperpolarized contrast agent 13C-fumarate, although its usage has mainly been to monitor cellular
necrosis [26]. We are unaware of studies that have evaluated hyperpolarized 13C-fumarate as an
imaging agent for HCC. Hyperpolarized 13C-pyruvate has been used with MRI to detect HCC in
rodent models [27]. These pilot results support efforts to develop hyperpolarized contrast agents for
imaging HCC further.

Recognition that fatty acid metabolism is dramatically altered in cancer cells has increased in recent
years. These alterations include changes in both fatty acid synthesis, as well as degradation/oxidation,
and several potential anti-cancer drugs targeting these pathways are currently in development [28].
In HCC, there appears to be coordinated activation of fatty acid synthesis and lipogenesis, possibly as a
result of AKT-mTOR signaling pathway activation [29]. PET imaging using the true tracer 11C-acetate
has been proposed as a means to image fatty acid synthesis in vivo [30]. While PET using 11C-acetate
has been used to image de novo lipogenesis in tumors [30], one study recently found that tissue uptake
of this tracer does not correlate with fatty acid synthase expression [31]. A number of novel PET
probes for imaging fatty acid oxidation have also been developed [32–34]. In addition to free fatty
acid synthesis, fatty acid uptake may also be altered in cancer cells [35]. This is consistent with the
finding of linolenic acid in our FFA signatures, since it is an essential fatty acid that must be gotten
from the diet. The finding of palmitelaidic acid in our FFA signatures is also intriguing, since it is a
trans fatty acid whose major dietary sources are hydrogenated vegetable oils and dairy fats. Trans
fatty acid-rich diets have been shown to increase liver tumorigenesis in mouse models [36]. Recent
studies have also suggested that lipid desaturation (i.e., formation of double bonds in the fatty acyl
chains) also occurs more frequently in cancer cells, providing additional opportunities to interfere with
cancer cell fatty acid metabolism by targeting the desaturase enzymes [37,38]. Our results suggest that
the proportions of saturated, mono-unsaturated, and poly-unsaturated fatty acids differ between HCC
and liver tissue. MRI-based techniques for profiling the composition of fatty acids are emerging [39].
Our results support further investigation of fatty acid profiles as imaging biomarkers for HCC.
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Enterohepatic circulation of bile acids may play an important role in carcinogenesis, and possibly
involves crosstalk with the gut microbiota [23]. The interaction between bile acids and gut microbiome
may also produce alterations in the bile acid profiles of liver tissues [40], supporting the hypothesis
that metabolomic signatures for HCC can potentially be derived from profiling of bile acids in these
tissues. There may also be alterations in cellular export of bile salts in HCC, and bile salt export pump
(BSEP) has been proposed as an immunohistopathologic marker of HCC [41]. Despite these findings
supporting bile acids as tissue biomarkers for HCC, our results suggest that bile acids may not be
as promising a source of HCC tissue biomarkers as other classes of metabolites. However, bile acid
profiles obtained from blood or other body fluids could have diagnostic value. Our previous work
has indeed shown that bile acids are differentially expressed in the serum or urine of patients with
HCC [42]. However, levels of several of the bile acids identified are potentially influenced by the
underlying severity of chronic liver disease (CLD), with abnormal levels of GCA, TCA, CDCA, and
glycochenodeoxycholic acid being associated with cirrhosis and hepatitis [42]. Although all patients in
the present study had underlying liver disease of milder severity (Child-Pugh Score < 10), it remains
possible that even mild liver dysfunction may have influenced tissue bile acid concentrations. Further
research on the potential of tissue bile acid profiles as biomarkers of CLD is needed.

In most tissues, the majority of lipids are in the form of phospholipids. The phospholipid signatures
that best discriminated HCC from non-tumor liver tissue in our study included several different
species of phosphatidylcholines. PET imaging using 18F-fluorocholine is an imaging biomarker of
phosphotidylcholine synthesis that is currently used for clinical detection of HCC in some regions [43,44]
It has been shown to be superior to PET imaging of glucose metabolism with 18F-fluoro-deoxy-D-glucose
(FDG) for the detection of HCC, implying that lipogenesis is more salient than glycolysis as a metabolic
feature of HCC [43,45,46]. Other studies have identified lipogenic networks characterized by specific
lipid metabolites as being associated with HCC progression and survival [20]. The Wnt/beta-catenin
pathway has been implicated in hepatocarcinogenesis [47], and mutations causing activation of
beta-catenin have been associated with increased tumor phospholipid biosynthesis and uptake of
18F-fluorocholine in HCC [44]. Beta-catenin activation has also been associated with increased fatty acid
oxidation in HCC [48]. Imaging of lipid metabolism may therefore have the potential to discriminate
specific molecular sub-types of HCC [17,44].

This study was limited in that we did not pursue further testing and validation with independent
datasets. However, our goal was to compare different classes of metabolites as potential sources
of biomarkers and not to develop a specific tissue metabolomic signature for HCC. The results of
this study were intended to encourage further development of new biomarkers for HCC, including
those which can be measured non-invasively using different molecular imaging techniques. Another
limitation worth noting is that targeted metabolomics restricts the scope of analysis to compounds
defined a priori. While very abundant or biologically relevant compounds from each metabolite class
were selected for this study, not all the variance associated with each class may have been captured.
This study also used 2 ML approaches to compare the metabolite classes in a relatively unbiased
manner. There is no universal agreement on the optimal classification method for metabolomics and
the possibility of overfitting by ML algorithms should not be ignored. However, SVM and random
forests classification methods have been found more resilient to noise and overfitting than other
methods applied to metabolomics data [49]. The slight improvement in classification performance from
signatures derived from random forests over SVM mirrored results seen with other array datasets [18].

5. Conclusions

Metabolomic profiles composed of bile acids, free fatty acids, phospholipids, and
metabolically-active small molecules were systematically analyzed to discover potential signatures to
discriminate HCC from adjacent liver tissue. While extensive testing and validation of these signatures
would be necessary to substantiate their performance as diagnostic tissue biomarkers, the composition
of these signatures and relative performance based on AUC can immediately inform the development
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of next-generation molecular imaging techniques for detecting HCC. Through comparisons of the
classification performance of metabolite signatures discovered using SVM and random forests ML
algorithms, phospholipids were found to be the class of metabolites that showed the most promise
in this pilot study for distinguishing tumor and non-tumor samples from patients with HCC. While
rudimentary molecular imaging biomarkers for phospholipid metabolic reprogramming already exist,
these results should encourage further development and refinement of lipid molecular imaging with
the specific goal of improving the overall accuracy of imaging-based diagnostic algorithms for HCC.
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