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Diabetic kidney disease (DKD) is the lead-
ing cause of end-stage kidney disease,
and it creates tremendous medical care
costs. Accurate prediction of DKD and its
potential molecular implications remain
incompletely understood. Here, we apply
artificial intelligence (AI) algorithms to
build up an interaction model that tackles
the complex interconnections between
diabetes and chronic kidney disease (CKD)
and to identify a biomarker signature that
predisposes high-risk type 2 diabetes
patients to progression to DKD. The
cohort in this study contains 618 sub-
jects, and these can be split into train-
ing (557 subjects) and testing (61
subjects) cohorts. Their mean age was
63.8 ± 12.9 years, and they included 287
males (46.4%). The median estimated glo-
merular filtration rate was 83.0 mL/min/
1.73 m2. Of the subjects, 338 (54.7%)
were control subjects, 112 (18.1%) had
type 2 diabetes, 73 (11.8%) had nondia-
betic CKD, and 95 (15.4%) had DKD
(Fig. 1A). The study protocol conforms
to the ethical guidelines of the 1975
Declaration of Helsinki and was approved

by the Institutional Review Board of
Chang Gung Medical Foundation (Institu-
tional Review Board no. 201800802B0,
202000077B0A3, 201800273B0C602, and
202002535B0). Informed consent was
obtained from all subjects involved in the
study.

The interaction model uses the diabe-
tes label as a feature, together with a
combination of statistically significant
features; this was done by integrating
high-dimensional data. This information
was collected from 71 clinical indices,
using untargeted metabolomics (13,231
metabolites), using lipidomics (P180
metabolites), and by genome-wide
single nucleotide polymorphism analy-
sis (392,885 single nucleotide poly-
morphisms) data sets. The features were
ranked by summation of the selected
counts using 100-times-bootstrapped
random samples and three machine
learning methods (random forest, sup-
port vector machine, and least absolute
shrinkage and selection operator) (1).
Subsequently, the minimum features
needed to give the highest area under

the curve performances and accuracy
rates were extracted (Fig. 1B). Finally,
we performed 10-fold cross-validation of
this model. The top 33 features (Fig. 1C)
yield a good accuracy rate (0.76) and
area under curve (0.81) when differenti-
ating CKD and non-CKD among patients
with diabetes. Intriguingly, multiplication
of two of the specific interaction features
enhances the effectiveness when distin-
guishing CKD and non-CKD patients.
For example, the representative plots
for the interactions of kynurenine
(KYN)*alanine, asymmetric dimethylargi-
nine (ADMA)*age, citrulline*KYN, and ser-
ine*lysophosphatidylcholine acyl C28:1
(LysoPC a C28:1) result in a more dra-
matic difference than any one of the
above when used separately (Fig. 1D).

Figure 1E depicts the interorgan com-
munication that is potentially involved
in the interaction features identified by
our AI-based methods. In healthy indi-
viduals (Fig. 1E, left), the metabolites
associated with the interaction features
are processed mainly in the liver and kid-
ney. Briefly, 1) in the liver, tryptophan is
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Figure 1–An interaction model was built to tackle the complex interconnections between diabetes and CKD and to identify a biomarker signature
that predisposes high-risk diabetes patients to DKD. A: The workflow to predict the occurrence of DKD among patients with diabetes. B: The num-
bers of features were determined by area under curve and accuracy rate. C: The top 33 features selected by the interaction model for predicting
DKD. D: Representative interaction feature plots for CKD and non-CKD. Ranking of the interaction features: KYN*alanine (rank 1), ADMA*age (rank
4), citrulline*kynurenine (rank 6), and serine*LysoPC a C28:1 (rank 8). E: Graphic summary illustrating the interaction features of metabolites in
healthy individuals and DKD patients. In healthy individuals, the metabolites (citrulline, KYN, and lysoPC a C28:1) are processed in the liver and
excreted by the kidney. In DKD patients, all the AI-identified interaction features of metabolites are dysregulated in the liver, the blood, and the
kidney, leading to an elevated level of reactive oxygen species and an increase of inflammatory response. Together, these abnormalities accelerate
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converted into KYN and delivered to the
kidney via the circulation; 2) arginine is
converted into citrulline via the urea
cycle or, alternatively, is processed into
ADMA, with both citrulline and ADMA
being delivered to the kidneys; 3) phos-
phatidylcholine is converted into LysoPC
a C28:1, which can stimulate the expres-
sion of extracellular superoxide dismut-
ase in hepatocytes and in the endothelial
cells of blood vesicles, thereby enhancing
the antioxidant system of these cells; and
4) all of the above metabolites (KYN, cit-
rulline, and ADMA) are excreted from
the kidney.

In contrast, the metabolites associ-
ated with the interaction features are
dysregulated in DKD patients (Fig. 1E,
right) as follows. 1) An elevated level of
KYN accumulates in the blood; this is
probably caused, at least in part, by
impaired excretion by the damaged kid-
neys. Additionally, the proinflammatory
milieu of diabetes can activate immune
cells that also can convert tryptophan
into KYN, further increasing the levels
of KYN (2) and creating a vicious cycle.
2) Elevated levels of ADMA and citrul-
line can be detected in the blood of
DKD patients; this may be caused by an
impairment of the urea cycle and argi-
nine metabolism in the liver. Accumula-
tion of ADMA can in turn cause renal
dysfunction when there is hyperglyce-
mia, while a high level of citrulline may
correlate with cardiac dysfunction (3).
3) The decline in LysoPC is likely to
result in decreased expression of extra-
cellular superoxide dismutase (4); this
may compromise the antioxidant sys-
tem and lead to elevated levels of

reactive oxygen species aggravating
renal damage. The increase in alanine
and cysteine in the blood may be attrib-
utable to the protein degradation that
accompanies muscle atrophy, which is a
consequence of type 2 diabetes (5).

It will be of great interest to validate
our findings using larger-scale ethnically
diverse cohorts. Additionally, longitudinal
studies are warranted to validate the use-
fulness of our model. Finally, the cause-
and-effect relationships and the sources
of the circulating biomarkers need to
be further investigated.

In conclusion, AI-assisted discovery
of the biomarker signature reveals a
potential molecular mechanism underly-
ing the complex interorgan communica-
tion occurring during DKD pathogenesis.
This signature, which consists of risk
(or predictive) biomarkers, may provide
novel diagnostic or therapeutic insights
(clinical trial reg. no. NCT04839796,
ClinicalTrials.gov).
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