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Abstract

During hibernation there is a slowing of all metabolic processes, and thus it is normally considered to be incompatible with
reproduction. In Tasmania the egg-laying mammal, the echidna (Tachyglossus aculeatus) hibernates for several months
before mating in mid-winter, and in previous studies we observed males with females that were still hibernating. We
monitored the reproductive activity of radio-tracked echidnas by swabbing the reproductive tract for sperm while external
temperature loggers provided information on the timing of hibernation. Additional information was provided by camera
traps and ultrasound imaging. More than a third of the females found in mating groups were torpid, and the majority of
these had mated. Some females re-entered deep torpor for extended periods after mating. Ultrasound examination showed
a developing egg in the uterus of a female that had repeatedly re-entered torpor. The presence of fresh sperm in cloacal
swabs taken from this female on three occasions after her presumed date of fertilization indicated she mated several times
after being fertilized. The mating of males with torpid females is the result of extreme competition between promiscuous
males, while re-entry into hibernation by pregnant females could improve the possibility of mating with a better quality
male.
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Introduction

Hibernation has been documented in species from a wide range

of mammalian orders [1], and although originally thought to be an

adaptation to the cold, hibernation is now considered to be an

energy conserving strategy which different species employ in a

range of ecological circumstances [2]. Hibernation is characterized

by a reduction in body temperature (Tb) which typically falls to

within 1uC of ambient, and a very substantial, but size dependent,

reduction in metabolic rate [1]. Because metabolic processes are

slowed during hibernation it is generally considered to be

incompatible with reproduction: hibernation prevents spermato-

genesis in males [3], slows fetal development, delays parturition [4]

and inhibits lactation [5].

Among Australian mammals many dasyurid marsupials enter

daily torpor during pregnancy [6], but bats are the only

mammalian group in which reproduction and deep, extended

torpor (i.e. hibernation) are known to overlap. In temperate zone

bats, which show an extensive period of winter torpor, the

reproductive cycle is interrupted by hibernation [7]. A number of

strategies, including sperm storage and delayed ovulation, allow

gestation to be initiated on arousal from hibernation in spring

although gametogenesis occurs in summer [7,8]. However, the

only species known to enter deep, prolonged torpor while pregnant

is the North American hoary bat (Lasiurus cinereus) - in extreme

spring weather conditions pregnant females showed bouts of deep

torpor lasting up to 5.6 days [9].

The short-beaked echidna Tachyglossus aculeatus is distributed

throughout southern and eastern New Guinea, mainland

Australia, Tasmania, Kangaroo Island, and smaller offshore

islands. It is the most common of the egg-lying mammals and is

in fact the most widespread native Australian mammal [10].

Throughout their range echidnas show some degree of seasonal

inactivity. In Tasmania (subspecies T. a. setosus) reproductively

active males hibernate from mid February to mid June, while

reproductively active females hibernate from early March until

mid July [11,12]. By contrast reproductively active adults of the

Kangaroo Island subspecies (T. a. multiaculeatus) show reduced

activity and only intermittent bouts of torpor between April and

June [13]. Courtship behaviour also appears to differ between

the two areas [14]. Kangaroo Island echidnas have been

described as forming mating ‘‘trains’’ of up to 11 individuals

with a period of competition between males and courtship

lasting between 14–44 days [15]. After mating there is a

gestation period of 22–24 days, after which the female normally

lays a single egg [12,15].

Since 1996 we have been studying a population of echidnas in

the Tasmanian southern midlands, and on several occasions

during the course of this study we found males with females which

were torpid, or which subsequently re-entered hibernation. In

order to examine more closely the relationship between hiberna-

tion and reproduction in Tasmanian echidnas we conducted a

detailed investigation of radio-tracked echidnas during the 2007

and 2008 mating seasons.
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Results and Discussion

Over the two mating seasons we found 26 mating groups. The

most common number of males in a group was one (15 mating

groups), but on three occasions in 2008 females were found with

four males. In ten of the mating groups the female was torpid and

reacted slowly to stimuli; body temperatures of these torpid

females ranged from 10 to 29uC. All males in mating groups were

active and had normal (euthermic) body temperatures (ca 32uC
[16]). Of five torpid females checked, four had sperm in their

reproductive tract. Four of the females found torpid in mating

groups were radio tracked and were observed to re-enter

hibernation; three of these were later found in mating groups

while euthermic and had fresh sperm recovered from their tracts.

One female (echidna 5D5E) was studied intensively in 2008,

using a combination of field observations (including cloacal

swabbing), camera traps, an external temperature logger and

ultrasound. This showed that while hibernating she was visited by

a male at least twice without mating occurring. In one of these

events (July 6) a camera trap showed that a male was with her in

her hibernaculum for 13 hours, while the temperature logger

showed that she did not rewarm significantly. She subsequently

mated five times between July 11 and 28 before entering a nursery

burrow on August 7. During the period of mating she repeatedly

re-entered torpor with a minimum Tb of about 10uC. Maximum

length of these torpor bouts was only about 12 hours, but she was

being frequently disturbed by us. On July 15 female 5D5E was

with male 5036, had fresh sperm in her tract, and had a

temperature of less than 20uC. (A fault in the temperature probe

prevented us from measuring her Tb more accurately). An

ultrasound scan showed an egg in her uterus (Figure 1). A second

scan 5 days later confirmed the presence of the egg, and showed

fresh sperm again. Nine days before entering the nursery burrow

she was with the same male, had fresh sperm in her tract, but was

torpid with a temperature of 26.6uC.

We have shown previously that internal body temperature

loggers allow accurate timing of reproductive events [17], and as

seen in Figure 2, this information can also be obtained from

external temperature loggers. Figure 3 shows the time between

final arousal from hibernation and egg-laying, as determined from

these internal and external logger records for 21 reproductive

events from 13 females, during this and previous studies. (Data

from female 5D5E for 2008 have not been included as she was so

frequently disturbed). The majority of eggs are laid between 20

and 24 days after the final arousal from hibernation. As the

gestation period reported for echidnas is also 20–24 days [12,15],

this would indicate that most females become pregnant immedi-

ately after arousal from hibernation, or are already pregnant at

their final arousal, as was the case for female 5D5E in 2008.

Figure 3 shows that in some cases the time from final arousal to

egg-laying is so short (e.g. female 0118) that there must have been

considerable development of the egg before the final arousal. As

seen in Figure 2, this female appears to have become pregnant

during an extended euthermic period, and was probably

euthermic for 8–9 days before re-entering hibernation for eight

days, with Tb falling to about 7uC.

This is only the second account of a mammal entering deep

torpor, or hibernation, when pregnant. In hoary bats it has been

suggested that hibernation is used during harsh weather to delay

parturition and thus lactation, which is more energetically

expensive than pregnancy [9]. While this will be a significant

consideration in hoary bats where the total litter mass is about

30% of maternal mass [18], the single newly hatched echidna

young at about 0.5 g [19] will be less than 0.02% of maternal

mass. In a previous study we found no measureable increase in

field metabolic rates of lactating females with young aged 45–

65 days [20], and thus the newly hatched baby will be an

insignificant energy drain, at least initially. Furthermore, during

the 10–11 days of egg incubation and first 30 days of lactation,

Tasmanian echidnas are in a closed nursery burrow [12], and

Figure 1. Ultrasound image showing an egg in the uterus of echidna 5D5E on July 23 2008. Fertilization probably occurred on July 9, but she
had fresh sperm in her reproductive tract and was also torpid. Distance between the two markers showing the structure within the egg is 0.35 cm.
doi:10.1371/journal.pone.0006070.g001
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protected from the weather. Thus it seems unlikely that pregnant

female echidnas enter deep torpor to postpone the energetic costs

of lactation.

In our study area reproductively active males finished

hibernation between May 10 and August 5 (n = 7), while the final

arousal from hibernation of reproductively active females was

between June 7 and September 3 (n = 23) [12]. As males are ready

to mate about 30 days after the end of hibernation [12], many will

be seeking matings while some females are still hibernating. Male

mating activity lasts for about 60 days, and although we could not

continually observe the animals, males seemed typically to stay

with a female for up to seven days, with some males leaving and

joining new groups, while others stayed in close proximity to the

female for longer periods. Males were observed with up to four

females during a breeding season, while females mated more than

once, often with more than one male. Outside the mating season,

echidnas are solitary and home ranges of males are typically twice

that of females (Nicol SC, Vanpé C, Sprent JA, Morrow G,

Andersen NA, unpublished observations). The mating trains noted

on Kangaroo Island are also clearly a manifestation of intense

competition between males, and, as the Tasmanian females are

clearly promiscuous, the observation that female Kangaroo Island

echidnas only mate once [15] is likely to be incorrect. Thus the

echidna mating system appears to be characterised by roving

promiscuous males [21] which guard promiscuous females before

and after mating.

When females are polyandrous or promiscuous there is selection

for male traits favoured by cryptic male choice, or traits that

increase competitiveness during sperm competition [22]. Male

traits that potentially increase fertilization success include genital

morphology, sperm size and morphology, and copulatory and

post-copulatory behaviour [22]. The male echidna has an

elaborate penis which has a quadripartite anemone-like appear-

ance [23], and ejaculates its sperm in bundles [24]. Sperm bundles

are very likely to be an adaptation for sperm competition as

spermatozoa in larger bundles show greater progressive motility

than single spermatozoa or smaller sperm bundles [25]. Another

trait that should increase competitiveness during sperm competi-

tion is large testes, and monotremes have larger testes relative to

body size than marsupials, primates or avian species [26].

We suggest that there is extreme competition between echidna

males, which in the Tasmanian sub-species leads to males mating

with torpid females. A male finding a hibernating female, and

repeatedly mating with her, and then guarding her, would have a

high probability of successful paternity. Our observations raise the

Figure 2. External temperature logger record from female echidna 0118. She entered hibernation in March, and her final arousal was on
July 27 (arrow 2), when temperature variability increased. The subsequent reduction in variability (arrow 3) is associated with entry into the nursery
burrow and egg-laying. Periodic arousals can be seen between April and July. In mid-July she shows an extended arousal (July 10–21), and we
presume fertilization occurred at the time indicated by arrow 1.
doi:10.1371/journal.pone.0006070.g002

Figure 3. Time between final arousal from hibernation and
egg-laying for 23 reproductive events from 13 echidnas, as
estimated from internal (red circles), and external (blue circles)
temperature loggers. The reported gestation period for echidnas is
20–24 days [15]. Although three animals (3A61, 4057, 2753) were active
for periods of up to 3 weeks before becoming pregnant, the majority of
points lie between 20 and 24 days after the end of hibernation. In these
cases the females must have become pregnant nearly immediately after
the final arousal from hibernation, or were already pregnant. Echidna
0118 must have become pregnant during the previous euthermic
period (see Figure 2), as was probably also the case for three of 5D5E’s
pregnancies.
doi:10.1371/journal.pone.0006070.g003
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possibility that the echidna is an induced ovulator - in induced

ovulators copulation initiates ovulation, and in some species

multiple matings are required to initiate ovulation [27]. It is not

clear whether females must rewarm before mating can occur, but

even if they do it would seem unlikely that they could exert a pre-

copulatory choice. If torpid females do not have any pre-copulatory

choice this would provide strong selection for the female to mate

again - to ‘trade up’ - if she subsequently encounters a better quality

male [22], which in turn would select for mate guarding by males. It

is also not clear why some females should re-enter torpor after

mating. For female 0118 (Figure 2) the successful mating was not

particularly early – it would have been in the middle of the normal

mating season [12]. Re-entering torpor would be expected to

prolong the gestation period, and for those egg-laying events which

occurred less than 20 days after the final arousal from hibernation

(Figure 2) the time from mating, as estimated from temperature

records was 26–30 days (average 28.1, n = 4). As females will mate

when pregnant it is possible that a female which has been mated

while torpid, and thus had no pre-copulatory choice, may extend

her gestation period by re-entering hibernation to increase the

possibility of being found by a more desirable male, allowing her the

option of abandoning the first pregnancy.

This study raises a number of questions that should be testable

when we have sufficient microsatellites to establish paternity [28].

What determines successful male parentage? Do males which mate

with the largest number of females dominate paternity, or do

females, despite mating with several males, have preferences? It is

possible that successful male parentage is related to major

histocompatibility complex (MHC) compatibility. Investigation of

this aspect of mate choice is dependent on the development of

MHC typing for the species.

Materials and Methods

Ethics Statement
This work was carried out under permit from the Tasmanian

Department of Primary Industries, Water & Environment, and the

University of Tasmania Animal Ethics Committee, and complies

with the Tasmanian and the Australian Code of Practice for the

Care and Use of Animals for Scientific Purposes (2004).

Study site and animals
Fieldwork was conducted on a 12 km2 site on a grazing

property in the southern midlands 50 km north of Hobart,

Tasmania [12]. Between 1996 and 2006 we had tagged 180

echidnas in this area with passive implantable transponder (PIT)

tags (LifeChip, Destron-Fearing, St. Paul, MN, USA). At the start

of 2007 six echidnas (3M, 3F) already had tracking transmitters

(Bio Telemetry Tracking, South Australia) glued to the spines.

Over the two years of this study we found 70 animals (26M, 31F,

13 juveniles), 37 of which had been tagged previously. Forty-eight

were found while slowly driving around the property in a 4WD

vehicle, 22 (5F, 17 M) were found in mating groups when we were

tracking other animals. All new animals were tagged, and tracking

transmitters attached to 14 females and 9 males. A small

temperature logger (iButton, DS1922L, Maxim Integrated Prod-

ucts, Inc. Sunnyvale, California), was glued to the tracking

transmitter. The camera trap was an Olympus digital camera

(model) with a passive infrared motion detector (Archipelago

Consulting Ltd, Westerway, Tasmania, Australia), which we were

able to position above a female echidna while she was hibernating

in a hollow tree, and later in a tree stump.

Internal temperature logger data
Details of loggers and surgical procedures are described in Nicol

et al. [17], and ten of the data points shown in Figure 3 were

published in that study while nine data points were from loggers

that were part of that study but downloaded subsequently.

Recovery of sperm from the female reproductive tract
Urogenital smears were collected by inserting a soft flexible

catheter (6 mm diameter) into the cloaca while the female was

anaesthetized under light isoflurane anaesthesia. The lubricated

catheter was inserted approximately 5 cm into the urogenital tract,

bringing the tip into close proximity to the opening of the paired

uteri. A nylon bristled DNA buccal cell collection brush

(MasterAmpTM Buccal Swab Brush, Epicentre Technologies,

Madison WI, USA) was then advanced through the catheter until

the bristles were just beyond the end of the catheter. The brush

was then withdrawn from the catheter and wiped across a

microscope slide. Slides were then air-dried and stained (Rapid

Diff, Australian Biostain Pty. Ltd., Victoria, Australia). The

appearance of spermatozoa recovered from the female reproduc-

tive tract changed quite significantly over several days of repeated

sampling. Sperm sampled immediately after mating had at least 4

curves along their length. With increasing time in the female tract

the sperm had fewer and fewer curves, and after 4 to 5 days began

to break into fragments.

Ultrasonography was carried out in the field, using a

MyLab30CV portable ultrasound with linear probe (Esaote,

Genova, Italy). For ultrasound examination echidnas were lightly

anaesthetized with isoflurane-oxygen, and placed on their back.
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