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Abstract

Objectives: Diffuse liver disease (DLD), such as non-alcoholic fatty liver disease (NASH) and cirrhosis, is a rapidly growing
problem throughout the Westernized world. Magnetic resonance imaging (MRI), based on uptake of the hepatocyte-specific
contrast agent (CA) Gd-EOB-DTPA, is a promising non-invasive approach for diagnosing DLD. However, to fully utilize the
potential of such dynamic measurements for clinical or research purposes, more advanced methods for data analysis are
required.

Methods: A mathematical model that can be used for such data-analysis was developed. Data was obtained from healthy
human subjects using a clinical protocol with high spatial resolution. The model is based on ordinary differential equations
and goes beyond local diffusion modeling, taking into account the complete system accessible to the CA.

Results: The presented model can describe the data accurately, which was confirmed using chi-square statistics.
Furthermore, the model is minimal and identifiable, meaning that all parameters were determined with small degree of
uncertainty. The model was also validated using independent data.

Conclusions: We have developed a novel approach for determining previously undescribed physiological hepatic
parameters in humans, associated with CA transport across the liver. The method has a potential for assessing regional liver
function in clinical examinations of patients that are suffering of DLD and compromised hepatic function.
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Introduction

Diffuse liver disease is a rapidly growing problem throughout

the Western world. The pathology include conditions such as

viral hepatitis C (prevalence of about 1.8–3.2% [1,2]), and non-

alcoholic fatty liver disease (prevalence of about 16–20% [2,3]),

which all can provoke the formation of fibrosis, inflammation

and ultimately, cirrhosis. In the final stages of these diseases there

is a loss of liver function, and a reliable evaluation of liver

function is crucial, for example, for the management and

planning of liver resection or transplantation, which may be

the only available treatment in severe liver disease. Liver function

is often assessed using methods such as Indocyanin-Green 15

retention rate (ICGR15) or Tc-99m galactosyl human serum

albumin (GSA) measurements [4–6]. ICGR15 and GSA are both

exclusively global indicators, i.e. they do not provide any

information about regional liver function. In addition, GSA

involves the injection of a radioactive isotope, and is therefore

associated with certain risks as well as costs. These issues can all

be overcome by use of magnetic resonance imaging (MRI) and

MRI contrast agents (CA), providing a local completely non-

invasive assessment of liver function, without the use of ionizing

radiation.

MRI is already an established diagnostic modality, but the

techniques and CA are under constant development. One

recently approved novel CA is Gd-EOB-DTPA (abbreviated as
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‘EOB’ in the following text; Primovist/Eovist, Bayer Schering

Pharma, Berlin, Germany). EOB is particularly advantageous

for the study of liver function for several reasons. One is that

EOB is specifically taken up from plasma by hepatocytes,

followed by a subsequent active excretion into the bile by the

hepatocytes. Typically, the livers of healthy subjects excretes

about 50% of the injected EOB dose into the bile, an

absorption/excretion rate which is much higher than an

alternative CA, Gd-BOPTA [7–9]. In addition, EOB appears

to use the same mechanisms for cellular uptake and release as

the commonly used ICG [6]. Consequently, EOB-enhanced

hepatobiliary MRI has a clear potential to become a valuable

standard diagnostic technique in the clinical workflow [4,10–

12], although the methods for the data analysis needs to be

considerably improved before that can materialize.

In previous human studies with dynamic contrast-enhanced

MRI (DCE-MRI) using EOB the methods for estimating liver

function has been based on analyzing deconvoluted liver

response, based on input functions estimated in the portal vein.

This liver response was then analyzed using methodology

developed for scintigraphy in order to estimate the hepatic

extraction fraction [13]. A more sophisticated method was

recently published, combining hepatic perfusion with functional

modeling, where the dual blood supply to the liver was taken

into account, as well as a more refined measure of the

hepatocyte uptake kinetics [14]. This later method unfortunately

requires a high temporal resolution, which in turn implies a

lower spatial resolution, which will affect the signal-to-noise

ratio, and therefore will render the image matrix and field of

view incompatible with diagnostic imaging of e.g. focal lesions.

Both of the above mentioned methods demand an input

function estimated from a single vessel in order to calculate the

kinetic parameters. Moreover, the non-linear relationship

between EOB concentration and microenvironment (e.g. blood

plasma, hepatocyte) as well as the experimental parameters are

not taken into account. A novel, recently published method for

quantification of signal enhancement in the images allows for

rescaling of the signal intensities according to the specific

experimental setup and microenvironment [10]. This method

allows for our here proposed approach, based on novel

principles derived from systems biology, and was recently

successfully used to estimate EOB concentrations from DCE-

MRI data for modeling the CA-uptake in rats [15].

In systems biology, data analysis is entirely focused on

biologically relevant mechanistic mathematical models [16,17].

These mathematical models are formal representations of mech-

anistic hypotheses regarding how the data have been generated.

Models that are unable to describe the data sufficiently well lead to

rejected hypotheses, whereas non-rejected models can be used for

instance for the identification of mechanistic parameters, and

importantly other not directly measurable properties in the system.

Such a systems biology approach has been used successfully on a

wide variety of different systems [18,19], but no mechanistic

mathematical model for human liver function assessment based on

high spatially resolved EOB DCE-MRI data has yet been

developed.

The main aim of this work was to develop a physiologically

based whole body mathematical mechanistic minimal model with

a potential for assessing liver function based on DCE-MRI of a

liver-specific CA (EOB), in humans. Furthermore, we intended to

combine the modeling with a previously developed approach for

MRI-signal based CA concentration quantification [10] in order

to allow for physiologically relevant and quantitative measures. In

addition, we wished to develop an approach that is compatible

with routine clinical protocols, allowing for morphological and

regional evaluation of liver status.

Materials and Methods

Experimental Data
The experimental data was obtained from two previously

published reports, no experimental data was produced. The

retrospective study included healthy volunteers from Dahlqvist

Leinhard et al [10] (n= 10; referred to as ‘estimation data’), and a

preclinical study by Schuhmann-Giampieri et al [8] (n= 18;

referred to as ‘validation data’). These two studies differ in the

measurement technique as well as injection procedures which

make this a particularly useful validation set in terms of validating

that this is a physiologically sound model applicable on a wide

range of conditions. The most relevant experimental parameters of

Table 1. Experimental data description.

Estimation data – Dahlqvist Leinhard et al [10] Validation data – Schuhmann-Giampieri et al [8]

Injection procedure Bolus Infusion

Injection rate 1 mL?s21 5–20 mL?s21

Injection time ,15 s 10 min

EOB dose 0.025 mmol?kg21?BW21 0.2, 0.35, 0.5 mmol?kg21?BW21

# subjects 10 6 in each dose-group (18 in total)

Mean age 25 (22–27) years 30 (20–40) years

Mean weight 73 (62–84) kg 83 (69–97) kg

Gender 5 males, 5 females 18 males

Measurement technique DCE-MRIa ICP-AESb

Measurement time Pre-contrast, arterial and portal venous
phase, 10, 20, 30 and 40 min

0–120 h, 6 daysc

Measurement ROIs in the liver, spleen, veins Sampling of blood, feces, and urine

aDynamic Contrast Enhanced Magnetic Resonance Imaging.
bInductively Coupled Plasma Atomic Emission Spectrometry.
cBlood sampling up to 120 h, only data points up to about 40 min post-contrast was used in the validation thus matching the time-span of the DCE-MRI data. Feces and
urine sampled up to 6 days.
doi:10.1371/journal.pone.0095700.t001
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the two studies are cited and listed in Table 1. All images and

other relevant data in the estimation data set were available to us,

whereas the validation data were extracted from the printed

article.

The study from which the estimation data was obtained was

approved by the regional ethical review board in Stockholm,

Sweden, (‘Regionala etikprövningsnämnden i Stockholm’; Refer-

ence No. EPN 2005/305–31/1) and the participants gave

informed written consent.

Figure 1. Estimation data. Example of the spatially highly resolved DCE-MRI that was used as estimation data, showing the pre-contrast
acquisition (panel A), followed by the post-contrast acquisitions (panels B–G) with a distinct accumulation of the contrast agent in the liver. The dark
areas within the liver in the late phases (panels D–G) are mainly blood vessels with drastically lower concentration of contrast agent compared to the
accumulated contrast agent in the hepatocytes. This difference can be appreciated quantitatively in panel H, since the increase in signal intensity in
the spleen is only due to the CA residing within the blood plasma. The location of the seven different regions of interest placed in the liver are shown
throughout the time series (panels A–G, one in each panel), indicated by the red arrow heads. The hepatic artery, with a high initial concentration of
contrast, can be seen in panel B (red arrow) as well as the portal vein (blue double arrow). In panel C the spleen (orange open arrow head) is almost
isointense with the liver. The efflux of CA in the common bile duct can be seen in panel D (green arrow). Finally, the quantified mean relative change
in relaxivity in the ROIs placed in the liver and spleen throughout the examination is shown in panel H, with the vertical bars corresponding to the
standard error of the mean.
doi:10.1371/journal.pone.0095700.g001
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DCE-MRI Signal Intensity Conversion of the Estimation
Data

Regions of interest (ROI) where placed in the images by an

experienced radiologist. Seven ROIs were placed within the

liver, three within the spleen and one each in the portal and

splenic vein. The seven liver ROIs were placed in both the left

and right liver lobes avoiding any large vessels or focal lesions,

but without the intention of strictly following the segmental

division as introduced by Couinaud [20]. The sizes of the ROIs

where arbitrarily chosen by the radiologist, but adjusted to be

equal in size and approximate position throughout the time

series. Landmarks in the images where used for correcting

movement of the liver between the acquisitions. The signal

intensity in the ROIs were subsequently converted into

quantitative CA concentrations as previously described by

Dahlqvist Leinhard et al [10]. Fig. 1A–D shows an example of

how seven different liver ROIs were placed in one subject

throughout the volume in a spatially highly resolved DCE-MRI

time series. In Fig. 1E the quantified mean of all ROIs placed

in the liver as well as in the spleen are shown.

Mathematical Models
The model was formulated using a system of ordinary

differential equations (ODEs) using the following notation,

_xx ~ f x,px,uð Þ
x 0ð Þ ~ x0

ŷy ~ g x,py
� � ð1Þ

where x denotes the states (here corresponding to CA

concentration in different compartments) and the dot _xxð Þ
denotes time-derivative; px denotes kinetic transport parameters

and volumes; u denotes the injection of CA; f and g are

smooth nonlinear and linear continuous functions; x0 denotes

the initial state values; ŷy denotes the model output correspond-

ing to measurements; and py denotes the parameters used to

calculate the simulated output from the states (compartmental

fractions and scaling parameters). Note that all symbols are

vectors and that the time-dependence of x, u and ŷy usually are

dropped to simplify the notations. The function f was

constructed after summation of in- and out-going flows for

each compartment, according to normal conventions [16,21].

Finally, specific choices for the equations in Eq. 1 corresponds

to a specific model structure i (denoted Mi, e.g. M0), and a

model structure with specific values for the parameters

corresponds to a specific model (denoted Mi(p)).

Modeling Software
The models were implemented and analyzed in the ‘Systems

Biology ToolBox2’ (SBTB2) v2.1 for MATLAB [22] (obtained

from www.sbtoolbox2.org); SBTB2 is a free open-source add-on

package to MATLAB (R2009b, The MathWorks inc., MA, U.S.).

All relevant scripts and model files used for the analysis are

available at the journal home page (File S1).

Identification of Model Parameters
The model simulations were compared to the experimental data

by evaluation of the size of the residuals, which were defined as the

difference between the measured yð Þ and simulated ŷyð Þ outputs. If

these residuals are normalized by the standard deviation sð Þ of the

measurement uncertainty, the following cost function measures the

overall agreement between model and data.

V (px,py)~
X(ŷyi (px,py ,t){yi (t))

2

si (t)
2 [x2(df ) ð2Þ

where the summation is over t and i, and where the final

x2 dfð Þ symbol is described in relation to the statistical tests

below, and the cost V px,py
� �

depends on the parameter values

[16]. Since the specific parameter values are not known, an

optimization procedure was used to identify those parameters

that gave the lowest cost, i.e., the best agreement with the data.

A simulated annealing [23] approach, modified to return not

only the optimal parameters but all parameters that passes the

chi-square test (Eq. 2, see description of the test below), was

used for the optimization.

Model Analysis
The estimated parameters were then analyzed in three ways.

First, one probes whether the agreement to the data is

sufficient. This was formally evaluated using a chi-square test,

which in practice tested whether the cost function (Eq. 2) was

lower than a certain threshold, d. This threshold was calculated

as the inverse of the cumulative chi-square distribution, where

the significance level was chosen as 0.05, and where the degrees

of freedom df were chosen as the number of data-points (18 for

Figure 2. Diagram of the proposed model. Schematic diagram of
the proposed model (M0). The rounded edge rectangles represent the
different compartments in the model connected with arrows showing
the direction of the CA fluxes, with the associated rate parameters. The
Hepatocyte compartment represents all intracellular water within the
liver, and the Splenic IS represents the structures within the spleen that
are inaccessible to EOB. The white pointed rectangle (CA Injection)
represents the administration of EOB to the system. The white circles are
the sinks of the system, meaning that once the CA has reached the
‘Urine’ and ‘Bile’ compartments it cannot be transferred back into the
system. The signal model is represented by the dashed grey boxes (liver,
vein and spleen respectively), showing the congregation of compart-
ments for the conversion from CA concentration to relative change in
relaxivity that is comparable to the data from the ROIs. The fractions of
the compartments used in each MRI signal simulation can be found in
Table 2. Both the plasma and EES compartments are shared between
the liver and spleen MRI signals.
doi:10.1371/journal.pone.0095700.g002
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estimation data used in the optimization, and 9 for each set of

validation data) minus the number of identifiable parameters (4

for estimation data, and 0 for validation data) [16]. Non-

rejected models were passed on to the remaining two steps in

the model analysis.

The second test concerns parameter identifiability. A parameter

is (practically) identifiable if its value can be determined from data

with a reasonably small uncertainty. This identifiability analysis

was carried out using the Profile Likelihood (PL) approach [24].

PL analyses is done one parameter at a time, by increasing (or

decreasing) that parameter while optimizing all other parameters;

Table 2. Fraction parameters defining the content in each ROI.

Compartment Fraction of Liver ROI Fraction of Spleen ROI Fraction of Vessel ROI

Blood Plasma 0.12 0.35 1.0

EES 0.20 0.20

Hepatocyte 0.68

The fractions (c in Eq. 8 and Eq. 10), defining which compartment, and how much of each compartment is included in measured regions of interests. This is shown
graphically in Fig. 2, the signal model. The fractions were obtained from [40].
doi:10.1371/journal.pone.0095700.t002

Figure 3. Overview of all tested model configurations. Schematic diagram of the rejected model variants (M1–M9), where the squares
represents compartments, circles are the sinks in the model, and the arrows shows the fluxes in the model (see Fig. 2). The signal model (see Fig. 2)
was omitted for simplicity and it is identical in all models (M0–M9). The dashed arrows represent the use of Michaelis-Menten kinetics instead of linear
mass-action or diffusion like kinetics (as shown by solid arrows).
doi:10.1371/journal.pone.0095700.g003
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until the parameter has increased (or decreased) so much that the

optimization of the other parameters no longer can produce an

acceptable agreement with the data, the upper (lower) boundary

for that parameter has then been found.

The third test concerns predictions. In this step, we translated

the uncertainty in the parameters to an uncertainty in the

predictions. This was implemented by using the core prediction

methodology introduced in [25]. The basic idea is to determine

a representative subset of all acceptable parameters (here

obtained in the PL analysis), and then observing the combined

simulations of the entire parameter set. Herein two different

aspects of the model were evaluated using the core prediction

methodology: 1) the amount of EOB eliminated via the bile and

urine and 2) the amount of EOB residing within the blood

plasma. A benefit of this approach is that it, unlike most other

approaches, it also works in the case of unidentifiable

parameters.

Furthermore, the sensitivity of the predictions was evaluated by

simulating the final model using a 620% variation, in each

individual volume parameter at a time. Literature derived values

for each volume parameter were thus varied in the final model to

determine the sensitivity of the results associated witch such

variation.

Model Description
Several different model structures were analyzed in detail,

even though only a single model is ultimately suggested. The

suggested model structure is denoted M0, and additional

proposed model structures are denoted M1–M9. M0 is depicted

in Fig. 2 and corresponding figures for the other model

structures are found in Fig. 3. Fig. 2 contains four rounded-edge

rectangles, and these correspond to the four major compart-

ments in the model: ‘Blood Plasma’, ‘Extracellular Extravascular

Space’ (EES), ‘Splenic Intracellular Space’ (Splenic IS), and

‘Hepatocytes’ (corresponding to concentrations Cp,Ce,Cs and Ch

respectively). The two circles, ‘Bile’ and ‘Urine’, correspond to

sinks in the model, i.e. there is no flow going from these

compartments to other parts of the model. The shaded areas

correspond to the three measurement signals. The leftmost

signal in Fig. 2 is the MRI ‘Liver Signal’, which is composed of

contributions from the Hepatocytes, Blood Plasma and EES.

Similarly, the MRI ‘Spleen Signal’ has contributions from

Splenic IS, Blood Plasma, and EES, and the MRI ‘Plasma

Figure 4. Predictions after model fitting for the proposed and one rejected model. Panels A–F shows model prediction versus estimation
data (black error bars, presented as mean 6 SE). Panels A–C shows the predicted MRI signals (solid blue lines) for the liver, spleen, and vein
respectively using model MO. The dashed blue lines indicate the range of the predictions defined by the profile likelihood–based confidence intervals
of the parameters (Table 3, Fig. 5). Panels D–F shows the corresponding simulations for a rejected model, in which diffusion between the blood
plasma and the EES was assumed to be zero (model M7). In panel G, the dose-normalized blood plasma CA concentration is shown for model M0
(blue lines), and also the prediction with the lowest cost that failed to pass the ad hoc constraint (red line).
doi:10.1371/journal.pone.0095700.g004
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Signal’ emerges from the Blood Plasma compartment only. The

arrows correspond to fluxes, i.e., transport between the

compartments, and the different model versions differ from

each other in the characterization of these fluxes.

Transports
The first transport step is the injection of CA. This flux is

modeled as a step function

u ~ ksyrCEOB 0ƒtƒt

u ~ 0 twt

�
ð3Þ

where ksyr corresponds to the CA injection rate, CEOB corresponds

to EOB concentration in the syringe, and t corresponds to the

time point where the injection is terminated. This transport

equation is the same for all different models, and in the case of

using the model with the validation data, these parameters were

updated in order to match the experimental setup.

There is no transport of EOB between Splenic IS and the other

compartments; similarly this is the same for all different models.

There is a bi-directional flow between blood plasma and EES.

This flow is caused by passive diffusion, where the diffusion

constant is the same in both directions

v1 ~ kdiff Cp{CSA

� �
v2 ~ kdiff Ce

ð4Þ

where v1 and v2 corresponds to the flow to and from EES,

respectively; where kdiff is the diffusisssson rate constant; and

where CSA is the concentration of EOB bound to serum albumin

[26]. CSA is given by CSA~0:1Cp. Note that CSA is located in the

plasma compartment, therefore it is a part of the plasma EOB (i.e.

contributes to Cp); in other words, Cp consists of both free and

bound EOB. Eq. 4 describes the flow between Plasma and EES for

all model structures, with the exception of M7.

The flow between the blood plasma and hepatocytes is

governed by different membrane associated macromolecular

transporters, mainly, OATP1B3, OATP1B1, and also by NTCP

[27,28]. Back-flow into the blood plasma from the hepatocytes

can be facilitated by a number of different routes; 1) primarily

the OATP’s due to their function as bidirectional transporters

[29,30], 2) up-regulation of MRP3 on the sinusoidal membrane

[31], and in some diseased states 3) tight-junction leakage [32].

The flows between Blood Plasma and Hepatocyte compartments

were, due to the multiple transporters, modeled in a phenom-

enological manner: as linear mass-action transports in M0–M4,

M6, and M7, alternatively as Michaelis-Menten expressions in

M8 and M9 (Fig. 3). Furthermore, omitted in M5 and in some

model structures (M2, M4, and M9) the flow was modeled as

irreversible, i.e. where there is no flow from the hepatocytes to

the blood. In other words, for M0, the flows are given by:

v3 ~ kph Cp{CSA

� �
v4 ~ khpCh

ð5Þ

where v3 and v4 corresponds to the flow to and from the

hepatocyte, respectively, kph and kph are the kinetic parameters

for the two rate equations.

The blood plasma is also cleared of CA by the kidneys. This

clearance primarily consists of glomerular filtration, which results

in an apparent clearance of approximately 118 mL of blood per

minute [7,8,33], which means that the renal clearance can be

modeled as

v5 ~ CLr Cp{CSA

� �
ð6Þ

where CLr is the kinetic parameter.

The final transport in the model is from the hepatocytes to

the bile, which is mediated via MRP2. This transport is

generally believed to be rate limiting, displays Michaelis-Menten

kinetics, and it is an ATP-driven strictly unidirectional process

[34–36]. For these reasons, the flow is in most models described

by Michaelis-Menten kinetics (Eq. 7b M1, M3–M4, M7–M9),

but in model M0 it was shown possible to use a linear

expression instead (Eq. 7a). Note that we in this work are

seeking a minimal description of the system with identifiable

parameters given the data available, therefore even though there

is evidence for saturation in this particular transporter arguing

for the use of a Michaelis-Menten rate expression, a linear

approximation might nevertheless be sufficient when the

transporter is included in the complete system, e.g. by using

mass action-like behavior instead [37]. See the discussion for

more detailed motivation for such replacement of Michaelis-

Menten with mass action.

v6 ~ khbCh ð7aÞ

v6 ~
VmaxCh
kmzCh

ð7bÞ

where khb is the kinetic parameter for EOB transfer from the

hepatocytes to the bile canaliculi. Also note that in M6, this flux

(v6) is omitted (Fig. 3).

Table 3. Estimated parameter values.

Parameter Estimated value PL-based confidence intervals Unit Description

j 1.604 [1.431; 1.801] Scaling

khb 3.852e-4 [2.108e-4; 6.657e-4] s21 Flux; from the hepatocyte to the bile.

kdiff 1.731e-3 [9.626e-4; 2.915e-3] s21 Diffusion constant; between the
EES and the blood plasma

kph 4.776e-3 [3.265e-3; 6.682e-3] s21 Flux; from the plasma to the hepatocyte

khp 2.857e-4 [4.593e-6; 6.754e-4] s21 Flux; from the hepatocyte to the plasma

Estimated parameter values and the associated profile likelihood-based (PL) confidence intervals for model M0, the PL estimate is shown graphically in Fig. 5.
doi:10.1371/journal.pone.0095700.t003
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By including these flows, the differential equations become:

_CCh ~ v3{v4{v6

_CCp ~
{v3zv4ð ÞVl ch{v5z v2{v1ð ÞVezu

Vp

_CCe ~ v1{v2

ð8Þ

These ODEs are the same for all model structures, even though

some flows, vi, are equal to zero in some of the models.

Signal Model
The signal model depended on whether we compared with

estimation data (derived from DCE-MRI) or validation data

(derived from blood sampling). For the validation data, the

measurement equation was simply g py,x
� �

~jCp, where j is an

arbitrary scaling constant. For the estimation data, the conversion

of contrast agent concentrations in the model to relative change in

relaxivity rested on the following relationship [10]:

DR1~Cr1 ð9Þ

As described above, each ROI is an observation of the

combined signal from multiple compartments, e.g. the MRI Liver

Signal contains contributions from EES, Blood Plasma and the

Hepatocyte compartments. In order to derive a value comparable

to the ROIs placed in the tissue, the following equation was used,

based on Eq. 9:

gi px,py,x
� �

~DR1,i~j
Xn

j~1
Cjci,jr1,j ð10Þ

where i~1,2,3 for the three measurements in the liver, spleen and

veins, respectively; where Cj is the CA concentration in

compartment j, for the four compartments (Hepatocyte, EES,

Splenic IS, or Blood Plasma); where ci,j is the fraction of the

volume in ROI i consisting of compartment j and r1,j is the in situ

relaxivity in compartment j. The in situ compartment specific

relaxivity values at 1.5 T and 310 K were assumed to be: EES

6.9 mmol21?s21, Blood Plasma 7.3 mmol21?s21, and Hepatocytes

10.7 mmol21?s21 [38,39].

Published Parameter Values
Some of the parameters were estimated using optimization, as

described above, whereas other parameters were obtained from

Table 4. Model selection and testing process summary.

Model
No of fitted
parameters

No. of
identifiable
parametersa

Fits the
estimation data?

Lowest cost for
estimation data
(Eq. 2)b

Passes the
ad hoc
constraint?

Fits the
validation data

M0 5 5 Yes 16.2 (20.3) Yes Yes

M1 6 3 Yes 16.2 (21.9) Yes Yes

M2 4 - Yes 16.2 No -

M3 6 - Yes 20.5 No -

M4 5 - Yes 16.2 No -

M5 4 - No 332 - -

M6 4 - No 28.6 - -

M7 5 - No 63.1 - -

M8 8 3 Yes 16.2 (21.9) Yes Yes

M9 6 - Yes 16.2 No -

aAs defined by the PL-analysis.
bThe cut-off for the chi-square test was 23.684. The value in the parenthesis is the lowest cost for passing the ad hoc constraint.
Summary of the model selection process, where the too simplified models fail to match the estimation data (M5–M7) and the ad hoc constraint (M2–M5, and M9) – that
there is at least 1% of the tracer residing within the blood plasma pool after 3 h. A summarized description of the different rejected model variants are found in Fig. 3
and the suggested model, M0, in Fig. 2. There are only 3 models (M0, M1, and M8) which are able to pass the ad hoc constraint. Moreover M0, M1, and M8 successfully
pass all the validation steps. The differences between M0 and the other two model variations (M1 and M8) are nonlinearities (Michaelis-Menten kinetics, see Fig. 3),
which affects the number of practically identifiable parameters.
doi:10.1371/journal.pone.0095700.t004

Figure 5. Profile likelihood parameter uncertainties for the
proposed model. The solid lines show the profile likelihood versus
parameter value for model M0, given the estimation data. The dashed
lines show 95% confidence interval. In Table 3 the numerical values and
definitions of each parameter were summarized. The results show that
all parameters are structurally identifiable, i.e. they have a finite limit.
doi:10.1371/journal.pone.0095700.g005
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literature. In Table 2, the individual fractions, ci,j (used in Eq.10)

are given. These fractions are based on a 70 kg ‘standard human’,

characterized by 20% ‘fat’ (v/v) [40]. Note that the fractions ci,j for

the splenic ROIs do not add up to zero. The reason is that the cells

of the spleen were not modeled because they do not take up any

observable amounts of CA.

The volumes were also assumed to be known, and they were

also obtained from the ‘standard human’ [40]: Vliver~1:43,

Vblood~4:51 and VEES~14:77 [40]. Since the CA does not enter

the erythrocytes the blood plasma volume is also needed.

Assuming an average hematocrit of 0.43, the blood plasma

volume in a typical human subject is 1.94 L [40].

Results

Model Fit of DCE-MRI
The final model (M0) was fitted to the estimation data, see

Fig. 4A–C, using a standard chi-square cost function as

optimization objective function (see Materials and Methods).

The solid curves in Fig. 4A–C correspond to predictions made

with the parameters yielding the lowest cost (Eq. 2), and the

dashed lines correspond to the most extreme predictions of MO

yielded by the PL parameter confidence intervals (Table 3, Fig. 5).

The corresponding predictions for a rejected model (M7) is shown

for comparison in Fig. 4D–F, this model failed the chi-square test

(Table 4).

The same M0-parameters (as in Fig. 4A–C) were used for

Fig. 4G, which displays the plasma concentration as a function of

time. Certain parameter sets results in dose-normalized plasma

concentrations at t = 3 h that were below 1% of the administered

dose. Such a low concentrations below what is physiologically

realistic [8,33], suggests that even more parameters should be

rejected. We therefore added an additional condition that the

dose-normalized serum concentration at t = 3 h must be .1%.

The parameters that fulfilled this additional fixed-limit require-

ment were used further below.

Identifiability
A important strength of the model is that it is identifiable,

meaning that the parameter values were determined by the

experimental data with a low uncertainty [24]. This identifiability

was analyzed using the PL-method ([24], see also Materials and

Methods), and an example of such an analysis for model M0 is

shown in Fig. 5. The determined parameter ranges for the fitted

parameters are summarized in Table 3 and the effects on the rate

equations can be appreciated in Fig. 6.

Deriving a Minimal Model
Another important property of the model is that it is minimal

given these data and requirements. This property is illustrated in

Table 4, which shows the model properties for a number of

different reasonable modifications or extensions of this model. The

different versions corresponded to simplifications such as exclud-

ing certain fluxes (in M2–8), or by incorporating nonlinearities

such as Michaelis-Menten expressions for describing some of the

fluxes (M1 and M9) in an appropriate kinetic meaningful fashion

(see Fig. 3). Our analysis showed that most of the in such a way

simplified or extended models were not able to describe the data in

a fully identifiable or statistically acceptable manner (as shown in

Fig. 4C–F for M7). Furthermore, the models with introduced non-

linear characteristics had at least three unidentifiable parameters

(Table 4).

Validation of the Minimal Model
A final strength of the minimal model is that it allows the

description of independent validation data, something that was not

used in the estimation phase. Here, two different such validation

tests have been performed. First, we tested that the relative

amounts of CA excreted to the bile and to the urine were within

reasonable limits [8,33], and the results are presented in Table 5.

Second, the model was compared with three different datasets

using doses ranging up to 20 times higher than those used in

clinical practice and in the estimation data (Fig. 7A–C). As can be

seen by visual inspection, the model agrees reasonably well with

the validation data. Moreover a chi-square test confirmed this

statistically.

Predictions
The model predications based on a representative set of

parameter vectors given the estimation data for model M0 are

shown in Fig. 6, with uncertainties using the core-prediction

methodology (see Materials and methods). Moreover the predic-

tions of the EOB elimination (via the renal or biliary pathways) are

presented in Table 5, the increased prediction certainty on the

eliminations due to the ad hoc constraint on the blood plasma

concentrations is clearly shown in Table 5.

To further evaluate the soundness of M0, the model was

simulated for a new set of parameter vectors based on the optimal

parameter values (Table 3) with a decreasing hepatocyte uptake

(kph) until a zero uptake was approached (all other parameters

Figure 6. Contrast agent flux rates for the proposed model. The
predicted CA fluxes in model M0 for; CA elimination via the liver (panel
A), net Blood Plasma to Hepatocyte CA flux (panel B), and the
elimination of CA via the kidneys (panel C). The dashed lines indicate
the most extreme predictions defined by the profile likelihood-based
confidence intervals of the parameters (Table 3).
doi:10.1371/journal.pone.0095700.g006
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were fixed). Fig. 8A shows how the predicted liver signal then

decreases as the uptake rate was lowered for rather narrow range

until there was practically no uptake. Fig. 8B shows the

predications for how this reduced contrast agent uptake affected

the elimination routes.

Sensitivity of the liver signal due volume variations
In the sensitivity analysis, the final model (M0) was found to be

primarily sensitive to changes in the whole liver and EES volume

Figure 7. Model blood plasma predictions versus validation
data. Model predictions of the blood plasma CA concentrations made
using model M0, versus validation data (error bars corresponding to
mean 6 one standard deviation). Panels A–C corresponds to doses 8,
14, and 20 times higher than the clinically normal dose which is,
0.025 mmol?kg21?BW21 (which was used for the estimation data). The
blue lines are model predictions obtained using the same set of
parameters in all three cases. These were derived from the estimation
data and the arbitrary scaling constant was then re-calculated for this
data set, but kept equal in all three cases (A–C). The parameters of the
input function were modified to mimic the experimental setup of the
study. A chi-square test was used to test for differences.
doi:10.1371/journal.pone.0095700.g007

Table 5. Predictions of renal and biliary elimination.

Estimation data Reference values

Predictions from the
initial model fit

Predictions after applying
the ad hoc constraint

Predictions based on the
PL-analysis results Data are shown as mean and SD

Bile 38.4–75.4% 43.2–44.5% 38.4–63.5% 31617% [33] 36.868.5% [8]

Urine 23.0–40.6% 39.0–39.7% 30.6–40.6% 4865% [33] 43.668.6% [8]

Renal and biliary elimination fractions, expressed in per cent of administered dose, using model M0. The table shows how better defined the predictions become once
the ad hoc constraint is applied or the PL-analysis (which includes the ad hoc constraint modified into a data point), in comparison to the predictions based on the sets
of parameter derived from the estimation data. In the rightmost column some reference values for the EOB elimination are shown for comparison.
doi:10.1371/journal.pone.0095700.t005

Figure 8. Simulated loss of liver function. A gradual loss of liver
function was simulated using a set of parameter vectors based on the
optimal values, but with reduced uptake kinetics. See the legend in
panel A. The topmost, dark blue, line corresponds to the optimal values
from Table 3. The predicted liver signals obtained using model M0 are
shown in Panel A, and also the corresponding predicted elimination
fractions in panel B (left to right on the x-axis). The elimination fractions
were calculated as the individual route divided by the total elimination
for the simulation (bile or urine, green and yellow bar respectively).
doi:10.1371/journal.pone.0095700.g008
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parameters, as shown in Fig. 9, where each volume parameter was

allowed to have a value of 620%.

Discussion

We have presented a new modeling approach, which constitute

a biologically highly relevant data-analysis for DCE-MRI, and

exemplified it using EOB uptake in human liver in combination

with a clinical protocol. The main benefit of our approach is that it

estimates realistic kinetic transport parameters, describing liver

function. These parameters are extracted through modeling of

dynamic MRI-measurements that are normally interpreted by

radiologists, although such transport parameters would not be

available using such routine clinically oriented visual inspection.

Recent work has indicated that quantifying such spatial highly

resolved DCE-MRI images can be used for discrimination

between fibrosis grade [11] and impaired hepatobiliary function

[10]. Our presented model is minimal, identifiable, and provides

physiologically realistic predictions.

There are some specific strengths with our approach. First, the

parameter uncertainty was determined using a novel method, PL

[24], which is more correct and generally applicable than the more

widely used approaches based on the Hessian of the cost function

[41]. Second, that our approach has yielded an identifiable model

means that it is also observable, i.e. all model predictions will have

a both well-defined and small uncertainty. Third, access to well-

defined parameters means that there is a potential that some of

them likely can be replaced by their determined values in future

clinical/model work, leading to a suitable simplification. For

instance, the kDiff parameter is clearly both well-characterized and

well-defined, and it is also not expected to change in diseased

states. Thus, replacing this parameter with estimated determined

realistic value would potentially enhance the identifiability on

other diagnostically relevant parameters in future versions of this

model. Fourth, we have used an approach based on ad hoc

Figure 9. Prediction sensitivity due to volume variations. The final model, M0, was simulated using variable volume parameter values, and
each volume parameter was allowed to differ620% from its nominal value, together with the optimal rate parameter values (Table 3). The solid black
lines correspond to the predicted liver signal using the nominal values, whereas the dashed lines shows the sensitivity of the predicted liver signal
due the volume variations. Each panel corresponds to a specific volume parameter as indicated by the title above it. M0 is most sensitive to variations
in the volume parameters corresponding to; EES volume, liver volume and liver EES fraction.
doi:10.1371/journal.pone.0095700.g009
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constraints, in order to eliminate physiologically unrealistic

parameters. This approach turned out to be successful, since we

obtained realistic values for non-rejected parameters for other

model properties (e.g. the more well defined elimination fractions,

see Table 5 and Fig. 7) than those, which were used for the original

constraint. Such ad hoc constraint should also be useful in the case

of hepatic and/or renal impairment, as shown in [33]. A few final

comments regarding the strength of the model is that the same

model parameters were able to describe a dose that is 20 times

higher than the clinically used CA-dose, and administered using

10 min infusion instead of 7 s bolus injection in the estimation

data (the input function’s parameters where changed to match the

experimental setup, Eq. 3). This indicates a remarkable robustness

of the model that is useful in future work. Moreover since the

model is physiologically realistic and identifiable, the model is

expandable, meaning that new information can be added into the

framework such as other relevant observations (e.g. renal clearance,

volumetric MRI, and additional ROIs such as bile) and detailed

sub-models. This added information will improve the predictions

made by the model, as already illustrated by the fact that inclusion

of the ad hoc constraint on the blood plasma yields more accurate

CA elimination fractions.

When interpreting the minimal model and the results, there are

a few underlying assumptions and limitations that should be kept

in mind. First, there is an initial wash-in phase connected (<1 min)

with the bolus injection of CA, when the injected CA has not yet

been distributed evenly in the blood, and this initial wash-in is not

accurately described by our present model(due to the present

formulation of ODEs which imply a instantaneously mixed

compartment). The limitation leads to a slightly higher uncertainty

in the first data point which therefore possibly should be corrected

for in future work. Second, we have used some parameter values

from the literature. For instance, we have obtained tissue volumes

and tissue composition parameters from a ‘standard human’. A

more sophisticated approach would estimate these parameters in

each individual while collecting experimental data, as can be seen

in Fig. 9 the model is influenced by variations in the volume

parameters relating to the whole liver volume and EES volumes,

the first of which is easily quantified from suitable images. Based

on whole body scans, we believe that accurate EES volumes

should also be possible to derive. Third, it would be beneficial to

include measurements of the common bile duct, in order to

estimate the biliary excretion more accurately. However, at this

time we have not been able to obtain sufficiently reliable values in

measurements. Fourth, the ad hoc could not be implemented

directly in PL-analyses; hence it was included as a new data-point

which leads to a larger parameter uncertainty than would

otherwise be expected (should the constraint be applied strictly).

Fifth, the elimination fractions presented in Table 5, compared to

the reference values, should be evaluated with care since there are

differences in; gender distribution, temporal differences (6 days in

the reference data, 3 h in the simulations), slight differences in

doses, and finally we have not implemented recirculation of EOB

from the intestine in the model which to an extent would increase

the amount of EOB eliminated via the bile. Sixth, it is assumed

that there is no enterohepatic circulation of EOB, however, earlier

studies on rats have indicated that this possibility of reabsorption

into the blood can be excluded which we assumed was a

reasonable assumption in humans too [42]. Moreover, if such

reabsorption would exist in humans the effect on the EOB

concentrations (in e.g. the plasma fraction of the blood stream)

would be completely negligible within the time frame of the DCE-

MRI examinations. Finally, a long-term and very obvious goal

with the approach described here is to use it for regional liver

function estimation in a clinical context, but this would require

more advanced post-processing registration techniques, and we

have therefore used simple ROIs in this work to demonstrate what

we hope will be a highly useful clinical procedure in the near

future.

It should also be noted that we do not in any way dispute the use

of Michaelis-Menten kinetics for describing the particular transfer

of CA from the hepatocytes into the bile by MRP2. Rather within

the context of this work in terms of the data available and with our

aim to find a minimal and identifiable system, we found that 1) we

can describe the system at least equally well using mass action

based kinetics, 2) the nonlinearities and extra parameters that

unavoidably arise as a consequence of the use of Michaelis-

Menten kinetics significantly reduced the amount of identifiable

parameters. Clearly this is very advantageous when developing

clinically relevant procedures. Possibly a higher temporally

resolved data set would allow for such a description, which was

used in [15], and in Model M1 in this work for comparison.

In conclusion, this work constitutes in our opinion an important

step towards both quantitative and non-invasive regional liver

function estimation in human subjects, and therefore clearly also a

clinically useful future procedure. The model represents the entire

system that is proved by the CA, and it is minimal and identifiable,

which means that clinically interesting kinetic parameters and

fluxes now readily can be identified. To our knowledge this is the

first whole body physiologically based mechanistic model.

Moreover, the framework allows for using both highly spatially

and low temporally resolved data, which means that suitably

processed data can also be used for visual assessment by a

radiologist at a great level of detail i.e. regional function

assessment. We therefore believe that the described procedure

will contribute to a much better evaluation of hepatic function

than what is presently available to the clinician, e.g. in character-

izing early disease stages or in pre-operative planning of respective

surgery of the liver.

Supporting Information

File S1 Scripts and models. This file contains all relevant

model definitions and scripts used in this work.
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