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Cerebrovascular segmentation is important in various clinical applications, such as

surgical planning and computer-aided diagnosis. In order to achieve high segmentation

performance, three challenging problems should be taken into consideration: (1) large

variations in vascular anatomies and voxel intensities; (2) severe class imbalance between

foreground and background voxels; (3) image noise with different magnitudes. Limited

accuracy was achieved without considering these challenges in deep learning-based

methods for cerebrovascular segmentation. To overcome the limitations, we propose an

end-to-end adversarial model called FiboNet-VANGAN. Specifically, our contributions

can be summarized as follows: (1) to relieve the first problem mentioned above, a

discriminator is proposed to regularize for voxel-wise distribution consistency between

the segmentation results and the ground truth; (2) to mitigate the problem of class

imbalance, we propose to use the addition of cross-entropy and Dice coefficient as

the loss function of the generator. Focal loss is utilized as the loss function of the

discriminator; (3) a new feature connection is proposed, based on which a generator

called FiboNet is built. By incorporating Dice coefficient in the training of FiboNet, noise

robustness can be improved by a large margin. We evaluate our method on a healthy

magnetic resonance angiography (MRA) dataset to validate its effectiveness. A brain

atrophy MRA dataset is also collected to test the performance of each method on

abnormal cases. Results show that the three problems in cerebrovascular segmentation

mentioned above can be alleviated and high segmentation accuracy can be achieved on

both datasets using our method.

Keywords: index terms-class imbalance, image noise, CNN, GAN, medical image segmentation

1. INTRODUCTION

Cerebrovascular diseases, such as strokes and aneurysms, are among the most important public
health problem around the world. Although prevalence of lethal vascular diseases such as aneurysm
is relatively low, estimated to be between 1 and 5% (Brisman et al., 2006), these diseases usually have
a high fatality rate (McKinney et al., 2008). In order to find suitable predictors of risk of vascular
diseases, computational modeling is increasingly used. Most notably, shape characterization and
analysis of hemodynamic features of vessels are becoming increasingly important in prediction
of aneurysm and stenosis (Raghavan et al., 2005; Millán et al., 2007). These results are strongly
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determined by the modeled geometry of vessels. Therefore,
accurate vascular segmentation is of vital importance.

Traditional machine learning-basedmethods (Hassouna et al.,
2006; Soares et al., 2006; Oliveira et al., 2011; Mapayi et al., 2015;
Goceri et al., 2017) include unsupervised learning methods and
supervised learning methods. In unsupervised learning methods,
feature models for target should be proposed to distinguish
vessels from background. While in supervised learning methods,
pixel-wise classification in training and testing is very time
consuming. Also, feature engineering is unavoidable, which is
tedious and requires expertise of target domain. Recent advances
in deep learning have enabled training of complex methods
including deep convolutional neural networks (CNNs). Various
CNNs have been proposed (Lee et al., 2015; Xie and Tu,
2015; Dou et al., 2016; Milletari et al., 2016; Christ et al.,
2017; Shelhamer et al., 2017; Yu et al., 2017) in medical image
segmentation. These methods require no hand-tuned image
features and can be plug and play on different dataset. However,
different characteristics usually exist in different dataset. If
these dataset-related problems are considered in the designing
and training of CNNs, higher segmentation accuracy can
be realized.

Actually, in medical image segmentation, three main
challenges exist. First, large variations of anatomies (Nain et al.,
2004; Zheng et al., 2012, 2014; Lugauer et al., 2014; Zheng, 2016)
and voxel intensities exist (Iqbal, 2013). For cerebrovascular
segmentation using MRA images, large variation of vascular
radius exists among different vascular branches (Rätsep et al.,
2016). This variation usually corresponds to the large variation
of blood flow rate among vessels (Zarrinkoob et al., 2015). Due
to the imaging principle of MRA where higher blood flow rate
will result in higher voxel intensity, large variations of voxel
intensities are also obvious among vessels. Second, severe class
imbalance makes the learning-based methods converge to biased
local minima (Milletari et al., 2016; Buda et al., 2018), leading to
compromised performance. In our dataset, less than 0.3% voxels
belong to vascular regions. Third, image noise is an unavoidable
phenomenon (Li et al., 2017), which deteriorates the quality of
images and further suppresses the segmentation performance of
various methods.

In this paper, we take the above problems of cerebrovascular
segmentation into consideration for network designing and
training. A model called voxel-wise adversarial FiboNet, termed
as FiboNet-VANGAN, is tailored to relieve these problems.
Specifically, our contributions are summarized as follows:

• Adversarial training is incorporated and a voxel-wise
adversarial network is proposed to relieve the problem of large
variations in vascular anatomies and voxel intensities.

• In order to relieve the problem of class imbalance, we propose
to use the addition of cross-entropy and Dice coefficient (DC)
as the loss function of the generator. Moreover, focal loss is
employed as the loss function (FL) of discriminator to relieve
the problem of class imbalance.

• We propose a new feature aggregation-based generator called
FiboNet. By applying DC as one of the loss functions of
FiboNet, the noise robustness of FiboNet is improved.

Experimental results validate the effectiveness of our
contributions and segmentation results with high accuracy
are achieved by our proposed model on the Healthy Dataset and
the Brain Atrophy Dataset.

2. RELATED WORKS

Popular networks, such as U-Net (Ronneberger et al., 2015)
and V-Net (Milletari et al., 2016) can be adapted to carry out
cerebrovascular segmentation. However, these networks were
initially proposed to deal with organ segmentation. In organ
segmentation, target organs usually tightly distribute in an
image volume, which is quite different from the cerebrovascular
segmentation. The backbones of these two networks incorporate
many max-pooling layers (four max-pooling layers are adopted
in both networks) on the encoding path. Hence, networks can
encode more multi-scale informative features. On the decoding
path, corresponding de-convolutional layers are included to
decode these features back to the scale of input image. Both of
these networks use image of the full size (or cropped sub-image)
as the inputs to train the networks. However, in cerebrovascular
segmentation, the size of each MRA volume is much larger than
the dataset of U-Net and V-Net, making it improper to apply
the image of full size as the input to train networks due to
limited graphic memory. Also, unlike the distribution of organs,
vessels are thin and distribute sparsely and extensively within the
brain. The smallest sub-image we can extract is the bounding
box of the brain, which is still quite large. Therefore, to apply
these two networks on cerebrovascular segmentation, patch-
wise training strategy is adopted. Actually, in cerebrovascular
segmentation, patch-wise training strategy may be regarded as
an implicit method of data augmentation. From a global point
of view, the whole cerebral vasculatures are quite different with
each other intersubjectively. It is difficult for networks to learn
the distribution of the whole cerebral vasculature using limited
number of data. But when it comes to a local point of view, partial
cerebral vasculatures are likely to share similar interhemispheric
and intersubjective features, which makes it very suitable to apply
patch-wise training strategy.

Aside from these two networks, several CNN-based methods
have been proposed for vascular segmentation (Merkow et al.,
2016; Chen et al., 2017a; Yu et al., 2017; Tetteh et al., 2018). In
Merkow et al. (2016), they derived their 3D vascular network
from a multi-scale 2D network for detection of boundaries. The
technique called deep supervision (Lee et al., 2015) is combined
and is placed at each scale to improve the performance of their
network. However, they proposed nomethods to deal with any of
the challenges mentioned above. Hence, only limited results can
be achieved. In Yu et al. (2017) adopted dense connection (Huang
et al., 2017) as the backbone of their network. This type of feature
aggregation is deemed to promote the training of networks.
Hence, compared with networks without dense connection,
their network can achieve better segmentation results. In Tetteh
et al. (2018) discussed the problem of class imbalance in this
application. A class balancing loss function was employed to train
their network. But they did not deal with the other two problems.
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Chen et al. (2017a) proposed to use convolutional autoencoder
to reduce the influence of noise. But they mentioned no methods
to mitigate the problem of class imbalance. None of the above
networks took the large variations of vascular anatomies and
voxel intensities into consideration.

Actually, the problem of anatomical variation also occurs
in other vascular systems (Nain et al., 2004; Zheng et al.,
2012, 2014; Lugauer et al., 2014; Zheng, 2016). Data-driven
approaches (Lesage et al., 2009; Schaap et al., 2009) are capable
of addressing the problem of anatomical variation due to their
intrinsic bottom-up paradigm. But this type of algorithm may
terminate early since no or little high-level prior information is
used (Zheng et al., 2013). In Zheng et al. (2014), a part based
model is proposed. The anatomical variations of the pulmonary
vein (PV), e.g., the left common PVs vs. separate PVs, can be
addressed using this model. Similar model-driven methods are
also applied to address the anatomical variations in segmenting
coronary arteries (Nain et al., 2004; Zheng et al., 2012; Lugauer
et al., 2014). Zheng (2016) also proposed a hybrid method in
segmenting coronary arteries. Model-based approach exploiting
shape priors is utilized to extract the major coronary arteries,
followed by a data-driven approach to address the anatomical
variations in side branches.

3. METHODOLOGY

In section A, we present our novel CNN-based generator (G)
called FiboNet. The derivation of Fibonacci connection will be
described. In section B, we propose an adversarial network as the
discriminator (D). D is adopted as the regularizer for voxel-wise
distribution consistency between the predictions from FiboNet
and the ground truth. Training procedure and loss functions will
be detailed in section C.

3.1. FiboNet as Generator
The proposed FiboNet is illustrated in Figure 1. In CNNs,
shallow layers are responsible for extracting low level features,
such as edges and curves of different orientations and sizes, while
deep layers are responsible for generating semantic information
(Krizhevsky et al., 2012). If low level features are similar with
each other, only limited kinds of semantic information can be
generated by deep layers. Therefore, if a convolutional block can
learn to extract diversified feature maps from a certain input
image, very different high-level features can be represented. In
the problem of cerebrovascular segmentation, different high-
level features can help relieve the problem of large variation of
vascular anatomies and voxel intensities.

3.1.1. Fibonacci Connection and Fibonacci Block
Fibonacci connection is derived from the dense connection
(Huang et al., 2017). Dense connection can be formulated as:

xl = Hl([xl−1, xl−2, ..., x0]) (1)

where xi represents feature maps generated by the ith layer. Hl(·)
represents a composite function from lth layer, including batch
normalization (Ioffe and Szegedy, 2015), rectified linear unit

(Nair and Hinton, 2010), and convolution. By this formulation,
the constraints from the current layer will directly influence each
of its previous layers. Similar feature maps will be generated
by each convolution layer within the same dense block (Chen
et al., 2017b) due to its strong regularizing effects (Dolz et al.,
2018). This may result in similar feature maps shared across
different layers within the same dense block. In cerebrovascular
segmentation, large variations of vascular anatomies and voxel
intensities exist. Hence, we are desiring for diversified features
from a certain input image. We achieve this goal by weakening
the strong regularizing effect of the dense connection. We cut
off some of the feature connections so that constraints from the
current layer cannot directly influence each of its previous layers.
Specifically, in our case, we concatenate the feature maps from
previous two layers only, which is formulated as:

xl = Hl([xl−1, xl−2]) (2)

In this type of feature aggregation, only the previous two
layers are directly affected by current layer. This type of feature
aggregation coincides with the developing manner of Fibonacci
numbers. Therefore, we term this type of feature aggregation
as Fibonacci connection. In Fibonacci connection, layers before
l − 1, l − 2 are indirectly influenced. The regularizing effect of
the dense block is weakened. Since diversified feature maps are
extracted by this type of feature connection, it can help detect
more kinds of vascular voxels.

3.1.2. FiboNet
Using Fibonacci connection, we propose the FiboNet, as
illustrated in Figure 1. In order to detect the thin boundaries of
vessels, small kernel size is used in the whole network. In shallow
layers of the FiboNet, we are expecting for weak regularizing
effect between different layers in order to generate diversified
feature maps and mitigate the under-detection of candidate
vascular voxels.

Hence, we use the Fibonacci block in shallow layers. While
dense block is placed in deep layers to extract similar high-level
features belonging to vascular voxels and to avoid as much over-
detection of background voxels as possible. Notably, we included
a branch at the output of FiboNet as deep supervision (Lee et al.,
2015), allowing gradients to inject directly into the preceding
layers to better train the network (Lee et al., 2015).

3.2. Voxel-Wise Adversarial Network as
Discriminator
In cerebrovascular segmentation, large variations exist in
vascular anatomies and voxel intensities within even the same
subject. In MRA images, signals with high intensity spread in the
vessels with large radius. Therefore, signals with low intensity are
comparatively harder to be segmented because signals with lower
intensity are contained within smaller vessels, which consist
of fewer voxels. Even though patch-wise training strategy is
adopted, the influence of these voxels is easy to get overwhelmed
by background voxels. Since a thorough knowledge of anatomy
is required to understand and analyze the cerebrovascular system
(Nowinski et al., 2009) with respect to different clinical purposes,
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FIGURE 1 | Architecture of our proposed FiboNet as the generator. Fibonacci connection of feature maps are utilized to build the Fibonacci block. In Fibonacci block,

feature maps from previous two layers are concatenated as the input of the current layer. The technique called deep supervision, which is commonly used in

convolutional neural network (CNN)-based medical image segmentation, is also incorporated.

FIGURE 2 | Architecture of the proposed voxel-wise adversarial network (VAN). VAN is trained to distinguish the source of its input. In the context of generative

adversarial network (GAN), the procedure of adversarial training is to minimize the discrepancy between two distributions. Since we want voxel-wise similar distribution

between the distribution generated by FiboNet and the real data distribution, we input these two types to VAN. Kernel size of 1 is used in VAN. FL is utilized as the loss

function to relieve the problem of class imbalance.

such as automatic diagnosis and surgical planning, it is important
to improve the segmentation performance of networks within
these regions.

Recent development of deep learning has validated the
effectiveness of GAN (Goodfellow et al., 2014; Luc et al., 2016) in
regularizing higher order consistency (Luc et al., 2016) including
the category consistency between generated images and images
from the training dataset (Goodfellow et al., 2014) and the texture
consistency between generated images and real images (Isola
et al., 2017). GAN can be regarded as a training framework.
In this framework, the generator (G) and the discriminator
(D) are jointly trained. This training procedure will make the
distribution generated by G close to the real data distribution. In
Goodfellow et al. (2014), whole image is input to the D and D
outputs one digit to represent the source of its input. This type of
adversarial training was usually applied in regularizing category
consistency. Isola et al. (2017) proposed another adversarial

strategy by constraining the receptive field of each output voxel
of D to a patch of D′s input. By this operation, they can impose
texture consistency between generated images and real images. In
our case, we embrace the similar idea and propose a voxel-wise
adversarial network, termed as voxel-wise adversarial network
(VAN), to incorporate voxel-wise distribution consistency by
constraining the receptive field of each output voxel of D to a
voxel of D′s input. Using this type of adversarial training, the
segmentation performance of networks in small vessel regions
can be consistently improved.

Details of the architecture of VAN are illustrated in Figure 2.
Our VAN accepts two types of inputs: one is the multiplication
of noisy raw patches and the segmentation probability maps;
the other is the multiplication of noisy raw patches and the
annotated ground truth patches. Noisy raw patches are used
as part of D′s input in case of the degenerate distributions
generated by G (Sønderby et al., 2016). Multiplication operation

Frontiers in Neuroscience | www.frontiersin.org 4 November 2021 | Volume 15 | Article 756536

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Guo et al. Cerebrovascular Segmentation of MRA Images

is used so that VAN can take the relationships of raw patches
and the predictions/ground truth into consideration from the
beginning. Thus, all the model parameters are jointly trained
using information from both the segmentation and raw patches.

3.3. Training and Losses
The training pipeline of the proposed FiboNet-VANGAN is
illustrated in Figure 3. The following two stages are repeated to
iteratively train the generator and discriminator.

3.3.1. First Stage of Training
In this stage, G is trained to generate segmentation probability
maps close to the ground truth and also is encouraged to
fool D about the source of its input. The loss function LG is
formulated as:

LG =

N∑

i=1

lCE(Pi,Yi)− lDC(Pi,Yi)−

N∑

i=1

lFL(Si = D(Xi · Pi),Ti = 0)

(3)

where N represents the number of input patches, Pi represents
the generated probability map of G′s softmax layer, and Yi

represents the corresponding ground truth. Si represents the
predicted score maps of D, and Ti represents target score maps
of D. CE represents cross-entropy, and DC represents Dice

Coefficient FL represents focal loss and these three losses can
be formulated as:

lCE(Pi,Yi) = −

1∑

c=0

V∑

v

yc,vlog(pc,v) (4)

lDC(Pi,Yi) =

1∑

c=0

2
∑V

v pc,vyc,v∑V
v p2c,v +

∑V
v y2c,v

(5)

lFL(Si,Ti) = (1− Si)
γ · lCE(Si,Ti) (6)

where V represents the number of voxels in current patch Pi, yc,v
represents target probability of vth voxel belonging to cth class,
and pc,v represents generated probability of vth voxel belonging
to cth class. In practice, one-hot encoding is adopted. Hence,
yc,v = 1 is used. γ is a decaying factor and γ = 4 is used in
our implementation.

CE enforces voxel-wise similarity between predicted
distribution of G and real data distribution. FiboNet trained with
only CE tends to get trapped in biased local minima (Milletari
et al., 2016) with the existence of severe class imbalance, because
voxel-wise penalization is very sensitive to class imbalance. To
handle this, we propose to use the addition of CE and DC as
the loss function. As DC will incur penalization on overlapping
areas, which can be concluded from Equation (5), the problem of
class imbalance could be alleviated.When predictions completely
overlap with ground truth, DC will output 1. When there are no
intersections between predictions and ground truths, DC will
output 0. In practice, we minimize (1− DC).

FL is a weighted version of traditional binary cross entropy.
In our case, voxel-wise adversarial training is employed to model
steep regions in which D is trained to distinguish the source of
its input voxel-wisely. Therefore, the problem of class imbalance
will also have an influence on the training of D. Thus, we should
take this problem into consideration in the adversarial training
procedure of both G and D. During the training of D, it is
desired that major components of loss values comes from those
falsely distinguished voxels. Due to the severe class imbalance,
D will learn quickly to distinguish the source of background
voxels. Under this circumstance, loss values from foreground
voxels are desired to be the major component of the total loss.
But the number of these voxels are too small. Their total loss
is overwhelmed by the total loss from the background voxels
though these background are truely distinguished. Therefore, we
need to lower the contributions of those correctly distinguished
voxels. In Lin et al. (2017), the FL is proposed to improve the
detection accuracy of single-stage detectors. Inspired by their
work, we apply FL as the loss function of our VAN to relieve the
problem caused by class imbalance. With this loss function, when
D can output scores close to target scores of each background
voxel, the weighted factor will decrease their contributions to the
total loss. Thus, loss values from falsely distinguished voxels will
be the major component.

3.3.2. Second Stage of Training
In this training stage, D is trained to distinguish the sources of its
input voxel-wisely. Two types of inputs are accepted. One is the
multiplication of the segmentation probability maps and noisy
raw patch. The other is the multiplication of the ground truth
and raw patch added with noise. When the first one is input into
D, it is desired to be recognized as 0 voxel-wisely by D. When
the second one is input into D, it is desired to be recognized as 1
voxel-wisely by D. At this training stage, we use the FL (Lin et al.,
2017) as the loss function, which is formulated as:

LD =

N∑

i=1

lFL(Si = D(X̂i · Pi),Ti = 0)+

N∑

i=1

lFL(Si = D(X̂i · Yi),Ti = 1)

(7)

where X̂i represents the noisy raw patch. Noisy patch is used as
part of D′s input in case of degenerate distribution generated
by G (Sønderby et al., 2016). In the beginning of training G, a
good prediction result cannot be achieved. Obvious differences
exist between Pi and Yi. Therefore, the two predictions, D(x̂i · Pi)
and D(x̂i · Yi), of D are also quite different. Under this situation,
the weighting factor of FL does not play a very important role.
But when a large number of background voxels can be truely
predicted by G, Pi and Yi will be very similar. In this case,
loss values calculated by D will be biased since we are applying
adversarial training voxel-wisely. When G is trained with the
loss value from biased D, the accuracy of G may drop. But
the weighting factor in FL can make a balance between the
foreground and the background voxels with the occurrence of
class imbalance. It can lower the contributions of background
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FIGURE 3 | An overview of our proposed voxel-wise focal generative adversarial network (GAN) for cerebrovascular segmentation. Two stages are included in one

training iteration. FiboNet is trained in stage one and voxel-wise adversarial network (VAN) is trained in the stage two.

voxels. Thus, the problem of biased convergence can be relieved
by a large extent.

4. EXPERIMENTS AND RESULTS

4.1. Datasets and Preprocessing
Two datasets, acquired on a 1.5 T GE BRIVO MR355 using
gradient echo sequence with repetition time of 26 ms and
echo time of 6.8 ms, are collected and used for method
evaluation in this work, the healthy dataset and the brain
atrophy dataset. Procedures of data collections were reviewed by
Datian CountyHospital Ethics Committee. Participants provided
informed consent to participate in the study. Two clinicians were
responsible for the annotation of ground truths. A consensus
between them was used as the final reference standard.

4.1.1. Healthy Dataset
This dataset contains 12 healthy time-of-flight MRA (TOF-
MRA) volumes. Each volume is reconstructed into a matrix of
size 1, 024×1, 024×92 with voxel size of 0.264×0.264×0.8mm.
No contrast agent is used during the scanning. No removal of bias
field is carried out. The age and gender distribution of this dataset
are listed in Table 1.

TABLE 1 | The age and gender distribution of the healthy dataset.

Healthy dataset

Gender

Age
(20,30] (30, 40] (40, 50] Total

Male 3 1 1 5

Female 1 3 3 7

Total 4 4 4 12

4.1.2. Brain Atrophy Dataset
This dataset was collected to test the performance of each
network on abnormal dataset, contains 9 TOF-MRA volumes
from 9 subjects diagnosed with brain atrophy. Each volume
within this dataset is reconstructed into a matrix of 512× 512×
128 with voxel size of 0.43 × 0.43 × 0.7mm. The age and gender
information of this group is listed in Table 2. Atrophy of any
tissue within the brain means a decrement in the size of its
cells. Atrophy can be generalized, which means that all of the
brain has shrunk; or it can be focal, affecting only a limited
area of the brain and resulting in a decrease of the functions
that area of the brain controls. In either case, the distribution
of the cerebral vasculature becomes quite different from the
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TABLE 2 | The age and gender distribution of the brain atrophy dataset.

Brain atrophy dataset

Gender

Age
(70,80] (80, 90] Total

Male 4 0 4

Female 2 3 5

Total 6 3 9

healthy subjects even within the same range of ages. Therefore,
this dataset makes a good testbed for the performance of each
network on abnormal dataset.

4.1.3. Data Normalization
Before training and testing, we carry out the procedure of data
normalization using the following equation:

X =
X −mean(X)

std(X)
(8)

where X represents each MRA volume.

4.1.4. Data Splitting and Patch-Wise Training/Testing
The MRA volumes are too large to fit in our graphic memory
during training and testing. Also, cerebral vessels usually share
similar interhemispheric and intersubjective features. Therefore,
we turn to patch-wise training strategy, which has been
frequently used in the context of medical image segmentation
(Merkow et al., 2016; Yu et al., 2017; Gibson et al., 2018; Han
et al., 2018; Kushibar et al., 2018; Tetteh et al., 2018; Wang
et al., 2018). Each volume from the healthy dataset is split into
overlapping patches with size of 64 × 64 × 64. An overlapping
size of 4 × 4 × 36 is adopted, thus corresponding to 17, 17,
and 2 patches in each direction and 578 patches in total. For
each volume from the brain atrophy dataset, the same patch size
is used while overlapping sizes are changed to 4 × 4 × 32 to
avoid zero-padding in the axial direction, thus corresponding to
9, 9, and 3 patches in each direction and 243 patches for each
MRA volume.

In the training stage, each MRA volume is split into patches to
train the networks. In the testing stage, each volume is first split
into corresponding patches. Then the patches are input to the
networks. After the processing of networks, predicted patches are
stitched into the dimension of the original testing volume. Major
voting strategy is utilized to determine the categories of the voxels
from overlapping regions.

All the networks are trained on the same 6 volumes, which
are randomly selected from the healthy dataset. The rest 6
volumes of the healthy dataset are used as the testing dataset to
test the segmentation performance of each network. The whole
brain atrophy.

Dataset is utilized to evaluate the performance of each method
on abnormal dataset. Thus, each network is trained on the same
6 volumes and tested on the same 15 volumes.

4.2. Experiment Setup
We compare our results with popular networks in 3D medical
image segmentation including 3D-UNet, a 3D version of U-
Net (Ronneberger et al., 2015), V-Net (Milletari et al., 2016),
I2I-3D (Merkow et al., 2016), UCeption (Sanchesa et al.,
2019), DenseVoxNet (Yu et al., 2017), and DeepVesselNet
(Tetteh et al., 2018). We implement the derived 3D
version of U-Net, and UCeption in tensorflow. As for
other networks, original open source codes are used in
the experiments.

In order to validate our proposal of using the addition of cross-

entropy and DC, we also train both the DenseVoxNet and the
FiboNet using addition of cross-entropy and DC as loss function

(DenseVoxNet-CE-DC and FiboNet-CE-DC in Table 3).
In order to compare our Fibonacci connection with traditional

linear convolutional (LinearCN) block where each layer only
connects to its previous one, we also construct a LinearCN block

by connecting each layer in Fibonacci block to its very preceding

layer only.
VoxelGAN (the proposed VAN), PatchGAN, and

VolumeGAN are three types of discriminators (Isola et al.,
2017). In order to get a better understanding of the different
influences from different adversarial training, we also carry out

the experiments of different adversarial training by changing
the proposed VAN to corresponding adversarial networks.
Essentially, they are all fully convolutional networks but differ in
the receptive field of the output voxel. When the receptive field

corresponds to a voxel, it is termed as VoxelGAN. When the
receptive field corresponds to a patch, it is termed as PatchGAN.
When the receptive field corresponds to a volume, it is termed
as VolumeGAN. In designing the architectures of PatchGAN
and VolumeGAN, all convolutions are of kernel size 3 (or larger)

with stride 2 (or larger) to expand the receptive field of voxels
from follow-up layers. But in designing the architecture of
VoxelGAN, kernel size 1 and stride 1 are adopted to restrict the
receptive field. In our experiments, architectures of PatchGAN
and VolumeGAN similar to Isola et al. (2017) are adopted:

• PatchGAN: C64− C128− C256
• VolumeGAN: C64− C128− C256− C512− C512

whereCk denotes a Convolution-BatchNorm-ReLUwith k filters.
All ReLUs are leaky with slope 0.2. The receptive field of a output
voxel in PatchGAN is 15×15×15 and VolumeGAN 63×63×63.

All experiments were performed on workstation, which runs
Ubuntu 16.04 operation system and is equipped with an Intel
Core i7-5960 CPU (3.50 GHz), 32GB RAM, and a NVIDIA
GeForce 1080 Ti video card with 11GB graphics memory. The
SGD solver with learning rate 0.001, which exponentially decays
by 10% every 5 epochs, and momentum parameters β1 = 0.9,
β2 = 0.999 are used for training all the adversarial networks.
Each network is trained for 40 epochs to ensure convergence.

To quantitatively evaluate the performance of each
method, three metrics are adopted to evaluate the
segmentation accuracy:

• Dice coefficient (DC) Dice (1945):
DC = 2|P ∩ G|/(|P| + |G|)
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TABLE 3 | Quantitative comparisons of different methods on different datasets.

Methods Healthy dataset Brain atrophy dataset

DC SASD(mm) SHD95(mm) DC SASD(mm) SHD95(mm)

3D-UNet Ronneberger et al.,

2015

0.7133 ± 0.0349 1.0447 ± 0.2428 7.4281 ± 1.3958 0.6478 ± 0.0264 1.5247 ± 0.4347 6.8728 ± 1.7996

V-Net Milletari et al., 2016 0.7255 ± 0.0320 0.7974 ± 0.1716 4.4059 ± 1.5024 0.5842 ± 0.0307 1.1460 ± 0.3138 6.8811 ± 2.1470

I2I-3D Merkow et al., 2016 0.7298 ± 0.0269 0.9267 ± 0.2282 6.3634 ± 1.8695 0.5979 ± 0.0321 1.3444 ± 0.5033 6.6167 ± 2.8714

DeepVesselNet Tetteh et al.,

2018

0.7391 ± 0.0261 1.0805 ± 0.3400 6.6839 ± 1.1783 0.6188 ± 0.0282 1.6308 ± 0.5314 8.7423 ± 2.7256

UCeption Sanchesa et al., 2019 0.7680 ± 0.0250 0.7239 ± 0.1472 4.8261 ± 1.2030 0.6036 ± 0.0198 1.9772 ± 0.3509 12.2734 ± 1.3957

DenseVoxNet-CE Yu et al., 2017 0.7611 ± 0.0227 0.6523 ± 0.1296 4.1740 ± 1.4962 0.6524 ± 0.0086 1.4203 ± 0.2831 9.7092 ± 1.9996

DenseVoxNet-CE-DC 0.7840 ± 0.0266 0.8249 ± 0.2071 5.5383 ± 1.3207 0.7120 ± 0.0224 1.3878 ± 0.3092 9.5628 ± 1.9789

FiboNet-CE 0.7985 ± 0.0216 0.4699 ± 0.1110 2.7348 ± 1.2129 0.6985 ± 0.0110 1.0479 ± 0.2122 6.5655 ± 2.4639

FiboNet-CE-DC 0.8093 ± 0.0296 0.4848 ± 0.1447 2.9483 ± 1.2064 0.7532 ± 0.0190 1.3338 ± 0.2442 9.0029 ± 1.7674

LinearCN-CE-DC 0.8016 ± 0.0264 0.5032 ± 0.1098 3.0064 ± 1.0408 0.7292 ± 0.0194 1.1558 ± 0.2092 7.4721 ± 2.1517

FiboNet-PatchGAN 0.8188 ± 0.0269 0.4247 ± 0.1073 2.6115 ± 0.9309 0.7519 ± 0.0193 1.1599 ± 0.2472 7.9665 ± 2.2705

FiboNet-VolumeGAN 0.8153 ± 0.0278 0.4486 ± 0.1272 2.6436 ± 1.0850 0.7515 ± 0.0227 1.2192 ± 0.2588 8.2716 ± 2.1943

FiboNet-VANGAN 0.8197 ± 0.0300 0.4019 ± 0.1111 2.4391 ± 0.9615 0.7571 ± 0.0173 1.0023 ± 0.2508 6.3991 ± 2.6469

For the healthy dataset, results based on the rest 6 MRA volumes for testing are summarized. Bold values indicate best segmentation performance.

FIGURE 4 | Maximum intensity projections of each method. Pixels in blue represent true positives. Pixels in green represent false positives. Pixels in red represent

false negatives.

• Symmetric Average Surface Distance (SASD) Yeghiazaryan
and Voiculescu (2015):
SASD = (mean(Dist(P,G))+mean(Dist(G, P)))/2

• Symmetric 95% Hausdorff Distance (SHD95) Dubuisson and
Jain (1994):
SHD95 = (P95(Dist(P,G))+ P95(Dist(G, P)))/2

where P represents the predicted segmentation maps of each
network, G represents the annotated ground truth, Dist(P,G) is
the set of distances from boundary voxels of P, δP, to the nearest
boundary voxel in δG, i.e.,:

Dist(P,G) = {min
x∈δP

‖x− y‖2|y ∈ δG} (9)

wherein P95(Dist(·)) is the 95th percentile of Dist(·).

Among these metrics, the DC is a commonly used
metric for measuring the general agreement between the
generated segmentation maps and the annotated ground truth.
It can be utilized to evaluate the general performance of
each method. SASD reflects the globalized average boundary
agreement, while SHD95 is usually applied to evaluate the
localized disagreement.

4.3. Qualitative Results
Maximum intensity projection, along with slice-
wise result, of each method was shown in Figures 4,
5, respectively, wherein blue, red, and green pixels
represent true positives, false negatives, and false
positives, respectively.
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FIGURE 5 | Visual results of the four different white dash-line rectangles of each method. Pixels in blue represent true positives. Pixels in green represent false

positives. Pixels in red represent false negatives.

TABLE 4 | P-value, Cohen’s D, and intraclass correlation coefficient (ICC) values between the proposed method, FiboNet-VANGAN, and each of its counterparts.

P-value/Cohen’s D / ICC

Methods Healthy dataset Brain atrophy dataset

3D-UNet 7.6e−7 / 3.26 / 0.84 1.7e−4 / 4.89 / 0.93

V-Net 8.9e−7 / 3.03 / 0.82 6.3e−7 / 6.94 / 0.96

I2I-3D 1.9e−7 / 3.15 / 0.83 2.0e−6 / 6.17 / 0.95

DeepVesselNet 2.1e−7 / 2.86 / 0.80 7.3e−7 / 5.90 / 0.95

Uception 1.9e−6 / 1.87 / 0.83 2.6e−6 / 8.25 / 0.97

DenseVoxNet-CE 1.3e−6 / 2.19 / 0.70 5.7e−7 / 7.66 / 0.97

DenseVoxNet-CE-DC 2.7e−8 / 1.22 / 0.42 4.5e−7 / 2.25 / 0.73

FiboNet-CE 2.1e−4 / 0.81 / 0.24 4.0e−4 / 4.04 / 0.90

FiboNet-CE-DC 1.3e−6 / 0.35 / 0.06 4.2e−1 / 0.01 / 0.02

LinearCN-CE-DC 1.3e−5 / 0.64 / 0.16 6.1e−6 / 1.51 / 0.55

FiboNet-PatchGAN 2.9e−1 / 0.04 / 0.00 2.8e−1 / 0.28 / 0.04

FiboNet-VolumeGAN 1.8e−3 / 0.21 / 0.01 6.2e−2 / 0.28 / 0.04

Bold values indicate improvements of statistical significance.

4.4. Quantitative Results
In Table 3, we listed the quantitative comparisons of different
methods. Aside from the results on the rest 6 testing volumes
from the healthy dataset, we also include the results for the 9
testing volumes from the brain atrophy dataset.

4.5. Statistical Analysis
Paired-sample t-test is adopted to evaluate the significance of the
improvement of the average DC by the proposed method. We
contrast the proposed FiboNet-VANGAN with other methods
listed in Table 3. One-tailed results are reported since we only
care about the significance of the improvements. Therefore, our
null and alternative hypothesis should format separately as:

H0 :µ1 = µ2 (10)

Hα=0.01 :µ1 > µ2 (11)

where H0 represents the null hypothesis and Hα alternative
hypothesis. µ1 represents the average DC value from the
proposed method, FiboNet-VANGAN, and µ2 the contrasting
method accordingly. In this hypothesis testing, we set the
significance-level to 0.01. Here, we report the test results of both
datasets. In the healthy dataset, µi, (i = 1, 2) is the average
DC value over the 12 volumes. In the brain atrophy dataset,
µi, (i = 1, 2) is the average DC value over the 9 volumes.
Aside from p-values, we also included values of Cohen’s D and
intraclass correlation coefficient (ICC) to test the robustness
of the proposed model. The test results are listed in Table 4,
wherein p-values showing statistical significance, along with the
corresponding values of Cohen’s D and ICC, were represented by
black bold fonts.

In the healthy dataset, the proposed method significantly
outperforms its counterparts, demonstrating a significant
improvement of DC value by our method. In the brain atrophy
dataset, significant improvement can also be observed except
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FIGURE 6 | Different results from the deep supervision branch of FiboNet and

DenseVoxNet, illustrating the different detection performance of Fibonacci

block and the dense block. Red arrows indicate regions where FiboNet could

extract more complete vasculature than DenseVoxNet.

the result from FiboNet-PatchGAN. Indeed, FiboNet-PatchGAN
can achieve comparable accuracy in the brain atrophy dataset
with the proposed method, but it underperforms in the
healthy dataset.

4.6. Evaluation of the Diversity of Feature
Maps
The feature map generated by the Fibonacci block (or the
dense block) is a matrix of shape [H,W,D,C], where H,W,D,C
represents the value of height, width, depth, and channel,
respectively. By calculating the standard deviation along the
fourth dimension, we can get the standard deviation map,
shaping like [H,W,D], of the channels. Based on the channel-
wise standard deviation map, histograms are calculated to
compare the diversity of feature maps generated by these
two blocks.

In Figure 6, we display the output of the deep supervision
branch to validate the performance of the Fibonacci block and
the dense block.

Compared with the results of the dense block, more candidate
voxels are extracted by the Fibonacci block. Few vascular voxels
are left out by the Fibonacci block. While in the result of the
dense block, though the vascular regions compose the major
part of the result, distal vascular regions and many small
vascular branches are missing. Actually, both results stem from
minimizing the loss function. If features of distal vascular regions
are learned by the dense block, these voxels will be segmented
so as to reduce the loss value. But in the dense block, due to
its regularizing effect, these features are probably not learned.
The Fibonacci block derives from the dense block by weakening
its regularizing effect, as described in section II, which leads
to the improvement of the detection ability of network. This
results in the segmentation of distal vascular voxels but also
many background voxels. If features within these regions are
not learned, there is no chance that they can be segmented.
Therefore, we can conclude from this observation that diverse

FIGURE 7 | VHistograms of the two standard deviation maps calculated using

the feature maps from Fibonacci block and dense block, respectively.

FIGURE 8 | Illustration of a slice with different magnitudes of Gaussian noise.

Window level is 240 and window width is 240. The region marked by yellow

dash-line rectangle is expanded for better visual effects. Averaged : signal to

noise ratioes (SNRs) between images with added noise and the original image

were listed in the last row.

feature maps are generated by the Fibonacci block, that is,
the FiboNet.

In Figure 7, we show the histograms of channel-
wise standard deviation map calculated using the
feature maps generated by Fibonacci block and dense
block. It can be concluded from the histograms that
standard deviations of the feature maps generated by
the Fibonacci block are larger than their counterparts
from the dense block, which means the Fibonacci block
can generate more diversified feature maps than the
dense block.

4.7. Noise Robustness
Noise is commonly observed in medical imaging. Automatic
methods should be robust to different magnitudes of noise. In
order to evaluate the robustness of different methods, we apply
the different methods on test set with different magnitudes of
noise. Gaussian noise with 0.1%, 0.5%, 1%, 1.5%, and 2% of
the image magnitude is added. In Figure 8, we demonstrate
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a slice with no Gaussian noise and the slices with different
magnitudes of Gaussian noise. A rectangle region marked
by the yellow dash-line is expanded for better visual effects.
The increasing magnitudes of Gaussian noise deteriorate the
contrast of the original slice. Some vascular boundaries are
blurred and degenerated, thus hard to be distinguished from
background egions.

In Figure 9, we display the quantitative comparisons of noise
robustness of each method. We use the vertical axis to represent
the drop-to performance calculated via:

DTP =
DCp

DC0
× 100% (12)

where DCp represents the DC value obtained from image with
p% noise, and DC0 is the DC value when no Gaussian noise is
added. The horizontal axis represents the different magnitudes of
Gaussian noise added. It can be observed that the performance of
each method drops with the increasing strength of noise. But the
robustness of each method is quite different.

Among these networks, 3D-UNet turns out to be the least
robust to noise. In this network, batch normalization is not
included, which will lead to ineffective training. Dropout layer
to enhance the robustness of network is not included either. An
improved robustness can be observed in V-Net where residual
connection of featuremaps is utilized in network design. Residual
connection helps promote the effective training of networks.
Therefore, better robustness can be realized. However, in the
implementation of V-Net, residual connection is incorporated
in the first layer of each scale of feature space. No input
transition layer (Smith and Topin, 2016) is used. Usually, an
input transition layer is utilized for two reasons. One is to
transform the input from raw image space to its corresponding

feature space. The other reason is to increase the number of
channels of input image, which allows the input data to be
examined in many ways. This type of layer has been adopted
in many successful networks (Krizhevsky et al., 2012; Szegedy
et al., 2015, 2016, 2017; He et al., 2016). But in V-Net, a
residual block is directly adopted after the input image. Noise
from raw image is propagated to and further influence deep
layers. Hence, only limited improvement is achieved. Better
situations can be observed in I2I-3D, DenseVoxNet, FiboNet, and
LinearCN.Within these networks, convolution layers are utilized
as input transition layers to transform from raw image space to
feature space. Influence of noise can be reduced by the nonlinear
transformation of input transition layers. Attentions should also
be paid to the improvement brought about by incorporating
DC as one of the loss functions. In DenseVoxNet, very limited
improvement of noise robustness is achieved by DC loss. While
in FiboNet, the improvement of noise robustness is very obvious
and much larger than that in DenseVoxNet. Finally, PatchGAN
and VANGAN help improve the noise robustness by a small
margin. Therefore, in practice we should trade off between the
segmentation accuracy and noise robustness when designing
network architectures.

4.8. Size of Training Patch
In section II, we elaborate the reason to utilize patch-wise training
strategy. However, in the original implementation of U-Net
(Ronneberger et al., 2015), image of size 572 × 572 is applied
for training and testing. In the original implementation of V-
Net (Milletari et al., 2016), image of size 128 × 128 × 64 is
adopted. Due to the limited graphic memory, we cannot carry
out the experiment using images of size 572 × 572 × 572
for 3D-UNet.

FIGURE 9 | Influences of different magnitudes of Gaussian noise on the segmentation accuracy of different methods. Horizontal axis represents the strength of noise

added. Vertical axis represents drop-to performance of a certain method compared with the situation when no Gaussian noise is added.
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But we try the experiments with patches of size 128×128×64
and 64×64×64 onV-Net, LinearCN, and FiboNet. The same data
splitting strategy of the healthy dataset as described in section
IV.A is used. These three networks are trained for 40 epochs,
which means it goes over the training dataset for 40 times either
by the way when patch size of 128 × 128 × 64 is adopted or the
way patch size of 64× 64× 64 is adopted.

The results are summarized in Table 5. It turns out that
better results are obtained using patches of size 64 × 64 × 64,
which in turn supports our assumption that small patches can
be regarded as an implicit data augmentation for cerebrovascular
segmentation due to potential similar feature from small patches.

5. DISCUSSION

Clinically acceptable segmentation accuracy has yet to be defined
for assisting surgical planning, the preventive diagnosis and
quantitative analysis of cerebral vascular diseases. However,
following three aspects could be the focuses for developing
algorithms of cerebrovascular segmentation:

• High segmentation accuracy of vasculature—This is important
for many clinical applications like invasive surgical planning,
preventive diagnosis, etc. In invasive surgical planning, we
should include accurate surface model to plan a proper
path for intervention. In preventive diagnosis, clinicians can
make a comprehensive and meaningful evaluation based on
geometric features of vasculature, which should also base on
high segmentation accuracy.

• Detection of vessel with small radius—Some aneurysms occur
at the boundaries of small vessels. Failing to detect these vessels
may lead to mis-evaluate the risk of strokes.

• Robustness to noise—Noise is an inevitable phenomenon
during imaging. If automatic algorithms are not robust enough
to noise, the segmentation performance will drop. This leads
to inaccurate vascular information, based on which it is hard
to carry out meaningful postprocessing like surgical planning,
geometric analysis of vessels, etc.

In this paper, we present a deep learning-based algorithm
to segment the cerebral vasculature for TOF-MRA images.
Compared with the counterparts trained using CE as the only loss
(DenseVoxNet-CE and FiboNet-CE in Table 3), the inclusion
of DC improves the segmentation result by ∼ 2%. The result
of DenseNet-CE-DC is close but still lower than our FiboNet-
CE, which also validates the effectiveness of FiboNet. In order
to alleviate the large variations in vascular anatomies and voxel
intensities, we propose a VAN. VAN is adopted as the regularizer
for voxel-wise distribution consistency between the predictions
and ground truth by incorporating it in the adversarial training.
To mitigate the influence of class imbalance on the convergence
ofD, FL is utilized asD′s loss function. To relieve the influence of
class imbalance on the convergence ofG, the FiboNet, we propose
to use the addition of cross-entropy and DC as G′s loss function.
In this paper, we also propose the Fibonacci connection of feature
maps and incorporate it in our FiboNet. Compared with the
dense connection, this type of feature aggregation is suitable to

TABLE 5 | Results using different size of training patches.

Healthy dataset

Patch Size

Method
DC

V-Net LinearCN FiboNet

64× 64× 64 0.7191 0.7927 0.7967

128× 128× 64 0.6636 0.7125 0.7748

1DC 0.0555 0.0802 0.0219

be placed in shallow layers for diversified feature maps. Noise
robustness is improved by a large margin by incorporating the
DC in the training of FiboNet.

Comparatively, 3D-UNet turns out to demonstrating the
weakest performance on both datasets. Maybe, only low level
feature like voxel intensity is learned by 3D-UNet. From
the results of V-Net and I2I-3D, conclusion can be made
that, deep supervision helps improve its performance on
abnormal dataset due to its intrinsic property to promote highly
discriminative feature maps between convolutional layers (Lee
et al., 2015), which also coincides with our motivation of
Fibonacci connection. Comparatively, cross-hair filters used in
DeepVesselNet helps achieve comparable segmentation accuracy
but with improved memory usage and thus faster training speed.

Refer to the results of DenseVoxNet-CE-DC, FiboNet-
CE-DC, and LinearCN-CE-DC for comparison of different
connection types. Within these results, the DenseVoxNet-CE-
DC gets the smallest DC value. This is probably due to the
regularizing problem. The performance of LinearCN-CE-DC is
a little weaker but very close to the performance of FiboNet-
CE-DC. From Figure 4, we can find out that LinearCN-CE-
DC performs better in vascular regions while it does worse
in background regions. Worse local agreement is achieved
by LinearCN-CE-DC than FiboNet-CE-DC. This can also be
concluded from its value of SHD95, which is much larger than
FiboNet-CE-DC. On the contrary, the FiboNet structure applies
the feature-reusing strategy by concatenating the output from
previous two layers as the input of the current layer. Compared
with LinearCN, this type of connection encourages better back
propagation of gradients. Compared with dense connection,
this type of connection encourages diversified feature maps,
which is better for vascular segmentation due to all kinds of
vascular features.

The incorporation of adversarial training helps improve the
segmentation performance on both datasets. The improvements
from VolumeGAN is slight on both datasets. Comparatively,
PatchGAN can achieve much higher improvement than
VolumeGAN on the brain atrophy dataset. This may imply that
small size of training patches are preferred in deep learning-
based vascular segmentation since vasculatures are likely to
share similar feature from a small patch instead of a large one
(refer to section IV.G for details). VolumeGAN is deeper than
PatchGAN, making it harder to train. Similar phenomenon
that PatchGAN outperforms VolumeGAN is observed in Isola
et al. (2017). Also, when networks go deeper, fewer voxels are
output by VolumeGAN, making it ineffective in producing
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stable and sufficient gradient feedback for network training (Xue
et al., 2018). The application of voxel-wise adversarial training
(VANGAN) can relieve above problems. VANGAN has greater
depth than VolumeGAN and the output size of VANGAN is
the same as its input, ensuring sufficient backpropagation of
gradient. Also, best and more consistent performance is realized
on both datasets using VANGAN than that of PatchGAN. This
can be concluded by the largest DC value and the smallest
standard deviation of VANGAN among the methods.

Though improvements have been made, imperfections of
our method do exist. First of all, our method only deals
with the segmentation of cerebral vasculature. Centerline of
the extracted vasculature cannot be detected explicitly. In
applications involving the geometric information of vessels,
centerlines are very important. With centerlines, the accuracy of
the automatically reconstructed topology can also be measured.
Second, we observe some false merges in the segmentation of
vessels that are quite close to each other. When vessels are quite
close to each other, only a blurry small gap of two to three
voxels is supposed to separate the vessels. In the situation like
this, existing methods including our FiboNet fail to separate the
vessels. Instead, the blurry small gap is also recognized as vascular

region, leading to false merge of vessels. Third, in patch-wise
training, space information is lost for now. Networks cannot
perceive the global space position of each voxel within each
subject. Therefore, vessels outside the brain will also be extracted.
In the future, attentions will paid to addressing above problems.
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