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Abstract: There is an urge for traditional herbal remedies as an alternative to modern medicine in
treating several ailments. Alangium salviifolium is one such plant, used traditionally to treat several
diseases. In several reports, there are findings related to the use of this plant extract that demonstrate
its therapeutic value. However, very few attempts have been made to identify the extensive metabo-
lite composition of this plant. Here, we performed metabolite profiling and identification from the
bark of A. salviifolium by extracting the sample in organic and aqueous solvents. The organic and
aqueous extracts were fraction-collected using the Agilent 1260 Analytical Scale Fraction Collection
System. Each of the fractions was analyzed on Liquid Chromatogaphy/Quadrupole Time-of-Flight
LC/Q-TOF and Gas Chromatography/Quadrupole Time-of-Flight GC/instruments. The Liquid
Chromatography/Mass Spectrometry (LC/MS) analyses were performed using Hydrophilic Iner-
action Liquid Chromatography (HILIC), as well as reversed-phase chromatography using three
separate, orthogonal reverse phase columns. Samples were analyzed using an Agilent Jet Stream
(AJS) source in both positive and negative ionization modes. The compounds found were flavonoids,
fatty acids, sugars, and terpenes. Eighty-one secondary metabolites were identified as having thera-
peutic potential. The data produced was against the METLIN database using accurate mass and/or
MS/MS library matching. Compounds from Alangium that could not be identified by database or
library matching were subsequently searched against the ChemSpider) database of over 30 million
structures using MSMS data and Agilent MSC software.In order to identify compounds generated by
GC/MS, the data were searched against the AgilentFiehn GCMS Metabolomics Library as well as the
Wiley/NIST libraries.
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1. Introduction

Medicinal plants have the capacity to produce a variety of chemical compounds
that are used to perform important biological functions. Majority of health care products
available on the market are known to be derived from plants. Recently, the World Health
Organization estimated that 80% of the world population relies on herbal medicines for
some aspect of their primary health care needs, and, according to them, around 21,000 plant
species have the potential to be used medicinally [1].The use of plant-based medications
and therapeutics is continuously increasing worldwide; hence, there is high acceptance and
demand [2]. Alangium salviifolium (L.f) Wang is a medicinal plant reported in Ayurveda
and Chinese medicine. This plant is used traditionally to treat several diseases such as
cancer, leprosy, diabetes, paralysis, microbial infections, and others. Plant parts such as
roots, stems, leaves, flowers, fruits, or the entire plant extract are consumed orally or
applied dermally, depending on the type of disease that is treated. Experiments corre-
lating this medicinal plant with specific diseases or activities were reported earlier [3–6].
This plant extract shows antiepileptic [7], antioxidant/antimicrobial [8], antidiabetic [9],
wound healing [10], antiarthritic [11], antibacterial [12], antifertility [13], cardiac [14],
anti-inflammatory [15], diuretic [16], and antifungal [17] effects. Comprehensive untar-
geted metabolomics provides an unbiased analysis of all biochemical intermediates in a
sample. This is achieved by using complementary universal analytical techniques such as
LC/MS, GC/MS, and NMR. The factors that can affect the evaluation of a metabolome
include the method used for sample harvesting/extraction procedures, fractionation,
chromatographic separation chemistry, ionization techniques/modes, acquisition parame-
ters, data processing/analysis, and identification [18]. In this study, by using orthogonal
LC/MS and GC/MS techniques, we aimed for a comprehensive analysis, including identi-
fication of the metabolites present in stem bark for this plant.

2. Materials and Methods
2.1. Reagents and Materials

LC/MS grade isopropanol, methanol, and acetonitrile were purchased from Fluka
(Germany). Milli Q water (Millipore Elix 10 model, Darmstadt, Germany) was used for mo-
bile phase preparation. The additives, namely ammonium fluoride, acetic acid, ammonium
formate, formic acid, and ammonium acetate, were procured from Fluka (Germany).

2.2. Workflow

The workflow followed for this study is outlined in Figure 1.
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2.3. Collection of Plant Material and Extraction Procedure

Bark of A. salviifolium was collected from the plants near Mysore, India, and imme-
diately transferred to liquid nitrogen and stored in −80 ◦C until further use. Two grams
of bark tissue was powdered using a mortar and pestle in the presence of liquid nitrogen.
For extraction, 40 mL of degassed solution containing chloroform:methanol:water in the
ratio of 1:2.5:1 (v/v/v) was added. The solution was crushed for 5 min, transferred to
1.5 mL eppendorf tubes, and vortexed for 5 min at 4 ◦C. The tubes were centrifuged at
20,800× g for 2 min, and the supernatant was pooled from all the tubes into a glass vial.
One milliliter of the supernatant was transferred to the eppendorf tube, and 400 µL of water
was added. The tubes were vortexed for 10 s, followed by centrifugation at 20,800× g for
2 min. The aqueous (upper) and organic (lower) layers were separated and dried separately
in a speed vac (Eppendorf, Hamburg, Germany).

2.4. Fraction Collection

To the dried aqueous and organic layers, 200 µL of 50:50 and 30:70 of mobile phase
A and B of respective fractionation method (see Table 1) were added. The vials were
sonicated to resuspend the compounds. HPLC separation was performed by injecting
the resuspended mixtures from 5 vials to an Agilent 1, (Santaclara, CA, USA) 260 Infinity
analytical purification system equipped with a 1 mL Manual FL-Injection valve (p/n: 5067-
4191).The fractionswerecollected in 45 wells of a 96-well plate and dried in a speed vac.

Table 1. Chromatographic parameters for fractionation.

Parameters Aqueous Extract Organic Extract

Mobile phase
Mobile phase A: Water + 10 mM

ammonium acetate
Mobile phase B: 100% Acetonitrile

Mobile phase A: 95:5
Water:methanol with 0.1% formic

acid and 5 mM ammonium formate
Mobile phase B: 65:30:5

Isopropanol:methanol:water with
0.1% formic acid and 5 mM

ammonium formate

Flow rate 1.2 mL/min 1.2 mL/min

Injection volume 1 mL 0.3 mL

Thermostat
autosampler 4 ◦C 4 ◦C

Temperature
TCC 25 ◦C 25 ◦C

DAD 210 and 254 nm 210 and 254 nm

Peak width >0.05 min >0.05 min

Fraction
collection mode Time based Time based

Total time 13 min 13 min

Column ZORBAX SB-C18(9.4 × 50 mm, 5 µm,
p/n: 846975-202)

ZORBAX SB-C18(9.4 × 50 mm, 5 µm,
p/n: 846975-202)

Time slices 0.292 min/well 0.292 min/well

Gradient

Time (min)
0.0
1.0
8.0
8.1

10.0
10.1
12.0

% Solvent B
5
5
35
95
95
5
5

Time (min)
0.0
1.0
8.0

11.0
11.1
12.0

% Solvent B
60
60

100
100
60
60
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2.5. Multiple LC/Q-TOF Chromatographic Analysis Conditions

The dried aqueous fractions were resuspended in 250 µL of 50:50 of methanol:water
containing 0.2% acetic acid and sonicated for 10 s, whereas the organic fractionsweresus-
pended in 30:70 of mobile phase A and B (Table 2—organic), followed by centrifugation
at 3000 rpm for 10 min. Five microliters of the resuspended fractionswas injected into an
Agilent 1260 Infinity LC System, interfaced to an Agilent 6540 accurate mass Q-TOF LC/MS
system (Santa clara, CA, USA). The reference solution was prepared using API-TOF Refer-
ence Mass Solution Kit (p/n: G1969-85001 (Santa clara, California, USA).Ten microliters
of HP921 and 5 µL of purine were dissolved in one liter of methanol:acetonitrile:water
(750:200:50) containing 0.1% acetic acid and were sprayed using an isocratic pump at a
flow rate of 0.4 mL/min. The chromatographic parameters are shown in Table 2.

Table 2. Chromatographic parameters used in the LC/MS and LC-MS/MS analysis.

Parameter Aqueous Fractions Analysed Using ZORBAX
SB-AQ Column

Aqueous Fractions Analysed Using ZORBAC
HILIC Column

Ionization mode Positive MS and
positive AutoMSMS

Negative MS and
Negative AutoMSMS

Positive MS and
positive AutoMSMS

Negative MS and
Negative AutoMSMS

Mobile phase

Mobile phase A: Water
with 0.2% acetic acid

Mobile phase B:
Methanol with
0.2% acetic acid

Mobile phase A: Water
with 1 mM ammonium

fluoride acetic acid
Mobile phase B:

100% Acetonitrile

Mobile phase A: 90:10 of
Acetonitrile: 50 mM
ammonium acetate

Mobile phase B: 50:40:10
of acetonitrile:water:

50 mM ammonium acetate

Mobile phase A: 90:10 of
Acetonitrile: 50 mM
ammonium acetate

Mobile phase B: 50:40:10 of
acetonitrile:water: 50 mM

ammonium acetate

LC gradient

Time (min) % mobile phase B Time (min) % mobile phase B

1.00 5.0 3.00 0.0

10.0 35.0 10.0 100.0

11.0 95.0 13.0 100.0

13.0 95.0 13.10 0

13.1 5.0 17.00 0

15.0 5.0

Parameter Organic fractions analysed using ZORBAX EP-C18 Organic fractions analysed using ZORBAX EP Phenyl Hexyl

Ionization mode Positive MS and
positive utoMSMS

Negative MS and
Negative AutoMSMS

Positive MS and
positive AutoMSMS

Negative MS and
Negative AutoMSMS

Mobile phase

95:5 of water: Methanol
with 0.1% formic acid

and 5 mM
ammonium formate

65:30:5 of
Isopropanol:methanol:
water with 0.1% formic

acid and 5 mM
ammonium formate

95:5 of water: Methanol
with 0.1% formic acid and
5 mM ammonium formate

65:30:5 of
Isopropanol:methanol:
water with 0.1% formic

acid and 5 mM
ammonium formate

LC gradient

Time (min) % of mobile phase B Time (min) % of mobile phase B

1.00 60.0 1.00 60.0

8.0 100.0 8.0 100.0

11.0 100.0 11.0 100.0

11.10 60.0 11.10 60.0

14.00 60.0 14.00 60.0
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2.6. GC/Q-TOF Conditions

The derivatization and experimental parameters for both aqueous and organic frac-
tions were performed as described elsewhere [19]. Agilent 7200 GC/Q-TOF (Santa clara,
CA, USA) was used for acquisition with absolute retention times, which was locked to
the internal standard d27 myristic acid from the Agilent Fiehn GC/MS Metabolomics
Standards Kit (Part Number 400505; (Santa clara, CA, USA).with a retention time locking
(RTL) software system. The GC/Q-TOF conditions used are provided in Table 3.

Table 3. Conditions used for GC/Q-TOF.

GC Conditions

Column
DB-5 ms: 30 m × 0.25 mmID × 0.25 µm,

Guard Length: 10 m
(Part No. 122-5532G)

Injection volume 1 µL

Split mode and ratio Split 10:1

Split/Splitless inlet temperature 250 ◦C

Oven temperature program 60 ◦C for 1 min
10 ◦C/min to 325 ◦C, 10 min hold

Carrier gas Helium at 1.2798 mL/min constant flow

Transfer line temperature 290 ◦C

QTOF Conditions

Ionization mode EI

Source temperature 230 ◦C

Quadrupole temperature 150 ◦C

m/z scan 50 to 600 m/z

Spectral acquisition rate 5 spectra/s, 2679 transients/spectrum,
collecting both in centroid and profile modes

2.7. Data Analysis

Agilent MassHunter Qualitative Analysis (version B.06.00 SP1) software (Santa clara,
CA, USA) was used for processing MS and AutoMSMS data acquired using LC/GC/Q-
TOF. The accurate mass MS data were processed using the tool “Find by Molecular Feature”
to export the compounds to Agilent Mass Profiler Professional (MPP) software (Santa clara,
CA, USA). In order to remove the molecular features arising from the background, the data
obtained from each fraction were background-subtracted using the blank data again in
MPP. The ID browser software was used to identify putative compounds by searching
against the METLIN database (MassHunter PCDL Manager version B.04.00), which has
64,092 compounds. The GC/Q-TOF data were processed using MassHunter Unknown
Analysis software (version B.06.00(Santa clara, CA, USA)). This software uses mass spectral
deconvolution, which automatically finds peaks and deconvolutes spectra from co-eluting
compounds using model ion traces. The spectral information was matched with the Agilent
Fiehn library with retention time index with respect to FAME mix (Agilent Fiehn GC/MS
Metabolomics Standards Kit, Part Number 400505). The data were also searched against
NIST 11 and Wiley 9 mass spectral libraries. The compounds with library match scores
>70% were considered and were searched in the literature for their therapeutic importance.
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The LC-MS/MS data were processed by using the tool “Find by AutoMSMS”, and the
spectral pattern generated was searched against the METLIN metabolite library, comprising
accurate mass MS/MS information for 19,714 compounds. A few selected compounds
found in Alangium species that were detected in METLIN database but lacked entry in
METLIN library were processed using Molecular Structure Correlator software (MSC)
(Santa clara, CA, USA). The MSC software (version B.05.00 build 19) performs systematic
in silico bond breaking for the proposed structure and matches with the observed fragment
ions, followed by assignment of an overall score. Here, the interface provided visualizations
of the formula and the overall score, which was combined from the MS and MSMS score,
along with the molecular formulas for the fragment ions with ppm m/z error.

3. Results and Discussion

In this study, we performed a comprehensive analysis of A. salviifolium bark metabo-
lites using multi-separation protocols/ionization modes and multi-platform approaches.
Initially, we performed fraction collection of the aqueous and organic extracts by inject-
ing 1 mL of the extract for preliminary separation and enrichment of the metabolites.
The Accurate Mass MS results when matched with METLIN database tentatively found
954 compounds with database match score >90%. Literature search revealed 81 of 954
compounds have therapeutic properties. The majority of these therapeutic compounds
were secondary metabolites that are reported to have anti-cancer and anti-inflammatory
activities (Figure 2). These compounds belonged to various plant secondary metabolite
classes such as terpenoids, flavonoids, saponins, alkaloids, glycosides, etc. AutoMSMS
analysis of all fractions resulted in identification of 449 compounds.
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Figure 2. METLIN database matched compounds from Alangium salviifolium and grouped by thera-
peutic use (A) and compound class (B) based on literature reports.

Five compounds reported to be present commonly in Alangium species could not be
identified in this study by LC-MS/MS spectral matching, since the spectra for these com-
pounds were not available in the METLIN MSMS library. The spectral information was used
to identify the compounds by using Agilent MassHunter MSC software (Figure 3). The over-
all MSC score for all the compounds was >97%, except for cephaeline which was 80%.
Using the accurate mass precursor and fragment ion information for cephaeline, and the
METLIN accurate mass database, we were able to identify the putative structures based on
the MSMS spectra obtained for cephaeline (Figure 4). Thus, using MSC for tentative ID
confirmation can be a useful tool in shortlisting the number of compounds for subsequent
confirmation using actual standards. Table 4 shows the Alangium compounds identified by
MSC software.
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METLIN MSMS library.

Cells 2020, 9, x 7 of 12 

 

 

Figure 3. Results from Agilent MSC software tool for identifying the compounds that did not have a 

spectral match in the METLIN MSMS library. 

 

Possible molecular 

formula generated Parent compound
Substructure 
assignments

MFG result Substructure assignments

2x10

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

6.25

6.5

6.75

7

7.25

7.5

7.75

467.2909

246.1486

274.1801

164.0706

192.1015

220.0953

178.0840

451.2676

151.0739 205.1082

422.2324110.0957

Counts vs. Mass-to-Charge (m/z)

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460

N

O

CH3

O

CH3

NH

OH

CH3

O

CH3

N

O

O

CH3

N

O

O

CH3

CH3

CH3

NH

OH

O

CH3

NH

OH

O

CH3

Error: 1 ppm
Score: 97.5

Error: 3.1 ppm
Score: 96.6

Error: 0 ppm
Score: 97.7

Error: 0.9 ppm
Score: 97.5

Figure 4. Proposed metabolite fragment structures for cephaeline based on MSC analysis.
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Table 4. Compounds found in Alangium species identified by Agilent MSC Software.

Metabolite CAS/KEGG Formula Mass Difference
(ppm)

Overall
Score

Confirmed
by MSC

Ankorine 13849-54-2 C19 H29 N O4 −2.56 99.94 YES

Deoxytubulosine C11817 C29 H37 N3 O2 −0.69 98.97 YES

Ipecac
(Cephaeline) 483-17-0 C28 H38 N2 O4 −0.28 80.06 YES

Lacinilene C
7-methyl ether 56362-72-2 C16 H20 O3 −1.84 98.95 YES

Tubulosine 2632-29-3 C29 H37 N3 O3 2.86 97.31 YES

The separation chemistries for LC-MS/MS were performed using HILIC and three
orthogonal reverse phase columns (ZORBAX Eclipse Plus C18, SB-AQ, and Phenyl Hexyl)
for the separation of hydrophilic and hydrophobic compounds, respectively. The maximum
number of compounds were identified in C18 (197) followed by SB-AQ (187), HILIC (175),
and Phenyl Hexyl (139) columns (Figure 5). Significant compound overlaps were found
between HILIC/SB-AQ and C18/Phenyl Hexyl columns: 53 and 59 compounds, respec-
tively. Only 10 compounds were common to all 4 column types. The three different reverse
phase columns, namely C18, SB-AQ, and Phenyl Hexyl, separated 79, 73, and 28 unique
compounds, respectively, and HILIC revealed 80 unique compounds. Similar observations
on enhanced metabolite coverage have been made by using HILIC and a reverse phase
C18 column [20]. Our results using three different RP columns (for non-polar and interme-
diate polar), along with a HILIC (for polar compounds), clearly reveal the requirement for
different separation chemistries for uncompromised metabolomics study.
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The compounds obtained from MS/MS analyses in positive and negative ionization
modes are summarized in Figure 6. Clear differentiation of compounds for both ionization
modes was observed for all the column chemistries used in the study. Many sugars and
acidic amino acids were detected by negative mode ionization compared to positive mode
ionization. Less than nine compounds were common for positive and negative ionization
modes among all the column types. This clearly reveals that use of single ionization mode
could significantly reduce the coverage of metabolites.



Cells 2021, 10, 1 9 of 11

Cells 2020, 9, x 9 of 12 

 

 

Figure 6. METLIN library matched compounds distribution based on ionization modes. 

The screen shot of unknown analysis software is shown in Figure 7. This software provides the 

features for visualization of the chromatograms, spectrum comparison, query vs. database spectrum 

alignment, molecular structure, and the components. The components comprise details for each 

compound. 

 

Figure 7. Fiehn/Wiley/NIST library matched analysis using Agilent MassHunter Unknown Analysis 

software. 

The compounds found by GC/Q-TOF were mostly flavonoids, fatty acids, sugars, terpenes, etc. 

As an example, D-lyxose identified from GC/Q-TOF analysis of aqueous extract using MassHunter 

Unknown Analysis software is shown in Figure 8. The top trace is the acquired GC/Q-TOF spectra, 

while the bottom trace is the Fiehn library spectra. The matching score was89.6. In addition, the 

retention time (RT) in the library (14.74 min) matched the RT of the acquired spectra (14.75 min). 

Chromatogram overlay

Compound 

spectrum

Library 

spectrum

Ion peaksComponents

Samples

Molecular structure

Figure 6. METLIN library matched compounds distribution based on ionization modes.

The screen shot of unknown analysis software is shown in Figure 7. This software pro-
vides the features for visualization of the chromatograms, spectrum comparison, query vs.
database spectrum alignment, molecular structure, and the components. The components
comprise details for each compound.
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Figure 7. Fiehn/Wiley/NIST library matched analysis using Agilent MassHunter Unknown Analysis
software.

The compounds found by GC/Q-TOF were mostly flavonoids, fatty acids, sugars,
terpenes, etc. As an example, D-lyxose identified from GC/Q-TOF analysis of aqueous
extract using MassHunter Unknown Analysis software is shown in Figure 8. The top trace
is the acquired GC/Q-TOF spectra, while the bottom trace is the Fiehn library spectra.
The matching score was89.6. In addition, the retention time (RT) in the library (14.74 min)
matched the RT of the acquired spectra (14.75 min).
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Figure 8. GC/Q-TOF spectral search results.

The LC/Q-TOF and GC/Q-TOF analysis resulted in identification of 449 and 62
compounds, respectively. The enhanced number of compounds observed for LC/Q-TOF
was primarily due to the use of orthogonal separations. It is well established that LC/MS
and GC/MS are complementary techniques for comprehensive metabolomics in order to
identify non-volatile and volatile compounds (Figure 9).
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Figure 9. Compounds identified usingLC/Q-TOF and GC/Q-TOF analyses.

4. Conclusions

This study demonstrates the utility of applying a comprehensive metabolite separa-
tion and detection strategy to aid in identification of metabolites in A. salviifolium bark.
A multi-platform approach was used to detect compounds with different degrees of polar-
ity. In addition, fractionation was used for enrichment, as well as four different column
chemistries, along with two ionization modes for increasing the total number of metabolites
identified. The compounds not found in the METLIN library were identified by using
MSC software. Eighty-one secondary metabolites, such as ankorine, deooxytubulosine,
ipecac, lacinilene C7-methyl ether, tubulosine, etc., which were identified in this study,
are reported to have therapeutic value.
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C.S. Wrote the paper C.S., S.A.D., C.D.M., A.K.B. Review: S.N., S.R., M.S., M.K.S., K.S.R., V.K.G.
All authors have read and agreed to the published version of the manuscript.
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