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Background.  In locations where few people have received coronavirus disease 2019 (COVID-19) vaccines, health systems re-
main vulnerable to surges in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Tools to identify patients 
suitable for community-based management are urgently needed.

Methods.  We prospectively recruited adults presenting to 2 hospitals in India with moderate symptoms of laboratory-confirmed 
COVID-19 to develop and validate a clinical prediction model to rule out progression to supplemental oxygen requirement. The pri-
mary outcome was defined as any of the following: SpO2 < 94%; respiratory rate > 30 BPM; SpO2/FiO2 < 400; or death. We specified 
a priori that each model would contain three clinical parameters (age, sex, and SpO2) and 1 of 7 shortlisted biochemical biomarkers 
measurable using commercially available rapid tests (C-reactive protein [CRP], D-dimer, interleukin 6 [IL-6], neutrophil-to-
lymphocyte ratio [NLR], procalcitonin [PCT], soluble triggering receptor expressed on myeloid cell-1 [sTREM-1], or soluble uro-
kinase plasminogen activator receptor [suPAR]), to ensure the models would be suitable for resource-limited settings. We evaluated 
discrimination, calibration, and clinical utility of the models in a held-out temporal external validation cohort.

Results.  In total, 426 participants were recruited, of whom 89 (21.0%) met the primary outcome; 257 participants comprised the 
development cohort, and 166 comprised the validation cohort. The 3 models containing NLR, suPAR, or IL-6 demonstrated prom-
ising discrimination (c-statistics: 0.72–0.74) and calibration (calibration slopes: 1.01–1.05) in the validation cohort and provided 
greater utility than a model containing the clinical parameters alone.

Conclusions.  We present 3 clinical prediction models that could help clinicians identify patients with moderate COVID-19 
suitable for community-based management. The models are readily implementable and of particular relevance for locations with 
limited resources.
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In low-income countries, where fewer than 5% of people 
have received a coronavirus disease 2019 (COVID-19) 
vaccine [1] fragile healthcare systems remain vulner-
able to being overwhelmed by a surge in COVID-19 cases 
(Figure 1) [2–4].

A minority of patients with COVID-19 require admis-
sion to hospital. Oxygen is the most important supportive 
treatment and in most low- and middle-income countries 
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(LMICs) is the practical ceiling of care [5]. The World 
Health Organization (WHO) estimates that 15% of patients 
with symptomatic COVID-19 will require supplemental 
oxygen [6]. Effective identification of patients who are un-
likely to become hypoxic would have considerable benefit; 
tools to support triage could decompress healthcare systems 
by giving practitioners confidence to allocate resources 
more efficiently [7].

Numerous prognostic models for COVID-19 have been de-
veloped [8, 9]. Almost all predict critical illness or mortality and 
thus cannot inform whether a patient might be safely managed 
in the community. Of those that focus on patients with mod-
erate disease, most rely on retrospective or registry-based data 
[10–14], lack external validation [15, 16], and are not feasible 
for use in resource-limited settings [9, 17]. Moreover, most ex-
isting studies did not follow best-practice guidelines for model 
building and reporting [18], are at high risk of bias [8], and the 
resulting models are neither suitable nor recommended for use 
in LMIC contexts [9].

We set out to develop and validate a clinical prediction model 
to rule out progression to supplemental oxygen requirement in 
patients presenting with moderate COVID-19. We hypothe-
sized that combining simple clinical parameters with host bio-
markers feasible for measurement in resource-limited settings 
and implicated in the pathogenesis of COVID-19 would im-
prove prognostication.

METHODS

Study Population

PRIORITISE is a prospective observational cohort study. 
Consecutive patients aged ≥ 18 years with clinically suspected 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection presenting with moderate symptoms to the All India 
Institute of Medical Sciences (AIIMS) Hospital in Patna, India, 
and the Christian Medical College (CMC) Hospital in Vellore, 
India, were screened (daytime hours, Monday to Saturday). 
AIIMS is a 1000-bed hospital and the largest medical facility 
providing primary-to-tertiary healthcare in the state of Bihar. 
CMC is a 3000-bed not-for-profit hospital that provided care 
for ~1500 patients with COVID-19 each day during the peak of 
the Delta-wave surge in India.

We adapted the case definitions in the World Health 
Organization (WHO) Clinical Management guideline (mod-
erate disease) [6] and WHO Clinical Progression Scale 
(WHO-CPS; scores 2, 3, or 4) [19] to define moderate disease 
as follows: a peripheral oxygen saturation (SpO2) ≥ 94% and 
respiratory rate < 30 breaths per minute (BPM), in the con-
text of systemic symptoms (breathlessness or fever and chest 
pain, abdominal pain, diarrhea, or severe myalgia), recog-
nizing that the threshold for hospitalization varies throughout 
a pandemic and that a sensitive cutoff for hypoxia would be 
desirable in a tool to inform community-based management 
[19, 20].

Figure 1. Proportion of individuals fully vaccinated against COVID-19 as of 19 December 2021. Adapted from https://ourworldindata.org/covid-vaccinations#country-by-
country-data-on-vaccinations [1]. Abbreviation: COVID-19, coronavirus disease 2019.
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Data Collection

Structured case-report forms (Supplementary Materials 2–10) 
were completed at enrolment, day 7, and day 14, and daily 
during admission to the study facilities. Anthropometrics and 
vital signs were measured at enrolment and demographics, clin-
ical symptoms, comorbidities, and medication history collected 
via brief interview with the participant. Venous blood samples 
were collected at enrollment in ethylenediaminetetraacetic 
acid (EDTA) tubes. Participants were followed-up in-person 
when admitted to the facility and by telephone on days 7 and 
14 if discharged prior to this. Those discharged who reported 
worsening symptoms on day 7 and/or persistent symptoms on 
day 14 were recalled to have their SpO2 and respiratory rate 
measured.

Primary Outcome

The primary outcome was development of an oxygen re-
quirement within 14 days of enrollment, defined as any of 
the following: SpO2 < 94%; respiratory rate > 30 BPM; SpO2/
FiO2 < 400 [21, 22]; or death, aligning closely with a WHO-CPS 
score of ≥ 5 [19]. Patients who received supplemental oxygen 
outside the study facilities were classified as meeting the pri-
mary outcome if it was not possible to retrieve their case notes, 
provided that the oxygen was prescribed in a licensed medical 
facility. The site study teams were unaware of which baseline 
variables had been preselected as candidate predictors when de-
termining outcome status.

Candidate Predictors

We decided a priori that a model using 4 predictors would 
be practical in high-patient-throughput resource-limited set-
tings. Considering resource constraints, reliability, validity, 
feasibility, and biological plausibility, we prespecified that each 
model would contain age, sex, SpO2, and 1 biochemical bio-
marker [10, 17, 23].

Following a literature review (Supplementary Figures 1–2), 
biomarkers were shortlisted in consultation with FIND, the 
global alliance for diagnostics (Geneva, Switzerland). To qualify 
for inclusion, biomarkers had to be quantifiable with rapid 
tests in clinical use or late-stage development (Technology 
Readiness Level ≥ 4; Supplementary Table 1) [24]. The final 
list included: C-reactive protein (CRP), D-dimer, interleukin 
6 (IL-6), neutrophil-to-lymphocyte ratio (NLR), procalcitonin 
(PCT), soluble triggering receptor expressed on myeloid cells-1 
(sTREM-1), and soluble urokinase plasminogen activator re-
ceptor (suPAR) [25–29].

Clinical predictors were measured at enrolment and all bio-
markers except NLR were measured retrospectively from sam-
ples obtained at enrollment. NLR was measured on site and was 
not repeated if it had been measured at the site within 24 hours 
prior to recruitment. All predictors were measured blinded to 
outcome status.

Laboratory Procedures

Complete blood counts (XP-300-Hematology-Analyzer, 
Sysmex, Lincolnshire, Illinois, USA) were performed on site, 
and aliquots of EDTA-plasma were stored at −20°C or below 
until testing. Biomarker concentrations were quantified using 
the suPARnostic ELISA (ViroGates, Denmark) and Simple Plex 
Ella microfluidic platform (ProteinSimple, San Jose, California, 
USA) as described elsewhere [30]. Remaining plasma was 
biobanked on site. SARS-CoV-2 immunoglobulin G (IgG) and 
immunoglobulin M (IgM) antibodies were measured using 
the SCoV-2 Detect ELISA (InBios, Seattle, Washington, USA). 
Oral and/or nasopharyngeal swabs were collected to confirm 
SARS-CoV-2 infection via reverse transcription polymerase 
chain reaction (RT-PCR) (Cepheid Xpert Xpress SARS-CoV-2, 
Sunnyvale, California or Altona RealStar SARS-CoV-2 rRT-
PCR, Germany).

Sample Size

We considered the sample size for model development and val-
idation separately. We followed the recommendations of Riley 
et al and assumed a conservative R2 Nagelkerke of 0.15 [31]. We 
anticipated that ~8% of participants would meet the primary 
endpoint and estimated that 44 outcome events would be re-
quired to derive a prediction model comprising four candidate 
predictors and minimize the risk of overfitting (events per pa-
rameter [EPP] = 11).

Given the uncertainty around deterioration rates amongst 
patients with moderate COVID-19 at the time of study in-
ception, we prespecified an interim review after the first 100 
participants were recruited. At this review, the proportion of 
participants meeting the primary endpoint was higher than an-
ticipated (20% vs. 8%). At this higher prevalence, and using R2 
values from 0.20 to 0.15, between 52 and 68 outcome events 
(EPP = 13–17) would be required to develop the prediction 
models [31]. Recognizing that (i) our range of R2 estimates was 
conservative, (ii) penalized regression methods would reduce 
the risk of overfitting, and (iii) the external validation cohort 
would allow assessment of model optimism, and following the 
advice of the External Advisory Panel, a decision was made to 
use the first 50 outcome events to derive the models. Participants 
recruited after that point were entered into the external tem-
poral validation cohort.

Model Development and Validation

We explored the relationship between candidate predictors and 
the primary outcome using a Lowess smoothing approach to 
identify nonlinear patterns. Transformations were used when 
serious violations of linearity were detected. We used penalized 
logistic (ridge) regression to develop the models and shrink 
regression coefficients to minimize model optimism. All pre-
dictors were prespecified, and no predictor selection was per-
formed during model development. Due to few missing data 
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(< 3% for any single predictor), missing observations were re-
placed with the median value, grouped by outcome status. A 
sensitivity analysis was conducted using full-case analysis.

We assessed discrimination (c-statistics) and calibration 
(calibration plots and slopes) for each model in the validation 
cohort, and examined classifications (true positives [TP], false 
positives [FP], true negatives [TN], false negatives [FN]) at 
clinically relevant cut-points (predicted probabilities). Finally, 
recognizing that the relative value of a TP and FP will vary at 
different stages of the pandemic [20], we examined the poten-
tial clinical utility of the models using decision curve analyses 
to quantify the net benefit between correctly identified TP or 
TN and incorrectly identified FP or FN at a range of plausible 
trade-offs (threshold probabilities) [32].

All analyses were done in R v4.03.

Ethical Approvals

This investigator-initiated study was prospectively registered 
(ClinicalTrials.gov; NCT04441372), with protocol and statis-
tical analysis plan uploaded to the Open Science Framework 
platform (DOI: 10.17605/OSF.IO/DXQ43). Ethical approval 
was given by the AIIMS, Patna Ethics Committee; CMC Ethics 
Committee; Oxford Tropical Research Ethics Committee; and 
MSF Ethical Review Board.

RESULTS

Between 22 October 2020 and 3 July 2021, 2808 patients with 
clinically suspected COVID-19 were screened, of whom 446 
were eligible (446/2808; 15.9%) and 426 were recruited (20/446; 
4.5% refusal rate). Three participants were lost to follow-up 
(3/426; 0.7%) and excluded from further analyses (Figure 2). 
All participants had laboratory-confirmed SARS-CoV-2 infec-
tion (421/423 [99.5%] via RT-PCR). The maximum amount 
of missing data for any predictor was 2.6% (NLR; 11/423; 
Supplementary Table 2). The first 257 participants comprised 
the development cohort, and the remaining 166 participants 
comprised the temporal validation cohort.

Outcomes

Development and validation cohorts were largely balanced 
with respect to baseline characteristics (Table 1; Supplementary 
Table 3). There was a higher proportion of males in the develop-
ment cohort (72% [185/257] vs. 61% [101/166]). In the valida-
tion cohort, more participants had a qSOFA score ≥ 2 (16/166 
[9.6%] vs. 13/257 [5.1%]), and the validation cohort had higher 
median CRP (58.1 mg/L vs. 24.4 mg/L) and IL-6 (31.6 pg/mL 
vs. 11.0 pg/mL) concentrations. Eighty-nine participants met 
the primary outcome (89/423; 21.0%); 50 in the development 
cohort (50/257; 19.5%) and 39 in the validation cohort (39/166; 
23.5%). Median (interquartile range [IQR]) time to oxygen re-
quirement was 1 (1–3) day; 11 participants died, 2 were me-
chanically ventilated, 15 received noninvasive ventilation, 49 

received oxygen via a face mask and/or nasal cannula (1 out-
side the study facilities), and 12 had an SpO2 < 94% but did 
not receive oxygen supplementation (Supplementary Table 4; 
Supplementary Figure 3).

Relationships between candidate predictors and the pri-
mary outcome are illustrated (Supplementary Figure 4), and 
c-statistics (continuous predictors) and odds ratios (continuous 
and categorical predictors) reported (Supplementary Table 5). 
The full models are presented in the Supplementary Materials 
(Supplementary Table 5; Supplementary Figure 5). After adjust-
ment for the 3 clinical variables, 5 biomarkers (CRP, D-dimer, 
IL-6, NLR, and suPAR) were independently associated with de-
velopment of an oxygen requirement.

Prognostic Models

Discrimination and calibration of each model in the validation 
cohort are presented in Figure 3. C-statistics ranged from 0.66 
(clinical model and model containing PCT) to 0.74 (model con-
taining IL-6). Calibration slopes ranged from 0.62 (model con-
taining PCT) to 1.01 (model containing suPAR). Calibration 
was better at lower predicted probabilities, with some models 
overestimating risk at higher predicted probabilities.

The ability of each model to rule out progression to oxygen 
requirement amongst patients with moderate COVID-19 at 
predicted probabilities (cutoffs) of 10%, 15%, and 20% is shown 
(Table 2; Supplementary Table 6; Supplementary Figure 6). 
A cutoff of 10% reflects a management strategy equivalent to 
admitting any patient in whom the predicted risk of developing 
an oxygen requirement is ≥ 10%. At this cutoff, the results sug-
gest that a model containing the three clinical parameters (age, 
sex, and SpO2) without any biomarkers could facilitate correctly 
sending home ~25% of patients with moderate COVID-19 who 
would not subsequently require supplemental oxygen, at the 
cost of also sending home ~9% of moderate patients who would 
deteriorate and require supplemental oxygen, that is, a ratio of 
correctly to incorrectly discharged patients of 10:1.

The inclusion of either NLR or suPAR improved the pre-
dictive performance such that the ratio of correctly to incor-
rectly discharged patients increased to 23:1 or 25:1 respectively, 
whilst a model containing IL-6 resulted in a similar proportion 
(~21%) of correctly discharged patients as the clinical model 
but without missing any patients who would deteriorate and 
require supplemental oxygen. Inclusion of the other candidate 
biomarkers (CRP, D-dimer, PCT, or sTREM-1) did not improve 
the ability of the clinical model to rule out progression to sup-
plemental oxygen requirement.

Generalizability

We recognized that the relative value of a TP and FP, that is, ad-
mitted patients who would and would not subsequently require 
supplemental oxygen, was not fixed and would vary at different 
stages of the pandemic, reflecting bed pressures and/or capacity 
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for follow-up [20]. Decision curve analyses accounting for this 
differential weighting suggest that the clinical model could 
provide utility (net benefit over an “admit-all” approach) at a 
threshold probability above 15% (ie, when the value of 1 TP is 
equal to ~7 FPs). Furthermore, the results indicate that models 
containing any 1 of IL-6, NLR, or suPAR could offer greater net 

benefit than the clinical model and extend the range of contexts 
in which a model might provide utility to include threshold 
probabilities above 5% (value of 1 TP is equal to 19 FPs; ie, when 
bed pressures are less critical). For the model containing IL-6, 
this higher net benefit appeared to be maintained across a range 
of plausible threshold probabilities (Figure 4).

Figure 2. Screening and recruitment of participants into the PRIORITSE study. *Reasons for exclusion: 64 vaccinated, 3 unable to provide consent, and 5 reason not docu-
mented. Toward the end of recruitment (March 2021 in AIIMS and May 2021 in CMC) vaccines against COVID-19 began to be rolled out in the study areas and a decision was 
made to exclude vaccinated participants as the study would not be powered to determine whether the prediction models were valid in this cohort. Abbreviations: AIIMS, All 
India Institute of Medical Sciences; CMC, Christian Medical College; COVID-19, coronavirus disease 2019.
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Table 1. Baseline Characteristics of Development and Validation Cohorts, Stratified by Primary Outcome Status

Baseline Characteristic 

Development Cohort Validation Cohort

Overall (n = 257) 

Developed Oxygen Requirement

Overall (n = 166) 

Developed Oxygen Requirement

No (n = 207) Yes (n = 50) No (n = 127) Yes (n = 39) 

Demographics

Age (years) 52.0
(40.0–61.0)

52.0
(40.0–60.0)

54.0
(42.2–62.0)

54.0
(41.2–63.0)

55.0
(41.5–63.0)

54.0
(41.0–66.0)

Male sex 185/257
(72%)

144/207
(70%)

41/50
(82%)

101/166
(61%)

76/127
(60%)

25/39
(64%)

BMI (kg/m²)a 26.0
(23.6–28.7)

26.2
(23.8–28.8)

25.8
(22.4–28.3)

24.9
(23.4–27.6)

24.8
(23.4–27.6)

26.1
(23.7–27.6)

Vital signs

Heart rate (BPM) 88.0
(80.0–97.0)

86.0
(79.0–96.0)

90.0
(86.0–99.5)

84.0
(74.0–92.0)

84.0
(74.0–90.0)

84.0
(77.0–94.0)

Respiratory rate (BPM) 22.0
(22.0–24.0)

22.0
(22.0–24.0)

22.0
(22.0 to 24.0)

24.0
(22.0 to 24.0)

22.0
(22.0–24.0)

24.0
(22.0–24.0)

Oxygen saturation (%) 98.0
(96.0–99.0)

98.0
(97.0–99.0)

96.0
(95.2–98.0)

98.0
(96.0–99.0)

98.0
(96.0–99.0)

96.0
(95.5–98.0)

Axillary temperature (°C) 36.8
(36.4–37.1)

36.7
(36.4–37.0)

36.9
(36.5–37.2)

36.9
(36.7–37.2)

36.9
(36.7–37.2)

37.0
(36.9–37.2)

Systolic BP (mmHg) 128.0
(116.0–138.0)

128.0
(116.0–140.0)

126.0
(118.0–134.8)

121.0
(110.0–130.0)

120.0
(110.0–130.0)

122.0
(110.0–131.0)

Diastolic BP (mmHg) 80.0
(72.0–88.0)

80.0
(72.0–88.0)

79.0
(70.0–88.0)

76.0
(70.0–82.0)

76.0
(70.0–82.0)

74.0
(67.0–80.0)

qSOFA score ≥ 2 13/257
(5.1%)

9/207
(4.3%)

4/50
(8.0%)

16/166
(9.6%)

10/127
(7.9%)

6/39
(15%)

Comorbidities 

Current smokers 10/257
(3.9%)

8/207
(3.9%)

2/50
(4.0%)

4/166
(2.4%)

3/127
(2.4%)

1/39
(2.6%)

Reported comorbidityb 165/257
(64%)

128/207
(62%)

37/50
(74%)

117/166
(70%)

91/127
(72%)

26/39
(67%)

Presenting illness 

Symptom duration (days) 6.0
(4.0–8.0)

6.0
(4.0–8.0)

5.5
(5.0–7.0)

6.0
(4.0–8.0)

6.0
(3.5–8.0)

5.0
(4.0–7.0)

History of fever 243/257
(95%)

196/207
(95%)

47/50
(94%)

155/166
(93%)

118/127
(93%)

37/39
(95%)

Breathlessness 154/257
(60%)

119/207
(57%)

35/50
(70%)

90/166
(54%)

65/127
(51%)

25/39
(64%)

Chest pain 59/257
(23%)

48/207
(23%)

11/50
(22%)

15/166
(9.0%)

9/127
(7.1%)

6/39
(15%)

Abdominal pain 35/257
(14%)

32/207
(15%)

3/50
(6.0%)

15/166
(9.0%)

12/127
(9.4%)

3/39
(7.7%)

Diarrhea 80/257
(31%)

65/207
(31%)

15/50
(30%)

47/166
(28%)

33/127
(26%)

14/39
(36%)

Severe myalgia 140/257
(54%)

110/207
(53%)

30/50
(60%)

75/166
(45%)

65/127
(51%)

10/39
(26%)

Host biomarkers

CRP (mg/L)a 24.4
(3.9–88.9)

17.9
(2.8–85.4)

62.5
(19.7–134.4)

58.1
(17.2–147.1)

42.5
(12.3–111.9)

95.8
(52.8–176.9)

D-dimer (ng/mL)a 725.0
(382.4–1,466.4)

640.6
(329.7–1,234.9)

1,201.7
(679.9–2,307.0)

968.2
(620.7–1,599.0)

918.8
(579.0–1,454.9)

1,148.1
(829.5–3,200.2)

IL-6 (pg/mL)a 11.0
(4.9–36.2)

8.7
(4.2–27.9)

36.4
(18.4–70.7)

31.6
(13.9–63.0)

24.4
(11.4–47.2)

71.1
(39.4–98.9)

NLRa 3.2
(1.9–4.9)

2.9
(1.7–4.5)

4.4
(3.2–7.2)

2.8
(1.8–5.4)

2.5
(1.6–4.2)

5.3
(2.7–7.0)

PCT (ng/mL)a 0.1
(0.1–0.2)

0.1
(0.1–0.1)

0.1
(0.1–0.2)

0.1
(0.1–0.2)

0.1
(0.1–0.2)

0.1
(0.1–0.3)

sTREM-1 (pg/mL)a 378.0
(265.0–537.0)

362.0
(259.0–522.0)

424.5
(306.8–649.5)

419.0
(285.0–596.8)

389.0
(282.0–562.0)

437.0
(349.0–660.8)

suPAR (ng/mL) 4.2
(3.1–5.8)

4.0
(2.9–5.5)

5.4
(4.0–6.8)

4.1
(3.1–5.6)

3.8
(2.9–5.1)

5.5
(3.9–6.7)

Viral markers 

Ct valuea,c 26.0
(20.7–30.8)

26.0
(20.6–30.1)

26.4
(22.0–31.4)

32.1
(28.3–36.2)

32.8
(28.1–36.2)

31.5
(28.4–36.0)

Seronegativea,d 117/252
(46%)

90/203
(44%)

27/49
(55%)

73/160
(46%)

51/123
(41%)

22/37
(59%)
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DISCUSSION

We report the development and temporal validation of 3 prom-
ising clinical prediction models to assist with the assessment 
of patients with moderate COVID-19. The models combine 3 
simple parameters (age, sex, and SpO2) with measurement of a 
single biochemical biomarker (IL-6, NLR, or suPAR), quantifi-
able using commercially available rapid tests.

We included patients in whom there is clinical uncertainty 
as to whether admission is warranted, and adopted an analyt-
ical approach which acknowledged that the trade-offs inherent 
in this decision will vary at different stages of the pandemic 
and in different healthcare settings. We used specific systemic 
symptoms to define moderate severity disease rather than the 
WHO-CPS, recognizing, as did the scale’s original authors, that 
the lower end of the WHO-CPS is subjective [19]. Performance 
of any prediction model is sensitive to the prevalence of the out-
come it aims to predict, and thus we hope our more objective 
study entry criteria will better standardize the outcome prev-
alence and facilitate model transportability; we followed the 
widely used ISARIC case report form to define symptoms to 
permit validation by other groups [33].

Our approach focused on quantifying the added value of host 
biomarkers. We recognize that laboratory tests carry an oppor-
tunity cost, especially when resources are limited. Although a 
model containing clinical parameters alone would be simpler to 
implement, our analyses indicate that inclusion of 1 biomarker 
test would allow use of the model in a broader range of contexts, 
including when bed pressures are less acute early in a COVID-
19 surge.

Our models have face validity. All clinical and laboratory pre-
dictors have been implicated in the pathogenesis of COVID-19 
[10, 17, 23, 25, 27, 29] Similar to others, we found that age and sex 
were not strongly associated with risk of deterioration, in contrast 

to their well-recognized association with COVID-19 mortality 
[23]. This underlines the importance of developing models for 
specific clinical use cases. Models developed to predict mortality 
are not necessarily appropriate to rule out less severe disease, just 
as models developed in well-resourced healthcare systems may 
not generalize to resource-limited settings [34].

The 3 biochemical biomarkers that demonstrate most 
promise in our study have biological plausibility. In addition 
to being a therapeutic target [35], raised IL-6 levels predict 
development of an oxygen requirement [27, 28] and, along 
with an elevated NLR, form part of the COVID-19-associated 
hyperinflammatory syndrome (cHIS) diagnostic criteria 
[36]. Elevated suPAR levels are associated with disease se-
verity and progression in both moderate and severe COVID-
19 [29, 37] and have been used for stratification into trials of 
immunomodulatory agents [38].

We addressed the limitations identified in other COVID-19 
prognostic models by following the TRIPOD guidelines [18], 
and using a prospectively collected data set with minimal loss 
to follow-up and missing data [8]. Nevertheless, the small val-
idation cohort (determined by the natural history of the pan-
demic in India) limits our ability to draw strong conclusions. 
Although the same models appeared superior in the different 
analyses we performed, further external validation is required 
before they can be recommended for use; we have published 
our full models (Supplementary Table 5; Supplementary Figure 
5) to encourage independent validation.

No vaccinated individuals were included in the study. The 
models may require recalibration for use in vaccinated popula-
tions with lower baseline risk of progression to severe COVID-
19. However, it is important to note that only 15/54 African 
countries met the WHO target of vaccinating 10% of their 
population by the end of September 2021 [39]. An estimated 

Baseline Characteristic 

Development Cohort Validation Cohort

Overall (n = 257) 

Developed Oxygen Requirement

Overall (n = 166) 

Developed Oxygen Requirement

No (n = 207) Yes (n = 50) No (n = 127) Yes (n = 39) 

Recruitment site 

CMC, Vellore 133/257
(52%)

110/207
(53%)

23/50
(46%)

166/166
(100%)

127/127
(100%)

39/39
(100%)

AIIMS, Patna 124/257
(48%)

97/207
(47%)

27/50
(54%)

NAe NAe NAe

Median values IQR are reported for continuous variables. 
Abbreviations: AIIMS, All India Institute of Medical Sciences; BMI, body mass index; BP, blood pressure; BPM, beats per minute; CMC, Christian Medical College; CRP, C-reactive protein; 
IgG, immunoglobulin G; IgM, immunoglobulin M; IL-6, interleukin 6; IQR, interquartile range; NA, not applicable; NLR, neutrophil-to-lymphocyte ratio; PCR, polymerase chain reaction; PCT, 
procalcitonin; qSOFA, quick sequential organ failure assessment; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; sTREM-1, soluble triggering receptor expressed on myeloid 
cell-1; suPAR, soluble urokinase plasminogen activator receptor.
aMissing data: BMI = 1; CRP = 8, D-dimer = 3, IL-6 = 2, NLR = 12; PCT = 2; sTREM-1 = 2; Ct value = 181; serostatus = 11. 
bDetails of the 12 comorbidities that participants were asked about are provided in Supplementary Table 3. Comorbidities are not reliably diagnosed or known by patients in our contexts and 
therefore were not selected as 1 of the a priori clinical predictors. 
cDifferent specimen collection procedures and PCR assays were used at each site (Supplementary Table 9). 
dSeronegative defined as negative for both SARS-CoV-2 IgG and IgM antibodies. 
eRecruitment closed in AIIMS in March 2021, and only participants from CMC were recruited into the temporal validation cohort. 

Table 1. Continued
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55–70% vaccination coverage is required to achieve herd im-
munity for a vaccine with 90% efficacy [40]. Unfortunately, the 
timelines for adequate vaccination coverage in many LMICs are 
likely to be long.

In our context, corticosteroids were readily available and 
often self-prescribed or used off-license. Although steroid use 
was associated with some candidate predictors, it was not as-
sociated with the primary outcome and is therefore unlikely 

to have confounded the observed association (Supplementary 
Tables 7–8).

We selected oxygen requirement as our primary outcome as 
this reflects a clinically meaningful endpoint. We opted to use 
an SpO2/FiO2 < 400 for participants without documented hy-
poxia or tachypnoea prior to initiation of supplemental oxygen, 
as the threshold for oxygen therapy can be subjective and vary 
depending on available resources [19, 22]. It is unlikely that 

Figure 3. Performance measures and calibration plots for each model in the validation cohort. Red line indicates perfect calibration; black dashed line indicates calibration 
slope for that particular model; blue rug plots indicate distribution of predicted risk for participants who did (top) and did not (bottom) meet the primary outcome; grey shaded 
rectangle indicates region within which no individual participant’s predicted risk falls for that particular model. C-statistics indicate how well participants who met the primary 
outcome are differentiated from those who did not; perfect discrimination is indicated by a c-statistic of 1.0. Calibration slopes indicate agreement between predicted prob-
abilities and observed outcomes; perfect calibration is indicated by a slope of 1.0. Abbreviations: CRP, C-reactive protein; IL-6, interleukin 6; NLR, neutrophil-to-lymphocyte 
ratio; PCT, procalcitonin; sTREM-1, soluble triggering receptor expressed on myeloid cell-1; suPAR, soluble urokinase plasminogen activator receptor.

375e• CID 2022:75 (1 July) •Safe Triage of Moderate COVID-19

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciac224#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciac224#supplementary-data


our outcome lacked sensitivity; only 1 participant who received 
supplemental oxygen did not meet the primary outcome. It may 
have lacked specificity (12 participants who met the primary 
outcome did not receive supplemental oxygen and calculation 
of FiO2 in nonventilated patients can overestimate pulmonary 
dysfunction) [41], but sensitivity would always be prioritized in 
a tool to inform community-based management. Furthermore, 
any outcome misclassification is likely to have reduced, rather 
than exaggerated, the prognostic performance of the candidate 
predictors and models [42].

Baseline Ct value was not associated with the risk of dete-
rioration (Supplementary Table 9). In keeping with others, we 
found that seronegativity at enrollment was associated with 
an increased risk of deterioration (49/190 [25.8%] vs. 37/222 
[16.7%]; χ2= 5.16; P = .023) [43, 44]. As rapid antibody tests are 

available this warrants further exploration, acknowledging that 
this is likely most relevant in patients without a history of pre-
vious COVID-19 illness or vaccination.

In conclusion, we present 3 clinical prediction models that 
could help clinicians to identify patients with moderate COVID-
19 who are suitable for community-based management. The 
models address an unmet need in the COVID-19 care continuum. 
They are of particular relevance where resources are scarce and, if 
validated, would be practical for implementation. Routinely col-
lected data from MSF medical facilities across 26 LMICs indicate 
that 54.4% (18 400/33 780) of patients presenting with clinically 
suspected COVID-19 between March 2020 and November 2021 
who might be considered for admission, or 16.2% of all patients 
(18 400/113 455), would have been eligible for assessment using 
our models, illustrating the potential for widespread impact.

Table 2. Predicted Classification of Patients at Different Cutoffs for Each Model, Using the Prevalence of the Primary Outcome in the Validation Cohort

Predicted  
Probability of 
Model (Cutoff) 

Per 100 Patients (23 Patients Who Would Require Oxygen)

Ratio of Incorrect  
to Correct Admis-

sions (FP: TP) 

Ratio of Correct 
to Incorrect Dis-
charges (TN: FN) 

Patients Who 
Would Require 

Oxygen Admitted 
(TP) 

Unnecessary  
Hospital  

Admissions (FP) 

Patients Who 
Would Require  

Oxygen  
Discharged (FN) 

Patients  
Correctly  

Discharged (TN) 

Clinical model

0.1 21 58 2 19 3 to 1 10 to 1

0.15 18 46 5 31 3 to 1 6 to 1

0.20 14 29 9 48 2 to 1 5 to 1

IL-6 model

0.1 23 61 0 16 3 to 1 NA

0.15 21 49 2 28 2 to 1 14 to 1

0.20 19 38 4 39 2 to 1 10 to 1

NLR model

0.1 22 54 1 23 2 to 1 23 to 1

0.15 17 39 6 38 2 to 1 6 to 1

0.20 15 25 8 52 2 to 1 6 to 1

suPAR model

0.1 22 52 1 25 2 to 1 25 to 1

0.15 16 34 7 43 2 to 1 6 to 1

0.20 13 22 10 55 2 to 1 6 to 1

CRP model

0.1 21 54 2 23 3 to 1 12 to 1

0.15 20 43 3 34 2 to 1 11 to 1

0.20 16 36 7 41 2 to 1 6 to 1

D-dimer model

0.1 21 54 2 23 3 to 1 12 to 1

0.15 19 39 4 38 2 to 1 10 to 1

0.20 15 31 8 46 2 to 1 6 to 1

PCT model

0.1 21 57 2 20 3 to 1 10 to 1

0.15 18 45 5 32 2 to 1 6 to 1

0.20 14 27 9 50 2 to 1 6 to 1

sTREM-1 model

0.1 20 55 3 22 3 to 1 7 to 1

0.15 17 41 6 36 2 to 1 6 to 1

0.20 14 28 9 49 2 to 1 5 to 1

A cutoff of 0.1 reflects a management strategy in which any patient with a predicted risk of requiring oxygen ≥ 10% is admitted. 

Abbreviations: CRP, C-reactive protein; FN, false negative; FP, false positive; IL-6, interleukin 6; NLR, neutrophil-to-lymphocyte ratio; PCT, procalcitonin; sTREM-1, soluble triggering receptor 
expressed on myeloid cell-1; suPAR, soluble urokinase plasminogen activator receptor; TN, true negative; TP, true positive. 
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Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases on-
line. Consisting of data provided by the authors to benefit the reader, 

the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the cor-
responding author.

Figure 4. Decision curve analysis for each model in the validation cohort. The net benefit for each model is compared to an “admit-all” (red line) and “admit-none” (green 
line) approach, and each model containing a biochemical biomarker (purple line) is also compared to the model containing only clinical variables (blue line). A threshold prob-
ability of 5% indicates a scenario where the value of 1 TP (patient admitted who will subsequently require oxygen) is equivalent to 19 FPs (patients admitted who will not 
subsequently require oxygen). Abbreviations: CRP, C-reactive protein; FP, false positive; IL-6, interleukin 6; NLR, neutrophil-to-lymphocyte ratio; PCT, procalcitonin; sTREM-1, 
soluble triggering receptor expressed on myeloid cell-1; suPAR, soluble urokinase plasminogen activator receptor; TP, true positive.
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