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Abstract: A coinage-metal bond has been predicted and characterized in the complexes of
[1.1.1]propellane (P) and M2/MCl/MCH3 (M = Cu, Ag, and Au). The interaction energy varies
between −16 and −47 kcal/mol, indicating that the bridgehead carbon atom of P has a good affinity for
the coinage atom. The coinage-metal bond becomes stronger in the Ag < Cu < Au sequence. Relative to
M2, both MCl and MCH3 engage in a stronger coinage-metal bond, both -Cl and -CH3 groups showing
an electron-withdrawing property. The formation of coinage-metal bonding is mainly attributed
to the donation orbital interactions from the occupied C-C orbital into the empty metal orbitals
and a back-donation from the occupied d orbital of metal into the empty C-C anti-bonding orbital.
In most complexes, the coinage-metal bond is dominated by electrostatic interaction, with moderate
contribution of polarization. When P binds simultaneously with two coinage donors, negative
cooperativity is found. Moreover, this cooperativity is prominent for the stronger coinage-metal bond.
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1. Introduction

Small-ring organic molecules have fascinated organic chemists since they exhibit not only
unique bonding properties but feature interesting reaction modes and stereochemistry as well [1].
[1.1.1]Propellane is the smallest member of this family but its electronic structure is still under
debate [2,3] since its synthesis was reported in 1982 [4]. Jackson and Allen [2] performed an ab initio
calculation on the nature of C1-C3 bond in [1.1.1]propellane (Scheme 1) and found this bond retains
some σ-bridged π pattern. Based on the valence bond theory, Shaik and coworkers ascribed the
bridge bond of [1.1.1]propellane to a charge shift (CS) bond [3]. Introducing such small-ring scaffolds
can improve passive permeability, aqueous solubility, and metabolic stability, thus [1.1.1]propellane
derivatives are extensively synthesized [5]. Very weak C=O···H–C hydrogen bonding involving
propellane can be detected by atomic force microscopy [6]. Molecular electrostatic potential (MEP)
map showed that the inverted-tetrahedral bridgehead atoms of the bridge bond of [1.1.1]propellane
possess excess electron density, thus this molecule can be taken as a Lewis base to form a halogen bond
with some halogen donor molecules [7].
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Scheme 1. [1.1.1]propellane. 

Regium bond is a strong interaction that occurs between a σ-hole on a coinage-metal (regium) 
atom and an electron donor [8]. Before this name was proposed, the Lewis acidic character of a 
regium atom had long been recognized [9–11], where the corresponding interaction was called 
gold-bonding. Regium bonds between Mn clusters (M = Cu, Ag, Au; n = 2–6) and nucleophiles NH3 
and HCN are in a large part dominated by Coulombic attraction, with a smaller orbital interaction 
contribution [12]. Other than molecules with lone-pair electrons, π molecules are also utilized to 
bind with regium nanoparticles [13,14] and gold compounds [15]. If MX (X = halogen) binds with 
benzene, a cation-π interaction is characterized since the oxidation state of M is +1 in MX [14]. 
Recently, Legon and Walker named this bond as a coinage-metal bond by analogy with the term 
‘halogen bond’ [16]. Wang et al. compared the hydrogen, halogen, and coinage-metal bonds 
between small π molecules and HX/YX/MX (X = F, Cl, Br, I; Y = Cl, Br; M = Cu, Ag, Au) [17]. The 
distribution of σ-holes on the surface of nanostructured gold can be unveiled by MEPs [18]. The 
presence of σ-holes in nanoparticles of gold is helpful to explain its catalytic properties. 

Cooperativity is an important property of noncovalent interactions since it largely determines 
the applications of noncovalent interactions in crystal engineering, molecular recognition, and 
biological functions [19–21]. Generally, both interactions are strengthened if the middle molecule 
acts as the Lewis acid and base, respectively. Both interactions are weakened when the middle 
molecule serves as a double Lewis acid/base. Coinage-metal bond also exhibits cooperativity with 
other types of interactions [11,22–28]. In FCCF⋅⋅⋅AgCCX⋅⋅⋅NCH (X = Cl, Br, I), both coinage-metal 
bond and halogen bond are simultaneously strengthened, although AgCCX is a double Lewis acid 
[23]. That is, coinage-metal bond sometimes displays some abnormal cooperativity. 

In this paper, we studied the coinage-metal-bonded complexes between [1.1.1]propellane (P) 
and M2/MCl/MCH3 (M = Cu, Ag, Au). The coinage-metal bonds formed by M2 and MCl/MCH3 were 
compared to study the influence of substituents. The dependence of coinage-metal bonding strength 
on the nature of a coinage-metal atom was explored. The nature of the coinage-metal bond was 
unveiled by means of atoms in molecules (AIM), natural bond orbital (NBO), and energy 
decomposition (ED) analyses. Based on the binary Ag systems, six ternary systems of Ag2-P-Ag2, 
AgCH3-P-AgCH3, AgCl-P-AgCl, Ag2-P-AgCH3, Ag2-P-AgCl, and AgCH3-P-AgCl were designed to 
investigate the cooperativity of the coinage-metal bond. 

2. Theoretical Methods 

The geometries of the binary systems were first optimized at the MP2/aug-cc-pVDZ level. For 
the coinage atom, an aug-cc-pVDZ-PP [29] basis set was adopted to account for relativistic effects. 
To ensure that all structures corresponded to the true minima on the potential energy surfaces, 
harmonic frequency calculations were performed at the same level. The geometry optimization of 
the binary systems was also performed at the MP2/aug-cc-pVTZ(PP) and 
wB97X-D/aug-cc-pVTZ(PP) levels, where the integration grid of ωB97X-D method was 75,302 in 
Gaussian 09. The geometries of the ternary systems were only optimized at the 
wB97X-D/aug-cc-pVTZ(PP) level. Because MP2 neglects three-body intermolecular dispersion [30], 
the wB97X-D [31] method was used to study the structures and properties of all complexes. The 
interaction energies (∆E) with different methods were computed as the difference between the 
energy of the complex and the corresponding monomers with their geometries in that of the 
complex. A single-point energy calculation was also performed at the coupled-cluster singles and 
doubles augmented by a perturbative treatment of triple excitations (CCSD(T))/aug-cc-pVTZ(PP) 
level with the MP2/aug-cc-pVTZ(PP) geometries. Interaction energies were corrected for the basis 
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Regium bond is a strong interaction that occurs between a σ-hole on a coinage-metal (regium)
atom and an electron donor [8]. Before this name was proposed, the Lewis acidic character of a regium
atom had long been recognized [9–11], where the corresponding interaction was called gold-bonding.
Regium bonds between Mn clusters (M = Cu, Ag, Au; n = 2–6) and nucleophiles NH3 and HCN are in
a large part dominated by Coulombic attraction, with a smaller orbital interaction contribution [12].
Other than molecules with lone-pair electrons, π molecules are also utilized to bind with regium
nanoparticles [13,14] and gold compounds [15]. If MX (X = halogen) binds with benzene, a cation-π
interaction is characterized since the oxidation state of M is +1 in MX [14]. Recently, Legon and Walker
named this bond as a coinage-metal bond by analogy with the term ‘halogen bond’ [16]. Wang et al.
compared the hydrogen, halogen, and coinage-metal bonds between small πmolecules and HX/YX/MX
(X = F, Cl, Br, I; Y = Cl, Br; M = Cu, Ag, Au) [17]. The distribution of σ-holes on the surface of
nanostructured gold can be unveiled by MEPs [18]. The presence of σ-holes in nanoparticles of gold is
helpful to explain its catalytic properties.

Cooperativity is an important property of noncovalent interactions since it largely determines the
applications of noncovalent interactions in crystal engineering, molecular recognition, and biological
functions [19–21]. Generally, both interactions are strengthened if the middle molecule acts as
the Lewis acid and base, respectively. Both interactions are weakened when the middle molecule
serves as a double Lewis acid/base. Coinage-metal bond also exhibits cooperativity with other types
of interactions [11,22–28]. In FCCF···AgCCX···NCH (X = Cl, Br, I), both coinage-metal bond and
halogen bond are simultaneously strengthened, although AgCCX is a double Lewis acid [23]. That is,
coinage-metal bond sometimes displays some abnormal cooperativity.

In this paper, we studied the coinage-metal-bonded complexes between [1.1.1]propellane (P) and
M2/MCl/MCH3 (M = Cu, Ag, Au). The coinage-metal bonds formed by M2 and MCl/MCH3 were
compared to study the influence of substituents. The dependence of coinage-metal bonding strength on
the nature of a coinage-metal atom was explored. The nature of the coinage-metal bond was unveiled
by means of atoms in molecules (AIM), natural bond orbital (NBO), and energy decomposition (ED)
analyses. Based on the binary Ag systems, six ternary systems of Ag2-P-Ag2, AgCH3-P-AgCH3,
AgCl-P-AgCl, Ag2-P-AgCH3, Ag2-P-AgCl, and AgCH3-P-AgCl were designed to investigate the
cooperativity of the coinage-metal bond.

2. Theoretical Methods

The geometries of the binary systems were first optimized at the MP2/aug-cc-pVDZ level. For the
coinage atom, an aug-cc-pVDZ-PP [29] basis set was adopted to account for relativistic effects. To ensure
that all structures corresponded to the true minima on the potential energy surfaces, harmonic frequency
calculations were performed at the same level. The geometry optimization of the binary systems
was also performed at the MP2/aug-cc-pVTZ(PP) and wB97X-D/aug-cc-pVTZ(PP) levels, where the
integration grid ofωB97X-D method was 75,302 in Gaussian 09. The geometries of the ternary systems
were only optimized at the wB97X-D/aug-cc-pVTZ(PP) level. Because MP2 neglects three-body
intermolecular dispersion [30], the wB97X-D [31] method was used to study the structures and
properties of all complexes. The interaction energies (∆E) with different methods were computed as the
difference between the energy of the complex and the corresponding monomers with their geometries in
that of the complex. A single-point energy calculation was also performed at the coupled-cluster singles
and doubles augmented by a perturbative treatment of triple excitations (CCSD(T))/aug-cc-pVTZ(PP)
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level with the MP2/aug-cc-pVTZ(PP) geometries. Interaction energies were corrected for the basis
set superposition error (BSSE) with the counterpoise method proposed by Boys and Bernardi [32].
All calculations were carried out with the Gaussian 09 program [33].

Molecular electrostatic potentials (MEPs) at the 0.001 electrons Bohr−3 isodensity surfaces were
calculated via the WFA-SAS program [34] at the wB97X-D/aug-cc-pVTZ(PP) level. Natural bond
orbital (NBO) analysis [35] was carried out at the HF/aug-cc-pVDZ(PP)//wB97X-D/aug-cc-pVTZ(PP)
level to estimate orbital interactions and charge transfer (CT). The topological parameters
of electron density, its Laplacian, and total energy density at the bond critical point (BCP)
were carried out at the wB97X-D/aug-cc-pVTZ(PP) level with the AIM2000 [36] program.
The interaction energy was decomposed into its five components by the GAMESS program [37]
with the localized molecular orbital-energy decomposition analysis (LMOEDA) method [38] at the
MP2/aug-cc-pVTZ(PP)//wB97X-D/aug-cc-pVTZ(PP) level.

3. Results and Discussion

3.1. Binary Systems

Figure 1 shows the optimized structures of P-M2, P-MCl, and P-MCH3 binary complexes at
the wB97X-D/aug-cc-pVTZ(PP) level. All the geometries have C3v symmetry with no imaginary
frequencies. The M···C distance was much shorter than the sum of van der Waals (vdW) radii of the
relevant atoms, indicating a strong attractive interaction between the two moieties. Though the vdW
radius increased from Cu to Ag to Au, the M···C distance became longer from Cu···C to Au···C to Ag···C
for each series of the complex. This inconsistency was primarily ascribed to the remarkably high first
ionization energy and the electron affinity of Au. The M···C distance in P-MCl was shorter than that in
the P-M2 analogue, which can be explained with the positive MEP on both M2 and MCl. The longer
M···C distance in P-MCH3 than that in P-MCl was due to the weaker electron-withdrawing ability of
the methyl group compared to the Cl atom.
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Figure 1. Optimized structures of binary systems with the M-C distance (Å) at the
wB97X-D/aug-cc-pVTZ(PP) level.

The attractive interaction between both molecules can be understood with the MEP maps as
shown in Figure 2. Obviously, there is a red region (σ-hole) along the M-M, M-Cl, and M-C bonds.
The σ-hole was enlarged in sequence of Ag2 < Cu2 < Au2, AgCl < AuCl <CuCl, but AuCH3 < AgCH3
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< CuCH3. The MEP of the σ-hole increased in the order M2 < MCH3 < MCl owing to the different
electron-withdrawing ability among the Cl, CH3, and M. The bridgehead carbon atoms in P have
negative MEPs (see the blue area of P in Figure 2). As a result, a coinage-metal bond formed between
the bridgehead carbon atom of P and the M atom in M2/MCl/MCH3.
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The interaction energy was computed with four methods including MP2/aug-cc-pVDZ(PP),
MP2/aug-cc-pVTZ(PP), wB97X-D/aug-cc-pVTZ(PP), and CCSD(T)/aug-cc-pVTZ(PP), and the respective
interaction energies were denoted as ∆EMP2-pVDZ, ∆EMP2-pVTZ, ∆EwB97X-D-pVTZ, and ∆ECCSD(T)-pVTZ.
As shown in Table 1, the average deviation from the CCSD(T) results varied from 2.37 to 5.90 kcal/mol
for the different systems. As expected, the larger basis set aug-cc-pVTZ(PP) brought out the
larger interaction energy than the smaller basis set aug-cc-pVDZ(PP), and the difference was in
a range of 1.8 to 5.7 kcal/mol, dependent on the different systems. Compared with ∆ECCSD(T)-pVTZ,
the MP2/aug-cc-pVTZ(PP) method overestimated the interaction energy and this overestimation
was even larger than 10 kcal/mol in P-Au2 and P-AuCl. The interaction energy calculated by
the wB97X-D/aug-cc-pVTZ(PP) method was close to ∆ECCSD(T)-pVTZ with comparison to the MP2
results. Furthermore, this method was successfully used to study coinage-metal bonds with small π
molecules [17]. Thus, the wB97X-D/aug-cc-pVTZ(PP) data were used for discussion.

Table 1. Interaction energies corrected for basis set superposition error (BSSE) (∆E, kcal/mol) with
different methods in the binary systems and average deviation (δ) from the coupled-cluster singles and
doubles augmented by a perturbative treatment of triple excitations (CCSD(T)) values.

∆EMP2-pVDZ ∆EMP2-pVTZ ∆EwB97X-D-pVTZ ∆ECCSD(T)-pVTZ δ

P-Cu2 −24.13 −26.29 −22.88 −22.06 2.37
P-Ag2 −15.72 −18.05 −16.34 −13.43 3.27
P-Au2 −34.94 −39.55 −30.05 −29.07 5.78
P-CuCl −40.81 −44.66 −41.14 −38.04 4.16
P-AgCl −29.79 −33.37 −32.30 −28.36 3.46
P-AuCl −49.53 −55.20 −47.30 −44.78 5.90

P-CuCH3 −30.95 −32.76 −28.45 −26.31 4.41
P-AgCH3 −21.84 −24.22 −22.99 −19.62 3.40
P-AuCH3 −28.32 −31.41 −29.04 −24.93 4.66
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In all cases, the interaction energy had a large range from −16.34 kcal/mol to −47.30 kcal/mol.
The interaction energy was closely related to the nature of the coinage metal atom. The Au complexes
had the largest interaction energy and the Ag complexes had the smallest interaction energy. The MEP
on the M atom can be partly responsible for the change of interaction energy in P-M2 since both terms
linearly correlate. The MCl complexes show the stronger coinage-metal bond than the M2 analogues
with a similar reason. The methyl group in MCH3 weakens the coinage-metal bond relative to MCl.
The interaction energy in P-M2 approaches that in NH3-M2 [12], indicating [1.1.1]propellane is a good
electron donor in coinage-metal bonding. It should be noted that the the oxidation state of M was
different in M2 and MCl/MCH3, with 0 and +1, respectively [14].

Figure 3 shows the AIM diagrams of P-Cu2. A bond critical point (BCP) was present between
the Cu atom and the bridgehead C atom of P, confirming the existence of a coinage-metal bond.
The topological parameters at the BCP, including electron density, Laplacian, and total energy density,
were collected in Table 2. The electron density ranging from 0.07 to 0.121 a.u. is partly out of the range
suggested for non-covalent interactions [39]. Although the M···C BCP is different due to the M atom,
its electron density had a consistent change with the interaction energy for each series of the complex.
For the same M···C BCP, the electron density in P-MCl was larger than that in the P-M2 analogue.
The electron density at the Au···C BCP in P-AuCH3 was smaller than that in P-Au2, while an opposite
result is found for the electron density at the Ag···C BCP. Even so, both variations were consistent with
the interaction energy. Therefore, the electron density could be used to estimate the strength of the
coinage-metal bond. The value of Laplacian was in a range of 0.18 to 0.28 a.u., which was also out of
the range suggested for non-covalent interactions [39]. This further confirms the existence of a strong
coinage-metal bond.
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Figure 3. Atoms in molecules (AIM) diagrams of P-Cu2.

Table 2. Electron density (ρ, a.u.), Laplacian (∇2ρ, a.u.), and total energy density (H, a.u.) at the
intermolecular bond critical point (BCP) in the binary systems at the wB97X-D/aug-cc-pVZT level.

ρ ∇
2ρ H

P-Cu2 0.094 0.233 −0.036
P-Ag2 0.070 0.179 −0.018
P-Au2 0.106 0.224 −0.040
P-CuCl 0.108 0.275 −0.048
P-AgCl 0.090 0.224 −0.029
P-AuCl 0.121 0.252 −0.052

P-CuCH3 0.095 0.256 −0.038
P-AgCH3 0.078 0.208 −0.023
P-AuCH3 0.095 0.232 −0.033

The sign of Laplacian and total energy density can give some useful information for the nature of
a non-covalent interaction. For all complexes, Laplacian is positive and energy density is negative,
indicating that coinage-metal bonding is a partially covalent interaction [40]. The energy density was
more negative for the stronger coinage-metal bond.
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According to the NBO analyses, there are three main orbital interactions upon the formation of
coinage-metal bonding: σC-C→ σ*M–M/σC-C→ σ*M-Cl/σC-C→ σ*M-C, σC-C→ LP*M, and LPM→ σ*C-C.
The former two orbital interactions are donation orbital interactions from the occupied C-C orbital
into the empty metal orbitals, while the latter orbital interaction is a back-donation from the occupied
d orbital of metal into the empty C-C anti-bonding orbital. These orbital interactions are estimated
with second-order perturbation; see Table 3. Obviously, the donation orbital interactions are stronger
than the back-donation interaction. For σC-C→ σ*M-Cl/σC-C→ σ*M-C, it is stronger with the increase
of the coinage-metal mass, while σC-C → σ*M–M has consistent change with the interaction energy.
For σC-C→ LP*M, its change was consistent with the interaction energy only in the P-MCl complex.
The back-donation orbital interaction showed an irregular change in the P-MCH3 complex but had
an enhancing tendency for the heavier metal in the P-M2 and P-MCl complexes. For P-M2, the
σC-C→ LP*M orbital interaction was stronger than the σC-C → σ*M–M one, while the former orbital
interaction was weaker than σC-C → σ*M–C in P-MCH3. However, the relative magnitude of both
donor orbital interactions was different for three complexes of P-MCl. Both σ*M–M/σ*M–Cl/σ*M–C and
LP*M are related with the d anti-bonding orbitals of M, but we did not give any explanation for the
above variations since no rule was found.

Table 3. Charge transfer (CT, e) and second-order perturbation energies (E(2), kcal/mol) in the
binary systems.

CT Types E(2) Types E(2) Types E(2)

P-Cu2 0.058 σC-C → σ*Cu–Cu 17.42 σC-C → LP*Cu 43.31 LPCu → σ*C-C 9.93
P-Ag2 0.054 σC-C → σ*Ag–Ag 15.00 σC-C → LP*Ag 23.57 LPAg → σ*C-C 10.52
P-Au2 0.104 σC-C → σ*Au–Au 29.52 σC-C → LP*Au 41.64 LPAu → σ*C-C 16.70
P-CuCl 0.101 σC-C → σ*Cu–Cl 23.94 σC-C → LP*Cu 66.86 LPCu → σ*C-C 10.16
P-AgCl 0.083 σC-C → σ*Ag–Cl 41.03 σC-C → LP*Ag 49.10 LPAg → σ*C-C 11.46
P-AuCl 0.148 σC-C → σ*Au–Cl 96.21 σC-C → LP*Au 75.40 LPAu → σ*C-C 17.30

P-CuCH3 0.086 σC-C → σ*Cu–C 41.45 σC-C → LP*Cu 29.36 LPCu → σ*C-C 9.77
P-AgCH3 0.074 σC-C → σ*Ag–C 48.99 σC-C → LP*Ag 18.90 LPAg → σ*C-C 8.79
P-AuCH3 0.109 σC-C → σ*Au–C 80.37 σC-C → LP*Au 23.18 LPAu → σ*C-C 10.97

Accompanied with these orbital interactions, charge transfer (CT) occurred from the P to the
M2/MCl/MCH3. This quantity was calculated as the sum of the charge on all atoms of P. For each series
of complex, the charge transfer was the smallest in the Ag complex but largest in the Au complex.
This sequence was similar to that of the interaction energy for each series of P-M2, P-MCl, or P-MCH3

complex. For the same coinage-metal donor, CT increases from P-M2 to P-MCH3 to P-MCl, which was
generally consistent with the interaction energy. Of course, there was one exception between them in
P-Au2 and P-AuCH3. Namely, the former complex had larger interaction energy than the latter, while
the smaller CT was found in the former. Even so, their difference was not large.

To unveil the origin of the coinage-metal bonding, the interaction energy was decomposed into
five terms: Electrostatic energy (Eele), exchange energy (Eex), repulsion energy (Erep), polarization
energy (Epol), and dispersion energy (Edisp), and the related results are shown in Table 4. The largest
attractive term was from Eex and this term was often offset by Erep, thus we only focused on other
attractive terms of Eele, Epol, and Edisp. For each complex, Edisp was smaller than both Eele and Epol,
but its contribution could not be ignored since its ratio to the sum of the three attractive energies was
14–22%. For most complexes, Eele was larger than Epol, and the reverse result was found in P-AuCl.
This indicated that most coinage-metal bonded complexes were dominated by electrostatic interaction,
with moderate contribution from polarization interaction. When the complex varied from Cu to Ag
to Au, each term was smallest in the Ag complex and largest in the Au complex for most complexes.
However, some exceptions were also found. For instance, Edisp was smallest in P-AgCH3 but largest in
P-CuCH3.
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Table 4. Electrostatic energy (Eele), exchange energy (Eex), repulsion energy (Erep), polarization energy
(Epol), dispersion energy (Edisp) in the binary systems at the MP2/aug-cc-pVTZ//wB97X-D/aug-cc-pVTZ.
All are in kcal/mol.

Eele Eex Erep Epol Edisp

P-Cu2 −50.90 −85.99 158.26 −26.26 −21.87
P-Ag2 −37.91 −69.44 124.97 −20.67 −15.33
P-Au2 −54.74 −107.48 199.97 −49.47 −27.13
P-CuCl −52.13 −62.85 121.26 −29.44 −22.83
P-AgCl −46.48 −65.69 123.49 −28.25 −18.16
P-AuCl −58.66 −96.67 182.46 −59.01 −24.02

P-CuCH3 −43.67 −61.59 113.61 −23.93 −18.21
P-AgCH3 −37.62 −58.84 106.93 −22.03 −14.14
P-AuCH3 −43.21 −81.23 147.32 −41.11 −14.49

3.2. Ternary Systems

Figure 4 shows the optimized structures of six ternary systems of Ag2-P-Ag2, AgCH3-P-AgCH3,
AgCl-P-AgCl, Ag2-P-AgCH3, Ag2-P-AgCl, and AgCH3-P-AgCl, which were used to study the
cooperativity of the coinage-metal bond. Only the Ag ternary systems are discussed since most Cu
and Au counterparts have imaginary frequencies. The binding distance showed a similar change
in the different series of ternary systems. Namely, the binding distance in the ternary system was
longer than that in the binary analogue. If the coinage donor was the same in the ternary system,
both interactions would have an equal elongation. Moreover, this elongation became larger from
AgCl-P-AgCl to Ag2-P-Ag2 to AgCH3-P-AgCH3. When the coinage donor was different in the ternary
system, both interactions had an unequal elongation. Furthermore, this elongation was larger for
the weaker coinage-metal bond. For example, this elongation was 0.016 Å for the stronger P-AgCl
interaction but 0.050 Å for the weaker P-AgCH3 interaction.

The total interaction energy of the ternary system is listed in Table 5. The stability of the ternary
system is similar to that of the corresponding binary system. A ternary system composed of two binary
systems with stronger coinage-metal bonds is expected to be more stable. For instance, the stability of
the ternary system increases from Ag2-P-Ag2 to AgCH3-P-AgCH3 to AgCl-P-AgCl. Both interactions
are weakened in the ternary system since their interaction energies decrease (positive ∆∆E). The stronger
the coinage-metal bond is, the more it is weakened in the ternary system. The coinage-metal bond in
Ag2-P decreases from 4.69 kcal/mol in Ag2-P-Ag2 to 6.14 kcal/mol in Ag2-P-AgCH3 to 7.45 kcal/mol
in Ag2-P-AgCl. The similar weakening result is also found in other ternary systems. These results
indicate that both coinage-metal bonds exhibit negative cooperativity in these Ag ternary systems.
There is a repulsion force between two Ag donor molecules since their interaction energy is positive.
This repulsion interaction increases from Ag2 to AgCH3 to AgCl.
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Table 5. Total interaction energy (∆Etotal), the interaction energy between molecular pairs (∆E), and
cooperative energy (Ecoop) in the ternary systems and all are in kcal/mol.

Complexes ∆Etotal ∆Eleft ∆∆Eleft ∆Eright ∆∆Eright ∆Efar Ecoop

Ag2-P-Ag2 −27.10 −11.65 4.69 −11.65 4.69 0.02 0.83
AgCH3-P-AgCH3 −36.08 −14.86 8.13 −14.86 8.13 0.55 4.47

AgCl-P-AgCl −47.58 −20.14 12.16 −20.14 12.16 2.47 8.47
Ag2-P-AgCH3 −31.97 −10.20 6.14 −16.42 6.57 0.18 3.05
Ag2-P-AgCl −39.32 −8.89 7.45 −24.50 7.80 0.40 4.06

AgCH3-P-AgCl −42.70 −13.40 9.59 −24.39 7.91 1.23 4.64

The cooperativity was also estimated with cooperative energy (Ecoop), which was calculated with
the formulas of Ecoop = ∆Etotal − ∆Eleft − ∆Eright − ∆Efar, where ∆Etotal was the total interaction energy
of a ternary system, ∆Eleft the interaction energy of the optimized left dimer, ∆Eright the interaction
energy of the optimized right dimer, and ∆Efar the interaction energy of two Ag donor molecules in the
trimer. This term was positive, consistent with the negative cooperativity between both coinage-metal
bonds. Similarly, Ecoop increased from Ag2-P-Ag2 to AgCH3-P-AgCH3 to AgCl-P-AgCl, depending on
the strength of coinage-metal bonding.

The change of the coinage-metal bonding strength in the ternary system can also be estimated
with the electron density at the intermolecular BCP since they are relevant. Compared with the
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binary system, the electron density at the intermolecular BCP decreases (see Table 6), indicating the
coinage-metal bond is weakened in the ternary system.

Table 6. Electron densities (ρ, au) at the intermolecular BCPs in the ternary systems and their difference
(∆ρ, au) relative to the binary ones.

ρleft ρright ∆ρleft ∆ρright

Ag2-P-Ag2 0.065 0.065 −0.005 −0.005
AgCH3-P-AgCH3 0.071 0.071 −0.007 −0.007

AgCl-P-AgCl 0.082 0.082 −0.008 −0.008
Ag2-P-AgCH3 0.061 0.074 −0.009 −0.004
Ag2-P-AgCl 0.058 0.087 −0.012 −0.003

AgCH3-P-AgCl 0.067 0.085 −0.011 −0.005

Considering the contribution of electrostatic interaction in the coinage-metal bond, the MEP on
the free bridgehead carbon atom in the P binary complexes was examined. It was calculated to be
0.0445au in P-Ag2, 0.0469 a.u. in P-AgCH3 and 0.0590 a.u. in P-AgCl, respectively. It is of note that the
negative MEP in the P monomer became positive in the P binary complexes. As a result, the second
coinage-metal bond was unfavorable to be formed in views of electrostatic interaction.

It was interesting to find that the free bridgehead carbon atom with a positive MEP in the P binary
complex still bound attractively with another coinage donor. This result can be partly attributed to the
presence of orbital interactions between both molecules. These orbital interactions result in charge
transfer from P to the coinage donor. This value decreased in the ternary system compared with that in
the binary system (Table 7), consistent with the weakening of the coinage-metal bond. For the ternary
complexes with two same coinage-metal bonds, the decrease of charge transfer grows up with the
strengthening of the coinage-metal bond.

Table 7. Charge transfer (CT, e) in each coinage-metal bond in the ternary system and its change (∆CT,
e) relative to the binary system.

CTleft CTright ∆CTleft ∆CTright

Ag2-P-Ag2 0.017 0.017 −0.037 −0.037
AgCH3-P-AgCH3 0.037 0.037 −0.037 −0.037

AgCl-P-AgCl 0.028 0.028 −0.055 −0.055
Ag2-P-AgCH3 0.006 0.049 −0.048 −0.025
Ag2-P-AgCl 0.012 0.062 −0.042 −0.021

AgCH3-P-AgCl 0.018 0.048 −0.056 −0.035

4. Conclusions

Nine binary systems of P-M2, P-MCH3, and P-MCl (M = Cu, Ag, and Au), as well as six Ag ternary
systems have been investigated. The following conclusions are summarized as: (1) A coinage-metal
bond is found between the bridgehead carbon atom of P and a coinage donor, with a partially covalent
character. (2) The coinage-metal bonded complexes have big interaction energy of−16.3~−47.3 kcal/mol,
showing P is a good electron donor in the coinage-metal bond like that in H-bonding. (3) The strength
of the coinage-metal bond is closely related to the nature of the coinage atom and becomes stronger
in the Ag < Cu < Au order. (4) Both the electron-withdrawing group –Cl and –CH3 strengthen the
coinage-metal bond. (5) The formation of the coinage-metal bonding is accompanied with the donor
orbital interactions from the occupied C-C orbital into the empty metal orbitals and a back-donation
from the occupied d orbital of metal into the empty C-C anti-bonding orbital. (6) Although the
coinage-metal bond has a partially covalent character, electrostatic interaction is still dominant in most
coinage-metal bonded complexes, and polarization and dispersion contributions are also important.
(7) When the two bridgehead carbon atoms of P bind simultaneously with two coinage donors, negative
cooperativity is found with more effect for the stronger coinage-metal bond.
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