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Abstract

SNP-association studies are a starting point for identifying genes that may be responsible for specific phenotypes, such as
disease traits. The vast bulk of tools for SNP-association studies are directed toward SNPs in the human genome, and I am
unaware of any tools designed specifically for such studies in bacterial or viral genomes. The PPFS (Predict Phenotypes From
SNPs) package described here is an add-on to kSNP, a program that can identify SNPs in a data set of hundreds of microbial
genomes. PPFS identifies those SNPs that are non-randomly associated with a phenotype based on the x2 probability, then
uses those diagnostic SNPs for two distinct, but related, purposes: (1) to predict the phenotypes of strains whose
phenotypes are unknown, and (2) to identify those diagnostic SNPs that are most likely to be causally related to the
phenotype. In the example illustrated here, from a set of 68 E. coli genomes, for 67 of which the pathogenicity phenotype
was known, there were 418,500 SNPs. Using the phenotypes of 36 of those strains, PPFS identified 207 diagnostic SNPs. The
diagnostic SNPs predicted the phenotypes of all of the genomes with 97% accuracy. It then identified 97 SNPs whose
probability of being causally related to the pathogenic phenotype was.0.999. In a second example, from a set of 116 E. coli
genome sequences, using the phenotypes of 65 strains PPFS identified 101 SNPs that predicted the source host (human or
non-human) with 90% accuracy.
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Introduction

kSNP [1,2], is a program that identifies SNPs in bacterial and

viral genomes (finished genomes, genome assemblies, or raw reads)

without the necessity for genome alignment or reference genomes.

kSNP v2 can analyze over 100 bacterial genomes in under 16 hours

on a typical Linux cluster and in under 22 hours on a desktop

Macintosh computer. kSNP has the further advantage of

automatically generating Parsimony, Neighbor Joining, and

Maximum Likelihood phylogenetic trees of the genomes. Several

versions of the phylogenetic trees are provided, including those in

which nodes are labeled with the number of SNPs that are found

in all of the descendants of that node. kSNP automatically

annotates the identified SNPs based upon the annotations in

GenBank files. The number of SNPs that are identified can be

enormous: over 100,000 SNPs from 288 genomes of the

Rhabdoviridiae family, over 430,000 SNPS for 119 Escherichia coli

genomes, over 1,388,000 SNPS in 207 Acinetobacter genomes [2].

SNP-association studies are the starting point for (1) identifying

genes that may be responsible for specific phenotypes, such as

disease traits, and (2) identifying potential gene-gene interactions.

In bacteria and viruses they have the additional potential of

identifying SNPs that might be incorporated into PCR probes for

the purpose of quickly and inexpensively assessing phenotypes that

are difficult, expensive or time consuming to determine by classical

means, such as virulence or drug resistance in slow-growing

organisms such as Mycobacterium tuberculosis.

Here I describe the PPFS package that identifies SNPs that are

non-randomly associated with a phenotype. It is an ‘‘add on’’ to

kSNP and has the following characteristics: (1) it runs seamlessly

with kSNP, (2) not all SNPs have to be present in all genomes, (3)

not all genomes need to have a known phenotype, (4) it takes

advantage of the fact that kSNP can provide annotations of most

SNPS and incorporates those annotations into its analysis, (5) it is

fast, requiring less than 10 minutes to analyze over 418,500 SNPs.

The PPFS package of executables for Mac OS X and Linux

operating systems, source code, and a detailed User Guide are

freely available at https://sourceforge.net/projects/ppfs.

As a proof-of-principle I illustrate the uses of the PPFS package

by identifying 207 SNPs associated with the phenotype ‘‘patho-

genic’’ for a set of 68 Escherichia coli genomes. Pathogenic E. coli

include EHEC (enterohemorrhagic), ETEC (enterotoxigenic)

EPEC (enteropathogenic), ExPec (extraintestinal pathogenic),

EAEC (entero-adherent), AIEC (adherent-invasive), UPEC (uro-

pathogenic), and Shigella. Accession numbers, phenotypes and

references for those phenotypes are included in Table S1A. I also

show that when the phenotypes of only 36 of those genomes are

known to the PPFS package, it predicts the phenotypes of the

remaining strains with .94% accuracy. Finally, it identifies the 97

SNPs that are likely to be causally related to the pathogenic

phenotype. In a second example, from a set of 116 E. coli genome
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sequences, using the phenotypes of 65 strains PPFS identified 101

SNPs that predicted the source host (human or non-human) with

90% accuracy. Accession numbers are included in Table S1B.

Methods

The PPFS Package consists of five programs: PPFS, PickPhe-
notypeSubset, GetSNPprobs, DiagnosticSNPs and Cau-
salSNPs. It uses the output from kSNP, and must be run from

with the kSNP output-files folder (directory). Using the full PPFS

package requires that MEGA5 or MEGA 6 (available free at

http://www.megasoftware.net/) be used to estimate ancestral

states at internal nodes of an ML tree.

The user must provide a manually constructed file (.pheno file)

in which the phenotype of each genome is listed either as positive

(1), negative (0), or unknown (?).

PPFS serves as a ‘‘front end’’ that takes the command line

arguments, then runs PickPhenotypeSubset, GetSNPprobs,
and DiagnosticSNPs without direct interaction with the user.

After running those programs PPBS collects the output files of

those programs into a folder (directory) named PPFS.

PickPhenotypeSubset is used to select, from those genomes

whose phenotypes are known, a random subset of genomes that

will be used by GetSNPprobs to calculate, for each SNP, the

probability that the alleles of that SNP are randomly associated

with the phenotype. Through PPFS the user chooses the

approximate fraction of strains to include in that subset. If the

user sets the fraction to be included at 0.5, then for each strain

whose phenotype is known in the.pheno file there is a 50%

probability that its phenotype will be changed to unknown in the

output subset.pheno file. That file thus provides a set of ‘‘unknown

phenotype’’ genomes whose phenotype can be predicted by the

DiagnosticSNPs program, allowing those predicted phenotype to be

compared with the phenotypes in the.pheno file in order to assess

the accuracy with which phenotypes are predicted.

GetSNPprobs uses the output file from PredictPhenotypeSubset to

calculate, for each SNP, the probability that the alleles of that SNP

are randomly associated with the phenotype. Not all SNP sites are

equally informative. For some sites the SNP alleles are distributed

randomly with respect to the phenotype, with others the SNP

alleles are biased. An extreme bias would be one in which all of the

positive strains had an A and all of the negative strains had a G. A

x2 test is used to determine the probability that a SNP is

distributed randomly with respect to phenotype.

Sites with low probabilities of the SNPs being randomly

distributed with respect to phenotype are much more strongly

correlated with the phenotype and have much more resolving

power in predicting phenotypes than do sites with high probabil-

ities. The x2 probabilities of each SNP are written to an output file.

GetSNPprobs writes two output files: (1) a.SNPs file that is the

same as the input.fasta file except in a different format, and (2)

a.ppcs (posterior probabilities chi-square) file. The.ppcs file lists,

for each SNP, the probability that the alleles is distributed

randomly with respect to the phenotype, and for each possible

character state (ACGT-) the probability that a genome is positive

and the probability that it is negative given that character state for

that SNP.

DiagnosticSNPs uses the original.pheno file, the subset.pheno

file written by PredictPhenotypeSubset, and the output files written by

GetSNPprobs, together with several files written by kSNP to identify

the set of SNPs that most accurately predicts the phenotypes.

Those SNPs are the ‘‘diagnostic SNPs’’.

The SNPs are sorted according to the x2 probability (p), then

starting with the SNP with the lowest p, DiagnosticSNPs

calculates the accuracy of the phenotype predictions. It then adds

the next SNP in the sorted list and again calculates accuracy. A

minimum of 50 SNPs are added, then SNP addition continues

until one of several termination conditions is met: The accuracy

with which positive strains are predicted (PPV) reaches a user-

defined maximum (defaults to 0.98), or a user-defined number of

SNPs is added (defaults to 1000), or the PPV (positive predictive

value) declines below a user-defined fraction of the maximum PPV

value so far (defaults to 0.97).

To understand the termination conditions it helps to understand

the terms ‘‘accuracy’’, ‘‘positive predictive value’’ (PPV) and

‘‘negative predictive value’’ (NPV). By comparing the known with

predicted phenotypes the number of true positives (TP), True

Negatives (TN), False Positive (FP) and False Negatives (FN) is

determined. Accuracy is (TP+TN)/(TP+FP+TN+FN). Often we

are actually more interested in knowing the probability that a

strains that is predicted to be positive is actually positive. That

probability is PPV, TP/(TP+FP). Similarly NPV, TN/(TN+FN), is

the probability that a strain predicted to be negative is actually

negative.

As SNPs with gradually increasing p values are added the PPV

at first increases, but as p increases the quality of the SNPs for

predictions declines, so that eventually a point is reached where

addition of more lower-quality SNPs reduces the PPV. PPV does

fluctuate somewhat, so addition is not terminated until PPV

declines enough below its maximum value to be confident that the

decline is real.

DiagnosticSNPs writes several output files: (1) a Diagnos-

ticSNPs.summary file (for an example see Table S2) that shows

accuracy, PPV and NPV at each step as new SNPs are added; the

final accuracy, PPV and NPV for those genomes whose

phenotypes are known but were shown as unknown in the

subset.pheno file; the predicted phenotype for each genome; and

the accuracy, PPV and NPV averaged over all of the genomes. (2)

a DiagnosticSNPs.call file (for an example see Table S3) that gives

the predicted phenotype for each genome, but groups those

predicted to be positive and those predicted to be negative. (3) a

DiagnosticSNPs.list file that provides some annotation information

for each diagnostic SNP (SNP ID, in a protein or not, synonymous

or non-synonymous, protein accession number, and description of

protein function). and (4) a DiagnosticSNPs.info file that provides

the same information as the.list file but is restricted to non-

synonymous substitution SNPs. (5 & 6) a SNPset.fasta and a

SNPtranlations.txt file that are used by CausalSNPs and are

discussed below.

CausalSNPs identifies those diagnostic SNPs that are most

likely to be causal with respect to the phenotype. Although

predictive, the diagnostic SNPs may not be causally related to

phenotype, and may only reflect evolutionary history. For

instance, a SNP that arose along the same branch that a change

in phenotype occurred may be perfectly associated with that

phenotype but be completely unrelated to the reason that

phenotype occurred. CausalSNPs is run from within the PPFS

folder that was created by PPFS.

It is often important to use SNPs to identify genes that are

causally related to a phenotype. CausalSNPs is based on the

assumption that diagnostic SNPs that are causally related to the

phenotype are more likely than the average diagnostic SNP to

change allele state along the same branches along which the

phenotype changes. In order to determine the branches along

which SNPs and the phenotype change it is necessary to infer the

ancestral state of each SNP and of the phenotype at each internal

node.

PPFS for SNP-Associations in Microbial Genomes
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MEGA 5 [3] is used to estimate an ML tree from the SNP data,

and then to calculate the ancestral state of each SNP at each

internal node in order to identify the change in SNP allele across a

branch from an ancestral to a descendant node. MEGA 5 cannot

handle datasets with hundreds of genomes and hundreds of

thousands of SNPs, so a reduced data set is written to the

SNPset.fasta file by DiagnosticSNPs. In that fasta file the

sequence for each genome consists of the diagnostic SNPS,

followed by a character that indicates the predicted phenotype of

that genome, followed by a random sample of the SNPs. The

number of random SNPs is 25 times the number of diagnostic

SNPs, so if there are 100 diagnostic SNPs each sequence in the

SNPset.fasta file will be 2601 characters, with the final 2500

having been randomly drawn from the original full set of SNPs.

MEGA is run from within the PPFS folder that was created by

PPFS.

In order to calculate ancestral states the ML tree estimated by

MEGA must be rooted so that it has direction from ancestral to

descendant nodes [4]. ML trees are unrooted, so by default

MEGA roots the tree at its midpoint. Midpoint rooting assumes a

molecular clock, an assumption that is often invalid [4]. It is far

preferable to root the tree manually in MEGA using an outgroup

genome. That outgroup may either be included in the kSNP

analysis, or a separate KSNP analysis of the same data plus an

outgroup can be used to produce an ML tree and that tree can be

used to identify the branch along which the root should be

manually placed in MEGA (virtual rooting). A brief protocol for

estimating phylogenetic trees with MEGA 5 has recently been

published [5], and an extensive and detailed description of its use

is included in [4].

MEGA writes an output file of Most Probable Sequences that is

used by CausalSNPs. See the PPFS User Guide for detailed

instructions for using MEGA to estimate ancestral states from the

SNPset.fasta file.

CausalSNPs parses the MEGA output file to identify the changes

in the state of the allele of each diagnostic SNP across each

branch, and to identify the change in phenotype across each

branch. For each SNP CausalSNPs determines the x2 probability p

that the SNP changed randomly across the same branches across

which the phenotype changed. It is necessary to consider the

direction of the allele change in calculating those probabilities. For

instance, if the phenotype changed from negative to positive across

10 branches, and the allele state of a particular diagnostic SNP

changed along those same branches it could reasonably be inferred

that the change in allele caused the change in phenotype.

Howsoever, if five of those changes were from A to G, and the

other 5 from G to A, then it would be unlikely that that SNP

caused those changes. It is therefore necessary to classify each

change as a ‘‘positive’’ or ‘‘negative’’ change. Changes from any

base to the absence of the allele are considered negative, and base

changes are considered positive if the value at the descendant node

is greater than that at the ancestral node and negative if lower.

The values of bases are A,C,G,T. The ordering of the values is

arbitrary. Each SNP has only three possible states: one of two

bases, or missing. For the purpose of calculating x2 p values it is

irrelevant whether a change from A to G is considered positive or

negative, it only matters that the determination is consistent.

The diagnostic SNPs are ordered from lowest to highest p, with

lower p values indicating a higher likelihood that the SNP is causal.

CausalSNPs writes four output files that are collected into a

folder (directory) named ‘‘CausalSNPs Output Files’’:

(1) CausalSNP.report (for an example see Table S4) gives the

identities of the branches across which the phenotype changed

and direction of those phenotype changes. It then gives, for

each diagnostic SNP, the SNP number (the position of the

SNP in the sequences in SNPset.fasta), the corresponding SNP

ID in the kSNP files (the SNPtranslations.txt file written by

DiagnosticSNPs keeps track of the SNP number and the

corresponding SNP ID), the p that allele changes were

random over the branches along which the phenotype

changed, and whether the SNP is synonymous or non-

synonymous, the protein accession number, and a brief

description of the protein function.

(2) A ‘‘ChiSquare_details.txt’’ file (for an example see Table S5)

that gives for each SNP the observed and expected number of

positive changes, negative changes, no changes, deletions, and

additions of the SNP across the branches where the phenotype

changed, the x2 value, the degrees of freedom and p.

(3) A ‘‘Changes.txt’’ file (for an example see Table S6) that give

the change of each diagnostic SNP at each branch.

(4) A ‘‘Branches.txt’’ file (for an example see Table S7) that gives

the node number (as listed by MEGA) at each end of each

branch.

Genomes used in this Study
The Genbank accession numbers, corresponding ID on the tree

in Figure 1, phenotype and reference for that phenotype are in

Table S1.

Results and Discussion

SNP Analysis using kSNP
Data set 1. A set of 68 finished E. coli and Shigella genomes

was analyzed on a Macintosh iMac computer with a 3.4 GHz

Intel core i7 processor and with 16 GB of RAM as described in the

User Guide to kSNP. All of those genomes were listed in a file of

finished genome names, enabling kSNP to automatically retrieve

and utilize the annotations for those genomes. The kSNP analysis

required 10.3 hours, identified 418,500 SNPs, and is described in

detail in [2].

In order to root the tree in MEGA kSNP was used to analyze the

same 68 E. coli and Shigella genomes together with the finished

genome of Escherichia fergusonii strain ATCC35469. Accession

numbers, phenotypes and references for the genomes are in Table

S1A of Supplementary Materials.

Data set 2. A set of 116 Escherichia coli genomes, including 8

finished genomes and 108 genome assemblies, was analyzed on the

same Mac computer. The analysis required 15.6 hours and

identified 470,806 SNPs. Accession numbers are in Table S1B.

PPFS Analysis of Data Set 1 in which the Phenotypes are
Pathogenic vs Commensal
In the file Eco68_patho.pheno human pathogenic strains were

listed as the positive phenotype (1), others were listed as the

negative phenotype (0), and one strain had an unknown

phenotype. PickPhenotypeSubsets generated a subset of 36 strains

whose phenotypes were given in the Eco68_patho_50%.pheno file

(see Methods). That file also included 31 strains whose phenotype

were changed to unknown in the Eco68_patho_50%.pheno file

and that were used to calculate accuracies of phenotype

predictions.

GetSNPprobs was used to calculate, for each of the 418,500 SNPS

the x2 probability that the alleles were distributed randomly with

respect to phenotype.

PPFS for SNP-Associations in Microbial Genomes
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DiagnosticSNPs identified 207 diagnostic SNPS that predicted the

pathogenic phenotype for the 31 genomes whose phenotypes were

unknown in the Eco68_patho_50%.pheno file. The accuracy of

those predictions was 0.944, PPV was 0.931 and NPV was 1.0.

Over all, of the 67 genomes whose phenotype is known, accuracy

was 0.970, PPV was 0.96 and NPV was 1.0. Out of those 67

genomes there were two false positives (Table S3).

MEGA 5 analysis. An ML tree was estimated by MEGA 5

from the SNPset.fasta file of 5,384 SNPs per genome using the

GTR+G model with 5 discrete Gamma categories. It was 94.5%

topologically congruent with the ML tree estimated by kSNP from

418,500 SNPs as determined by the Compare2Trees web

application (http://www.mas.ncl.ac.uk/,ntmwn/

compare2trees/index.html) which is an updated version of the

application reported in [6]. The tree was virtually rooted using

Escherichia fergusonii strain ATCC35459, and ancestral states of the

diagnostic SNPS and the phenotype were estimated (Fig. 1).

The analysis of ancestral phenotypes makes it clear that

pathogenicity was the E. coli ancestral state. All seven changes

were from pathogenic to commensal. Figure 1 suggests that

pathogenicity is the ancestral state of E. coli, but that conclusion

may be subject to sampling bias. Most of the sequenced E. coli

strains were chosen specifically because they are pathogenic or

because they are well known laboratory strains. Sequencing of a

large number of commensals, including samples from healthy non-

Figure 1. ML tree estimated by MEGA 5. The predicted phenotypes are indicated by the text color of the taxa: Red =pathogenic,
Blue = commensal. The ancestral phenotypes are indicated by P (pathogenic) or C (commensal) at the internal nodes. Branches along which the
phenotype changed are indicated in magenta. Numbers above some branches indicate the branch number given in Table S7. The dashed line
indicates the virtual rooting with Escherichia fergusonii.
doi:10.1371/journal.pone.0090490.g001
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humans, plus environmental samples, would cast light on the

concern with sampling bias.

CausalSNPs identified 97 SNPs whose probability of changing

randomly across the branches was ,0.001 (Table S4). That table

lists the diagnostic SNPs in increasing order of p, the probability

that the SNP allele changed randomly over the eight branches

along which the pathogenicity phenotype changed. 1-p can be

taken as the probability that the SNP is causally related to the

pathogenicity phenotype.

The list of likely causal SNPs in Table S4 should not be treated

as definitive, but should instead be read with some judgment. The

first SNPs in that list, #81, is from a bacteriophage lambda tail

assembly protein, for which no obvious role in pathogenicity leaps

to mind. The next SNP, #8, is in a nitrogen assimilation protein,

accession number CBG35053.1. Base changes at that SNP are

synonymous, but examination of the x2 details in Table S5 shows

that on 6 of the 7 branches where phenotype changed the SNP

change was deletion of that SNP. Furthermore, there were a total

of nine diagnostic SNPs in that protein, all of which had p values,

0.001. Similarly, the next SNP in the list, #26, is in a putative

invasin, CBG35046.1. There are 10 diagnostic SNPs in that

protein (Table S4), seven of which have p values ,0.001. It

appears quite reasonable to conclude that loss of invasin and the

nitrogen assimilation protein are directly related to loss of

pathogenicity.

Effects of false positives. Table S3 shows that there were

two false positives, strains EcoATCC8739 and EcoSE15, indicated

on Fig. 1 by appending FP to the genome ID. It is clear that the

change from pathogenic to commensal phenotype occurred along

branch 60, not branch 59; and that phenotype changed along

branch 70 as well. Both false positives were strains that had been

designated as unknown phenotype in the Eco68_patho_50%.-

pheno file. For such strains the accuracy was only 0.944. False

positive and false negatives affect the correct assignment of the

branches along which phenotypes change, and that in turn affects

correct calculation of the x2 probabilities. The reliability with

which causal SNPs are identified is directly related to the accuracy

with which ‘‘unknown’’ strains are called by the DiagnosticSNPs

program. Undoubtedly, there will be many data sets for which the

phenotypes of unknown strains cannot be called reliably. When

the accuracy of those calls is ,0.9 I do not suggest that

identification of causal SNPs should be taken seriously.

The PPFS package helps identify SNPs that are associated with

phenotypes, but does not attempt to detect interactions among

those SNPs (epistasis). Multifactor Dimensionality Reduction

(MDR) is a statistical approach to detecting such interactions [7]

and is implemented by the free open-source MDR software

package http://www.multifactordimensionalityreduction.org/.

However ‘‘When you have more than 100 SNPs an exhaustive

search may not be practical unless you are willing to wait days or

even weeks for a run to finish. When the number of SNPs exceeds

10,000 an exhaustive search of all 3-way and higher combinations

may be infeasible, even with a parallel computer.’’ [8] The PPFS

package is a useful tool to reduce the number of SNPs to a level

suitable for MDR analysis. MDR has a feature to downselect SNPs

based on Chi-square probabilities, but it only considers core SNPs,

those present in all strains, and only considers strains that have a

phenotype, so does not make predictions about un-typed strains,

limiting the SNPs and strains that can be included in an MDR

analysis.

It is somewhat surprising that a phenotype as vague as

‘‘pathogenic’’ can be accurately predicted on the basis of a small

set of diagnostic SNPs in a set of sequenced genomes. There may

appear to be little point in predicting the phenotypes of completely

sequenced genomes; after all, given the effort and expense of

sequencing a microbial genome, the phenotype is likely to be

known already. There are three reasons that phenotype prediction

can be valuable today and is likely to become more valuable in the

future. First, phenotypes are rarely reported in genome annota-

tions and many genomes are submitted without reference to

papers where those phenotypes might be available. The PPFS

package permits prediction of the phenotypes of those genomes.

Second, even when phenotypes are reported they are not

necessarily the phenotype of interest to any particular investigator.

Third, when phenotypes are difficult or time consuming to

determine; e.g. for very slow growing organisms such as M.

tuberculosis or for virulence phenotypes of viruses, PCR based assays

can be designed to detect allele variants and thus to predict

phenotypes. If a sufficient number of genome sequences are known

to allow reliable genome predictions to be made, then those

predictions can be applied to complete genomes, genome

assemblies and raw-read genomes in the various databases. The

cost of bacterial genome sequencing now approaches $100 US per

genome and is likely to decrease significantly in the near future. It

is quite feasible for a laboratory to characterize a phylogenetically

diverse collection of a species with respect to a clinically important

phenotype such as virulence, then to sequence 25–30 strains of

each phenotype and to analyze those sequences with kSNP and the

PPFS package. That analysis could then be used to predict the

virulence of strains already in the database. If sequencing costs

continue to decrease it may even become practical to routinely

sequence genomes in epidemiological investigations. If the

phenotype of interest is either expensive or time consuming to

determine, the results of genome sequencing together with the

information provided by a kSNP-PPFS analysis could provide a

rapid assessment of the probability of exhibiting the clinically

important phenotype.

PPFS Analysis of Data Set 2 in which the Phenotypes are
Human vs Non-human Host Source
E. coli is often used as a surrogate to indicate the presence of

human pathogens in water resources [9]. When analyzing water

resources it can be important to distinguish human (sewage, septic

tank effluent, etc) source of contamination from non-human

sources such as local fauna and agricultural resources (R. Norris

and T. N. Fields, personal communication). Availability of DNA

signatures for E. coli from human vs non-human sources would be

valuable for distinguishing E. coli that indicate human waste

contamination from those that are normally resident in soils near

streams [10]. I have analyzed a set of 116 E. coli genomes in which

the source host is specified in the annotations to determine

whether there are SNPs that can predict human vs non-human

origin.

In the Human.pheno file 61 strains were listed as the positive

phenotype (1), i.e. coming from a human host, and 55 were listed

as the negative (0) phenotype, i.e. coming from a non-human host.

PickPhenotypeSubsets generated a subset of 65 strains whose

phenotypes were given in the Human_50%.pheno file (see

Methods). That file also included 51 strains whose phenotype

were changed to unknown in theH_50%.pheno file and that were

used to calculate accuracies of phenotype predictions. GetSNP-

probs calculated, for each of the 470,806 SNPS the x2 probability
that the alleles were distributed randomly with respect to

phenotype. DiagnosticSNPs identified 101 diagnostic SNPS that

predicted the phenotype for the 51 genomes whose ‘‘source’’

phenotypes were unknown in the Human_50%.pheno file. The

accuracy of those predictions was 0.845, PPV was 0.793 and NPV

was 0.91. Over all, of the 116 genomes accuracy was 0.897, PPV

PPFS for SNP-Associations in Microbial Genomes
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was 0.877 and NPV was 0.923. Out of those 116 genomes there

were seven false positives.

Although accuracy, PPV and NPV are not as high as in data set

1, for environmental sampling purposes where assessments would

be based on determinations on many individual isolates, accura-

cies of about 90% are probably high enough to be useful.

Conclusions

SNP association studies are not an end in themselves, but are a

means to identify candidate genes for experimental studies related

to the phenotype of interest. With the release of kSNP for SNP

identification and the PPFS package for SNP association studies,

the major barrier to SNP association studies in microorganisms is

no longer the availability of appropriate tools; it is the culture of

Genomic science itself. There are very few microorganisms for

which both complete genome sequences and biological informa-

tion are available in the databases. There are a plethora of

databases that include or point to microbial genome sequences;

e.g. NCBI’s Genome database, SRA database, Bioprojects

database, bacterial genome assembly database, but it is rare for

any phenotypic information to be included in any of those files and

most do not even refer to published papers that might shed light

on phenotypes. The Broad Institute E. coli antibiotic resistance

database http://www.broadinstitute.org/annotation/genome/

escherichia_antibiotic_resistance/MultiHome.html provides de-

tailed information on genotypes of hundreds of strains, but does

not release the antibiotic resistance phenotypes. On the other side

of the coin, the Network on Antimicrobial Resistance in

Staphylococcus aureus (NARSA) http://www.narsa.net/control/

member/allapprovedisolates provides antibiotic resistance pheno-

types for hundreds of S. aureus strains, but genome sequences are

available for only about a dozen of those strains. Genome

sequencing has become so fast and so inexpensive that we seem to

have lost track of the reasons for which those individual strains

were sequenced. Obviously a complete description of the

biological properties of each sequenced genome is impossible,

but at the very least there should be a paragraph explaining why

the particular strain was chosen to be sequenced. Was it from a

sick or healthy individual, from an environmental sample (what

environment), etc?

Ideally, an international repository would be created for

maintenance of all strains (not strain information, but the

organisms themselves) whose genomes are added to the genome

sequence databases. Availability of the organisms would permit

investigators to determine the phenotypes of interest of strains that

have already been sequenced, and thus to conduct valuable SNP

association studies. Failing that, the annotations of all genomes in

the database should include contact information for an individual

who is committed to providing a sample of the strain upon request.
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