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Abstract: An optical pH sensor that enables the non-destructive measurement of acetic acid and its
distribution in a photovoltaic module during damp heat (DH) testing is reported. The sensor was
fabricated by impregnating a solution of a pH-sensitive fluorescent dye into a fluororesin membrane
filter, which was then dried. While conducting the DH test, fluorescence spectra from 20 pH sensors
were periodically recorded and converted into pH values using a predetermined calibration curve.
As a result, we succeeded in measuring changes in pH with a DH test time of up to 2000 h, and it was
possible to obtain information on the pH distribution in the module. We also confirmed no change in
pH in a module with a silicone encapsulant free from acetic acid, and revealed that the sensor that we
developed does not respond to moisture and heat, but only to acetic acid.

Keywords: photovoltaic; acetic acid; pH measurement; SNARF-4F

1. Introduction

Although photovoltaic (PV) energy is significant renewable and its use is spreading
rapidly, high generation costs represent an obstacle to further expansion [1,2]. It has been
proposed that the lifetimes of PV modules should be determined by high-temperature and
high-humidity (damp heat: DH) tests based on IEC61215 standard [3], which are forms of
environmental acceleration tests [4,5]. Recently, deterioration in the performance of a PV
module was reported because ethylene-vinyl acetate copolymer resin (EVA), which was
used as an encapsulant, was hydrolyzed by moisture that penetrated the module to generate
acetic acid, which corroded the electrode of the solar cell [6–13]. Acetic acid can be generated
through several paths including the Norrish reaction due to thermal or photothermal
stimulation, ref. [11] or hydrolysis [8] from EVA. Furthermore, acetic acid attacks glass
layer in Ag electrode on a PV cell, resulting in increase the series resistance [14–18]. To
prolong the lifetime of a PV module, it is necessary to detect acetic acid in the module and
to reveal the mechanism by which it is generated [19–24]. It should be noted that acetic acid
is the dominant product, with a small amount of formic acid also produced. The amount
of formic acid relative to the amount of acetic acid is about 1/10 in the field test [25] and
1/100 in the accelerated test [26].

Currently, although the state of degradation of PV modules is determined by measure-
ments of the acetic acid concentration using ion chromatography analysis, this method is
destructive when used to measure the acetic acid concentration in a PV module [14]. There-
fore, a method for the non-destructive continuous monitoring of the deterioration of EVA
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is required. Although the use of Raman spectroscopy, which is a non-destructive detection
method, has been proposed [5], the apparatus involved is expensive. Moreover, because the
fluorescence background of EVA is more intense than that for Raman signals, the accuracy
of measurements at the initial stage of DH testing is relatively low. Although the authors
have been working on the non-contact temporal measurement of the acetic acid reaction
amount using the reflectance change due to corrosion of tin thin film, the quantification of
the concentration was not good [27,28].

Therefore, we devised a pH sensor with a thickness of about 0.1 mm, which contains a
pH-sensitive fluorescent dye on a porous membrane [29,30], and clarified its pH characteris-
tics and related problems. In this study, we aimed to measure temporal and spatial changes
of pH values in a PV module by enclosing this sensor in the PV module and subjecting it to
a DH test. Performance limitation of the pH sensor is also discussed.

2. Materials and Methods
2.1. Calibration between pH and Fluorescence Intensity Ratio

The acetate ion concentration can be estimated if the pH is known. In this study, the pH-
sensitive fluorescent dye carboxy SNARF-4F (Invitrogen™, Thermo Fisher Scientific Inc.,
Waltham, MA, USA), which is a fluorescent pH indicator used in biological sciences, was
used for the non-destructive measurement of pH [31]. SNARF-4F has two fluorescence
peak wavelengths, namely, 587 and 650 nm, and its fluorescence intensity ratio (FIR), which
is defined by Equation (1), changes reversibly depending on the pH [32]:

FIR = I587/I650 (1)

where I650 and I587 are the fluorescence peak intensities at fluorescence wavelengths of 650
and 587 nm, respectively. Even if the fluorescent dye is dropped onto a glass substrate and
dried to form a thin film, the sensitivity of the pH response may be relatively low because
the amount of moisture that penetrates into the PV module is very small. Therefore, in order
to extend the area of contact between moisture and the fluorescent dye, a sensor substrate
for carrying the dye was prepared using a polytetrafluoroethylene fluororesin membrane
filter with a pore size of 0.2 µm (Omnipore®, Merck Group, Burlington, MA, USA) [30].
Here the aqueous solution of the dye is based on ultrapure water, and the pH is not adjusted
by the addition of basic substances.

A calibration curve of pH values to the FIR value of the manufactured sensor is
necessary. For this purpose, the following calibration experiment was carried out.

1. First, a Britton–Robinson (BR) buffer solution was prepared so that the pH value did
not significantly change when it was dripped onto the sensor [33]. For this purpose,
phosphoric acid, boric acid, and acetic acid were prepared with a concentration
of 0.04 M and diluted in a measuring cylinder to a total volume of 500 mL with
ultrapure water.

2. Then, 0.2 M NaOH was injected into the BR buffer, and the amount of NaOH that
was injected was adjusted to obtain a predetermined pH value while the pH was
measured using a calibrated pH meter (SevenEasy pH, Mettler–Toledo International
Inc., Greifensee, Switzerland). The pH range after adjustment was 2–11.

3. Finally, 20 µL pH-adjusted BR buffer was added to the prepared sensor substrate,
and the fluorescence intensity spectrum and FIR were measured in the wet state with
a spectrometer (QE65000, Ocean Insight Inc., Orlando, FL, USA). The intensity of the
fluorescence excitation laser was 100 µW, and the integration time of the spectroscope
was 10 s. The FIR value was calculated using Equation (1). Please note that every time
a spectroscopic measurement was completed, the sensor substrate was replaced.

Figure 1a shows the fluorescence spectrum of the sensor at each pH value calibrated
by the pH meter. When the pH became acidic, the fluorescence wavelength peak shifted
to 587 nm from 650 nm. Figure 1b shows the results of calculations of the FIR, which
were obtained from the fluorescence spectrum and are plotted as a function of the pH.
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The solid line in the figure represents the result of the calibration curve expressed by
Equation (2) [34]:

FIR =
FIRmin × G + FIRmax × 10pKa−pH

G + 10pKa−pH (2)

Here, pKa represents the acid dissociation constant of SNARF-4F. FIRmax and FIRmin
refer to the maximum and minimum values within the measurement range of SNARF-4F,
respectively, G is the fitting parameter. The calibration curve is obtained using Equation (2)
fitting to the experimental data points with the parameters of FIRmax, FIRmin, and G,
and used to determine the pH value from the FIR. The values of each parameter are shown
in Table 1. In addition, from Figure 1b, it was found that the pH range measurable with
this sensor is approximately pH 4–8, in which the FIR maintains a monotonical increase
with respect to decreasing pH. At the range below pH 4, I650 reverses to increase, dragged
by the increase in I587, resulting in a decrease in FIR.

30,000

25,000

20,000

15,000

10,000

   5000

Figure 1. (a) Fluorescence spectra of pH sensor with SNARF-4F impregnated in the membrane filter;
(b) FIR values calculated from the fluorescence spectra. The solid line is the fitting curve obtained
using Equation (2).

Table 1. Parameters for the calibration curve shown in Figure 1b obtained using Equation (2).

pKa FIRmin FIRmax G

6.4 0.083 2.278 0.851

2.2. Experimental Procedure

A sheet of fabricated pH sensors with a size of 18 × 18 mm2 was laminated in a PV
module with a module size of 180 × 180 mm2 and a cell size of 156 × 156 mm2, which
comprised a multicrystalline Si PV cell with an Ag-based grid. As shown in Figure 2a,
the 20 sensors were arranged so as to be almost equally spaced on the upper surface of
the PV cell. Here, the sensors numbered from No. 1 to No. 14 around the edge of the
module are referred to as “edge”, and the sensors numbered from No. 15 to No. 20 inside
the module are referred to as “center”. In addition, as shown in the cross-sectional view of
the PV module in Figure 2b, the components of the PV module were a cover glass, EVA
sheets used as encapsulants in front of and behind the PV cell, and a back sheet composed
of polyvinyl fluoride:PVF 38 µm/polyethylene terephthalate:PET 250 µm/PVF 38 µm. The
lamination of the module was conducted at 135 ◦C for 15 min. Please note that the edges
surrounding the PV module were not processed with a sealant such as silicone or a gasket.
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(a)

(b)

Figure 2. (a) Photograph of numbered pH sensors equally spaced on the PV module; (b) cross-sectional
schematic diagram of the PV module and the method used for recording fluorescence spectra.

Measurements of fluorescence were carried out by placing a bundled optical fiber
probe (R400-VIS-NIR, Ocean Insight Inc., Orlando, FL, USA) by the upper surface of the
cover glass, as shown in Figure 2b, and irradiating the module using an excitation light
source, namely, a yttrium-aluminum-garnet laser with a wavelength of 532 nm (intensity
100 µW). Fluorescence spectra were recorded with a spectrometer QE65000 by detecting
fluorescence emitted from the pH sensor via the same probe, and the pH value was
calculated from the FIR value using Equation (2).

The laminated PV module containing the pH sensor was installed in an environmental
test chamber and exposed to a DH test environment (85 ◦C, 85% relative humidity). During
the DH test, FIR values were determined from fluorescence spectroscopic measurements of
the sensor by removing the module from the test chamber at certain time intervals, and the
corresponding pH values were calculated. For comparison, pH measurement experiments
were also conducted on a PV module with silicone resin as an encapsulant, which has been
reported not to generate acetic acid [35].

3. Results
3.1. I − V Characteristics of PV Modules

Figure 3 shows the current-voltage (I − V) characteristics of the PV modules as a
function of the DH test time. Figure 3a,b show the results of measurements for the modules
with EVA and silicone encapsulants, respectively. From these figures, it can be seen that in
the module containing EVA, as shown in Figure 3a, remarkable decreases in the fill factor
and short-circuit current, which are indices of the degradation of PV modules [36], were
observed at DH test times of greater than 3000 h. This phenomenon is suggested to be
caused by corrosion of the electrode due to the production of acetic acid within the PV
module, as previously reported [14]. On the other hand, in the module containing silicone,
as shown in Figure 3b, there was no significant deterioration in the I − V characteristics,
which indicates that no acetic acid was generated in the module containing silicone.
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Figure 3. I − V characteristics during 85 ◦C, 85%RH DH test for modules with (a) EVA and (b) sili-
cone encapsulants.

3.2. Changes in FIR and pH Values

The characteristics of the FIR values measured by the pH sensors were recorded for
the respective modules with each encapsulant during the DH test. The results are shown in
Figure 4. In this figure, FIRmax and FIRmin indicate the calibration parameters shown in
Table 1. In the module with EVA, as shown in Figure 4a, the FIR for all the sensors in edge
positions started to rise from a value of about 0.9 when the DH test time t was about 200 h.
Although the FIR values increased almost proportionally with the value of t up to 1000 h,
they became stable from t = 1000 h to 2000 h and then decreased when t was around
2000 h. As can be seen from the calibration curve in Figure 1b, this may be assumed to have
occurred because the acetic acid concentration had increased beyond the measurement
range of SNARF-4F. The FIR values for the sensors in the center region started to increase
at t = 600 h, became stable at t = 2000 h, and then decreased at t = 3000 h. The reason the
FIR values reached a maximum and then decreased is that it is saturated around pH 5 to 4
and decreases at pH 4.0 or lower as shown in Figure 1b.

Figure 4. Temporal response of FIR values measured by the pH sensors as a function of the DH test
time for modules with (a) EVA and (b) silicone encapsulants. FIRmax and FIRmin correspond to the
values shown in Table 1.

On the other hand, in the case of the module with the silicone encapsulant, as shown
in Figure 4b, the FIR values for both the edge and the center sensors were almost constant
with no significant fluctuations, although there were differences in the initial values, which
might have been due to variations in the FIR value of the sensor during fabrication. The
results in Figure 4b indicate that no acidic substances were generated in the module.
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Figure 5a shows the results of replotting the pH values calculated from the FIR values
as a function of the DH test time using the calibration curve obtained via Equation (2)
for the module with EVA encapsulant. As shown in Figure 4, the FIR values used for the
calculation of pH values are limited to the range between the initial value at t = 0 and
the maximum value within the measurement range of SNARF-4F. For the edge sensors,
as shown in Figure 5a, the pH value of 6.6 at the beginning of the DH test rapidly decreased
to 4.5 by around t = 1000 h. On the other hand, the pH value for the center sensors began
to decrease at around t = 600 h and decreased linearly to a pH of 5.0 up to t = 2500 h.

(a) (b)10−4

10−5

10−6

10−7

10−8

Figure 5. (a) Temporal response of pH values calculated using the calibration curve from FIR
values measured by the edge and center sensors; (b) acetate ion concentrations calculated using the
pH values.

Using the pH characteristics shown in Figure 5a, the acetate ion concentration was
calculated, which represents a formula for the definition of pH, and the results are plotted
in Figure 5b.

From this, it can be seen that the acetate ion concentration of 2 × 10−7 mol/L in the
initial stage of the DH test increased more than 100-fold by around t = 1000 h in the edge
part of the module. On the other hand, in the central part, the concentration increased by a
factor of about 70 by about t = 2500 h.

3.3. Ph Mapping

As shown in Figure 2a, it was possible to simultaneously measure changes in pH
at 20 points on the PV module surface. Therefore, the extent of the generation of acetic
acid was confirmed by mapping the pH distribution within the PV module surface as a
function of the DH test time, as shown in Figure 6. As seen in Figure 6, the pH remained
almost constant at 7 until a DH test time of t = 216 h, whereas at t = 384 h the pH of the
edge portion began to decrease. It was found that the acidity of the edge portion further
increased at t = 720 h and that the pH of the edge portion reached 4 before t = 900 h. In
particular, the increase in acidity in the lower left part of the module was faster than in
other parts of the edge. This phenomenon seems to show the possibility that the degree of
crosslinking of EVA varied due to the nonuniformity of lamination temperature during the
fabrication of the PV module.
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Figure 6. Changes in pH distribution within the PV module surface with respect to the DH test time.

4. Discussion

Measured results are analyzed using two-dimensional reaction-diffusion equations
as follows:

∂[H2O]

∂t
= λw

(
∂2[H2O]

∂x2 +
∂2[H2O]

∂y2

)
− a exp

(
− Ea

kT

)
[H2O]

∂[CH3COOH]

∂t
= λaa

(
∂2[CH3COOH]

∂x2 +
∂2[CH3COOH]

∂y2

)
+ a exp

(
− Ea

kT

)
[H2O]

(3)

Where λw and λaa are diffusion constants of water and acetic acid in EVA [8,20], k is
the Boltzmann constant, T is the temperature, Ea is the Arrhenius parameter of hydrolysis
reaction, ref. [8] and a is the fitting parameter related to the density of acetic acid group
in EVA. The initial condition of both [H2O] and [CH3COOH] were zero. The boundary
conditions of [H2O] and [CH3COOH] were the saturation density of water in EVA [20]
and zero, respectively. Equation (3) is solved on a 180-mm-square two-dimensional space.
Figure 7 shows the spatial distribution of acetic acid density (a) and time variation of acetate
ion concentration at the edge and center (b). Curves and points in Figure 7b represent
solution of Equation (3) and the average of experimental results, respectively. The consistent
trend of acetic acid concentration increasing first at the edge and later at the center suggests
that the measurements obtained by the SNARF-4F sensors reflect the change in acetic acid
concentration due to the reaction-diffusion phenomenon.
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4000h

0h

(a) (b)

Figure 7. (a) Spatial distribution of acetic acid density. Each plot corresponds to the time from 0 to
4000 h for 250 h step. (b) Time variation of acetate ion concentration at the edge and center. Curves
and points represent solution of Equation (3) and average of experimental results, respectively.

As shown in the I − V characteristics of Figure 3a, degradation of power generation
performance was observed with DH test time longer than 3000 h. In contrast, as shown in
Figure 6, a decrease in pH during the DH test was observed at 384 h on edge and 720 h on
the center. This result shows that SNARF-4F sensors can detect acetic acid much earlier
than the degradation of electrical characteristics begins. This indicates the usefulness of the
sensor for the early-stage detection of signs of degradation.

As a future subject of research, it is necessary to develop a fluorescent dye capable of
detecting a pH of 4 or less and clarifying the conditions for the production of acetic acid
in the module during DH testing for over 2000 h. It is also conceivable that the behavior
of acetic acid in the module can be explained by the parametric fitting of the diffusion
equation, which can quantitatively explain the diffusion of moisture into the PV module
and the generation of acetic acid.

Another approach will be the use of micro pH sensors, including silver chloride
electrodes [37] and ion-sensitive field effect transistors [38,39], integrated with wireless
power supply or energy harvesting devices. For this approach, sensors for harsh testing
environments, for example combination with DH and ultraviolet exposure or DH and high
electric potential, will be required.

5. Conclusions

We attempted the non-destructive detection of acetic acid in a PV module during a
DH test using a pH-sensitive fluorescent dye sensor. From the results, we demonstrated
that it is possible to measure initial changes at DH test times of the order of 1000–2000 h
and to measure the pH distribution in the plane of the module. In a module containing
EVA, the rate of change in pH and the rate of increase in the acetate ion concentration were
different in the edge and central parts of the module. On the other hand, from the results
for a module containing silicone, it was shown that the values indicated by the sensor did
not change upon mere exposure to moisture or heat in the DH test. It was confirmed that
the SNARF-4F sensor that we developed can measure the initial behavior of the generation
of acetic acid in the module containing EVA as an encapsulant.
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